

Side-channel attacks in a microkernel environment

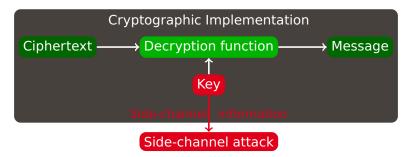
Thomas Frase Thomas.b.Frase@student.hs-rm.de

Fabian Seiberling Fabian.b.Seiberling@student.hs-rm.de

1st Wiesbaden Workshop on Advanced Microkernel Operating Systems

13.02.2014

Table of contents



1 Introduction

- 2 Public Key Cryptography
- 3 Side-channel Attacks
- 4 Real-world Examples
- 5 Conclusion

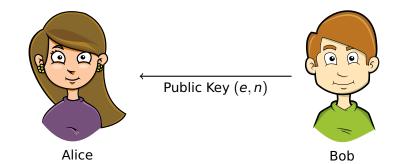
3

Side-channel attacks use the physical implementation of a cryptographic function to gain information about the key.

Bob

Generate big primes p and q

Calculate $n = p \cdot q$



Alice Encrypt message: $c = m^e \pmod{n}$

4

Bob Decrypt message: $m = c^d \pmod{n}$

Exponentiation by squaring

Algorithm

```
Input: c,d,n
Output: m
let d_1, ..., d_n be the bits of d;
let bits(x) be the bit-length of x;
m \leftarrow 1;
for i = bits(d) down to 1 do
    m \leftarrow m^2 \pmod{n};
    if d_i = 1 then
       m \leftarrow m \cdot c \pmod{n};
    end
end
```


Types of side channel attacks:

- Acoustic cryptanalysis
- Data remanence
- Differential fault analysis
- Electromagnetic attacks
- Power monitoring attack
- Timing attack

Acoustic cryptanalysis

Attacks which use the noise emitted by the computer while using the cryptographic function.

Data remanence

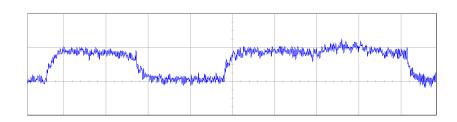
attacks which use to read the data which was used by a cryptographic function. The data can be restored after the cryptographic function delete them.

Differential fault analysis

This attack create a fault in the cryptographic function to gain information about the current state of the function. A fault can be created with high temperature, to high or low voltage or with electric or magnetic fields.

Electromagnetic attacks

Attacks which use the electromagnetic field to gain information about the secret of the cryptographic function.


Power monitoring attack

This attack used the characteristic of the power consumption for each instruction of the CPU.

Timing attack

Attacks which measure the execution time of parts of the cryptographic function to gain information.

Example: Power monitoring attack

- Square-and-multiply algorithm
- Different amount of power
- Digital oscilloscope
- Differential power analysis

Acoustic Attack

11

Genkin, Shamir and Tromer

RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis

- Extraction of full 4096-bit RSA key
- Attack using various microphones
- Uses adaptive chosen-ciphertext
- □ Target: GnuPG on Laptops

Acoustic Attack

- Electrical components produce high-frequency noise
- Voltage regulator noise depends heavily on CPU instructions / load
- Various CPU instructions distinguishable in acoustic spectrum

13

GnuPG uses optimization (RSA-CRT)

$$m_p = c^{d_p} \pmod{p}$$
 $m_q = c^{d_q} \pmod{q}$

□ Attack targets each bit of *q* individually

Choose c

D Determine $q_i = 1$ or $q_i = 0$

Modify c according to last step

Repeat

□ Factorize *n* from *q*

Acoustic Attack

14

Consequences for microkernels?

- Attack is independent of operating system
- Mitigation best done on algorithm-level
- Self-eavesdropping can be mitigated by considering the microphone a security critical resource

Yinqian, Juels, Reiter, and Ristenpart

Cross-VM Side Channels and Their Use to Extract Private Keys

- Almost complete extraction of private key
- Required brute-force search of about 10,000 keys
- □ Target: GnuPG in a Xen-based VM

- Attacker and victim on different guest VMs
- Attacker spies on the instruction cache
- Cache-based delays reveals used code paths in victim

- Preempting the victim
- Noise-reduction
- Classification
 - SVM (Support vector machines)
 - HMM (Hidden Markov model)
 - Fragment stitching

Consequences for microkernels?

- Side-channel resistant algorithms
- Scheduling
 - Make it hard for the attacker to preempt the victim
- Flushing caches
 - Flush instruction cache on context switch for critical tasks

Conclusion

- Side-channel attacks can be used on a microkernel
- Some attacks can be prevented by additional security Implementations on the microkernel
- Some attacks can only prevented by changing the Implementation of the cryptographic function