
A design proposal for a shareable USB server in a
microkernel environment

Daniel Ernst Matthias H. F. Jurisch

Hochschule RheinMain
Fachbereich Design Informatik Medien

Unter den Eichen 5
D-65195 Wiesbaden

First Wiesbaden Workshop on Advanced Microkernel Operating
Systems

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 1 / 18



Overview

1 Introduction
Application Example
USB

2 OS-Level USB Support
Linux
Microkernel

3 Bus Access Scheduling
Scheduling Algorithm comparison
Selected Approach

4 Access Rights Management
ACLs and Capabilities
Hotplugging

5 Server Design Overview

6 Conclusion

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 2 / 18



Introduction

• USB is very popular in
the desktop market

• Nowadays also used in
smaller devices (e.g. the
Raspberry Pi)

• Used to tether multiple
peripherals

• Accessed through the
USB host controller

Problem

USB host controller is a
shared resource

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 3 / 18



Introduction
Application Example

• Trend in automotive
industry: Using Android
as media center

• A USB-thumbdrive with
MP3s can be plugged
into the media-console

• Also, other devices can
use the USB-host of the
media center, e.g. a
tachometer

Figure: The application scenario.

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 4 / 18



Introduction
USB

• Universal Serial Bus

• Strictly hierarchical and host-centric (everything routes through the
USB-host)

• Device descriptors for each device

• Descriptor-hierarchy: Device descr. ⇒ configuration descr. ⇒
interface descr. ⇒ endpoint descr.

• Every endpoint is the end of a unidirectional pipe to the USB host

Descriptors

• idVendor: Samsung Electronics Co.

• iProduct: Galaxy Nexus

• bDeviceClass: Mass-storage-device

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 5 / 18



OS-Level USB Support
Linux

Figure: USB in the Linux Kernel1

1http://free-electrons.com/doc/linux-usb.pdf
Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 6 / 18



OS-Level USB Support
Linux

• Communication between layers 2 and 3: USB Request Blocks (URBs)

• URB encapsulates USB requests, contains:
• Device and endpoint identification
• Pointer to memory with payload buffer
• Pointer to completion handler

• When URB is submitted, it can be passed to the host controller

• Model is sufficient, because USB is host centric (all transfers are
started by the host)

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 7 / 18



OS-Level USB Support
Microkernel

• Not Acceptable: give hardware acces to all clients

• Key question: Abstraction level?

• Should we provide a function-like interface?

Sending URBS

• Idea: A server allows clients to send URB-like datastructures.

• Provide USB library that encapsulates sending URBs

Problems
• If we have more than one pending URB: what to process next?

• How to decide which clients can submit URBs concerning specific
devices?

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 8 / 18



Bus Access Scheduling

• Scheduling
• Determining which task is allowed acces to a resource at a given time.

• Task: URB

• Resource: Forwarding requests to actual host controller driver

• Scheduling will determine, given a set of URBs, which URB will be
processed next

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 9 / 18



Bus Access Scheduling
Comparison

Naive: First in first out (FIFO)

• Simple FIFO datastructure, first submitted URB is processed first

• Blocking USB bus is possible

Popular: Earliest Deadline First (EDF)

• Task has Deadline d

• Next scheduled: Task with earliest d

• Optimal for single resource scheduling

Multi-Resource: Least Laxity First (LLF)

• Task has Deadline d and execution time c

• Compute Laxity l = (d − t)− c

• Optimal for single resource scheduling

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 10 / 18



Bus Access Scheduling
Comparison

Fixed Priority Scheduling

• Each task has a fixed priority

• Task with highest priority gets scheduled next

• URBs would receive priority of client

• EDF application:
• Non-rt URBs with deadline ∞
• Would be scheduled with FIFO
• Specific non-rt scheduling usefull

• LLF: We don’t know the execution time

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 11 / 18



Bus Access Scheduling
Selected Approach

Figure: Selected Approach2

2Numbers represent the deadline of the respective URB
Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 12 / 18



Access Rights Management
Why is it necessary?

• Application scenario: Android vs.
real-time application accessing
USB-devices

• Malicious example: Bad application
sending/receiving tachometer
information

Conclusion

We need to restrict which application may
access which device

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 13 / 18



Access Rights Management
Protection Matrix

Figure: A protection matrix3.

• Domain: Application like Android/real-time-application/etc.
• Object: USB-device like USB-thumbdrive/fondue-pot/etc.
• Empty cells mean there are no rights (whitelisting, principle of least

privilege)
3A. S. Tanenbaum. Modern operating systems

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 14 / 18



Access Rights Management
ACL vs. Capabilities

• Capabilities (Caps): Domains hold which objects they may access

• Access Control List (ACL): Objects hold which domains may access
them

• Both have their pros and cons. . .

Capabilities’ main issue

• Domains granted access on mere possession of a Cap

• Domains need to manage their Caps ⇒ API needs to be changed!

Proposal: ACLs

• Easily implemented in a centric and isolated environment (the server)

• Issues of ACLs are acceptable for our use-case

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 15 / 18



Access Rights Management
Hotplugging

• What if an unknown device is hotplugged? — No known Access
Control Entries (ACE) for that device

• Idea 1: Block hotplugged devices ⇒ USB-thumbdrive with MP3’s is
useless!

• Idea 2: Don’t block hotplugged devices ⇒ Malicious!

• Idea 3: Some sort of authorization for applications and USB-devices
⇒ API changes!

Proposal

• Static configuration with whitelisted devices

• Use USB-device-descriptors for specific or role-based whitelisting

• e.g. mass-storage-device (bDeviceClass) or Samsung Electronics Co., Ltd
(idVendor)

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 16 / 18



Conclusion

Figure: Server Design

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 17 / 18



Conclusion

• USB as shareable resource

• Application scenario: Multiple applications, mircokernel, multiple
USB devices

• Leverage of existing code and protecting real-time-applications has
high priority

Major issues

• Bus scheduling for real-time and non-real-time simultaneously

• Access rights management — which application may use which device

Proposals

• A scheduling algorithm combining deadline- and priority-scheduling

• An Access Control List with a group-based whitelist via static
configuration

Ernst, Jurisch (Hochschule RheinMain) USB Server design proposal WAMOS 2014 18 / 18


	Introduction
	Application Example
	USB

	OS-Level USB Support
	Linux
	Microkernel

	Bus Access Scheduling
	Scheduling Algorithm comparison
	Selected Approach

	Access Rights Management
	ACLs and Capabilities
	Hotplugging

	Server Design Overview
	Conclusion

