OSPERT – Operating Systems Platforms for Embedded Real-Time Applications July 5th - 2016, Toulouse, France

Timeliness Runtime Verification and Adaptation in Avionic Systems

José Rufino and Inês Gouveia

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Copyright © 2008-2016 Navigators - LASIGE - FCUL

Earlier Projects

The roots of this work

- Project AIR (Type A Proof of Concept)
- Project AIR-II (Type B Demonstration of Feasibility and Use)

AIR – ARINC 653 Interface in Real-Time Operating Systems

- Civil aviation industry
 A380 and B787 avionics
- Native ARINC 653 OS
- Challenge:
 - Use of COTS RTOS
 - RTEMS Real-Time Executive for Multiprocessor Systems

AIR – ARINC 653 Interface in Real-Time Operating Systems

• AIR Proof of Concept Main Objectives:

- Study the adoption of ARINC 653 to space.
- Evaluate how RTEMS can be adapted to fulfill the requirements of the ARINC 653 specification.
- Proposed Methodology to AIR specification of:
 - Modules to be included in RTEMS;
 - Modules needing to be modified/extended;
 - Modules needing to be removed.
 - not strictly followed when project started.

The motivation: nowadays...

Application to autonomous unnamed vehicles

- next generation spacecrafts
- aerial drones
- aquatic drones
- terrestrial vehicles
- Some require low-end cost solutions
- Safety is sometimes a disregarded requirement

AIR Architecture

- Combination of time and event-triggered approaches
- Multi-executive core layer with two-level hierarchical scheduling
- Portable APEX design concept

Time and Space Partitioning

Time partitioning

- Two-level hierarchical scheduling
- Fixed cyclic partition scheduling, RTOS process scheduling

Space partitioning

- High-level processorindependent abstraction
- Mapping of high-level partition description to low-level mechanisms

AIR System Architecture APEX – Application Executive Interface

- Flexible Portable APEX
 - Services defined in the ARINC 653 specification
 - Generic OSs: only subset of the APEX services
 - Management/monitoring, interpartition communication

AIR System Architecture AIR Health Monitoring (HM)

- Responsible for handling HW/SW errors
- Deviation from a system specification
- Isolate errors within domain of occurrence

Non-Intrusive Runtime Verification AIR Observer

- Implemented as an hardware-based module
- System bus observation is non-intrusive
- Events are registered either statically or dynamically
- Activity developed under national Project READAPT, proceeded within COST Action IC1402 – Runtime Verification Beyond Monitoring (ARVI)

Adaptability mechanisms: Different PST schedules

- Adaptation to different phases of the mission
 - takeoff;
 - approach flight;
 - exploration;
 - flight back;
 - landing.
- Accommodation of component failure

Adaptability mechanisms: Mode-changes

- No (mandatory) need to wait for the end of the MTF
- For each mission phase three schedules are defined (one for each mode)
- An approach similar to mission phase adaption is used (schedule a different PST)
- Only slight changes to AIR native scheduler are required

Adaptability mechanisms Mode-changes

Adaptability mechanisms Mode-changes

Mode	Partition (and function)				
	AOCS	TTC	FDIR	Payload	
Normal	Full	Full	Partial (detection)	Full	
Survival	Full	Partial (e.g. abort)	Partial (detection)	only the required	
Recovery	Full	Partial (e.g. normal)	Full	only the required	

AOCS – Attitude and Orbit Control Subsystem TTC – Telemetry Tracking and Command FDIR – Fault Detection, Isolation and Recovery

Adaptability mechanisms Impact on the APEX interface

Primitive	Short description			
Need to register/update critical execution period bounds in the AO				
SET_MODE_SCHEDULE	Requests a mode change for a new schedule Served if/when no critical activities			
SET_PHASE_SCHEDULE	Requests a new mission phase schedule Served in normal mode, at the end of a MTF			
No need to register/update critical execution period bounds in the AO				

GET_MODE_SCHEDULE_IDObtains the current schedule identifierGET_MODE_SCHEDULE_STATUSObtains the current schedule status

Integrating Adaptability and Non-Intrusive RV

Functional system	Verification sub-system
Hardware-based	Software-based (minimum intrusiveness)
Software-based	Hardware-based (non-intrusive)

- Partition scheduling and dispatching (trigger)
- Support to phase-dependent and mode-based schedules
- Process deadline verification

Triggered by hardware

Runtime verification (software)

PST switch (software)

Partition switch (software)

Integrating Adaptability and Non-Intrusive RV

AIR Prototyping Activities

Mockup of Integration on Spacecraft Onboard Platform

P1 Attitude	P2 Telemetry	P3 Data	Sys Comm
T2 pitch = 1380 T1 yaw = 0000 T3 roll = 1380 -			
Debug window initia Changing to Partitio	lized H L	AIR PMX Initializing P1 RTEM Initializing P2 RTEM Initializing P3 RTEM Initializing P4 RTEM Partition Scheduling Ready to Start Parti Starting P1	Monitor S kernel S kernel S kernel Initialization tion Scheduling!
F01P1 Attitude	F02P2 Telemetry	FO3P3 Data	F84Sys Com

Conclusion

- Simple modifications to AIR native technology:
 - Improved (self-)adaptation features
 - Allows timely responses to unexpected events
 - Hardware-assisted approach
 - Complemented with software-based components

Further information:

http://air.di.fc.ul.pt

http:www.navigators.di.fc.ul.pt/wiki/Project:READAPT

https:www.cost-arvi.eu

José Rufino LaSIGE/FCUL, Lisboa, Portugal Homepage: <u>http://www.di.fc.ul.pt/~ruf/</u> E-mail: jmrufino@ciencias.ulisboa.pt

Copyright © 2008-2016 Navigators - LASIGE - FCUL