

A communication framework for distributed access control in microkernel-based systems

Mohammad Hamad, Johannes Schlatow, Vassilis Prevelakis, Rolf Ernst

http://ccc-project.org/

Center for Informatics and Information Technology

Overview

Computers on wheels

- 70-100 ECU
- More than 10 millions LOC

Within each ECU

- Multi-levels of security and criticality
 - Different vendors
 - Different security perspective
- Protecting applications from each others
 - Toyota "EnForm" system !

Microkernel is the first step

- Minimum privileged code and TCB
- Inter-process communication (IPC)

Overview

Network on Wheels

- ECUs connected using many bus systems
 - CAN, IP based for on-board
 - Wireless
- Uncontrolled interaction may cause a vulnerabilities
 - Entertainment system attack !

Technische Universität Braunschweig

Providing distributed access control framework

- Controlling "who should talk to whom"
- Providing security services (i.e. Integrity, mutual authentication, and confidentiality)
- Distributed policy enforcement points

- Communication scenario
- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

Outline

Communication scenario

- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

Communication Scenario

(Security) objectives

Objective	Local	Remote
Fine-grained access control	V	?
Integrity, mutual authentication, and confidentiality	\checkmark	?
Legacy application support	?	
Composability and migratability	?	
Minimum (application-specific) TCB		?

Local communication

- IPC and Capability-based access control enforced by policy engine
- Capability used to identify the application (authentication)

From IPC towards networked communication

- Controlling the direct access to the communication module
- Component needs capability and appropriate policy to use network

Outline

- Communication scenario
- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

Framework Architecture

- User-level networking
- Dedicated stack per application
- Threats
 - Spoofing
 - DoS attack
- Layer 2 security

- For each ECU
 - Single Communication Module
 - Shared by all applications
 - Local firewall enforces part of the communication policy
- Distributed Firewall
- Layer 3 security

- Communication scenario
- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

- Communication Interface
- Policy Decision Module
- Network Stack
- Decision Repository

Communication Interface

- Implementing the socket API calls as IPC calls
- Managing the shared memory between each application and Communication Module
- Checking the validity of the parameters
- Enforcing the Policy Decision Module results

Policy Decision Module

- Monitoring the requests based on credentials and connection properties.
- KeyNote Trust management system
- KeyNote Policy definition language.
 - Application independent.
 - Delegation.

Authorizer:	Integrator_public_key			
Licensees:	Platform_public_key <			
Conditions: (Vendor_id =="ACME_INSTRUMENTS" && Src_device_name == "headlight_control" && Dst_device_name == "ambient_light_sensor" && Src_device_type == CONTROL_PLATFORM && Dst_device_type == LIGHT_SENSOR && Security_level >= SL_INTEGRITY) -> "ALLOW"				
Signature:	Integrator signature			

Network Stack

- LwIP stack.
- Embedded IPsec.
 - Mutual authentication, integrity and confidentiality.
- Rate limiting, queuing priority.

Decision Repository

- Storing the decision rules (i.e. source IP, destination IP, security level, etc.)
- Improve the efficiency

Objective	Local	Remote
Fine-grained access control	\checkmark	\checkmark
Integrity, mutual authentication, and confidentiality	\checkmark	
Legacy application support		
Composability and migratability	?	
Minimum (application-specific) TCB		?

Example

Technische Universität Braunschweig

- Communication scenario
- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

Evaluation

- implemented with Genode OS
- Compared to existing Genode OS
 - bridge with proxy-ARP

Source Lines Of Code (SLOC)

Save 750 SLOC

Module Part	SLOC
Comunication interface	500
Policy Decision module Interface	300
IPsec extension of the Network Stack	2000
Decision Repository	600

Evaluation

Latency

- Netperf tool
- Genode and Netperf runs on the same Linux machine
- Genode runs on Raspberry Pi, and Netperf runs on remote Linux machine

Evaluation

Our Module does not add extra overhead.

- Communication scenario
- Framework architecture
- Design and implementation
- Evaluation
- Conclusion

Conclusion

Objective	Local	Remote
Fine-grained access control	Capability- based	Communication module
Integrity, mutual authentication, and confidentiality	Capability- based	IPsce
Legacy application support	Lib-comm	
Composability and migratability	Ргоху	
Minimum (application-specific) TCB	?	

Performance could be better

- Handle the copy operations.
- Cashing the credentials.

