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Supporting USB in a Microkernel Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Alexander Aring and Timon Link

A design proposal for a shareable USB server in a microkernel environment . . . . . . . . . . . . . . . 7

Daniel Ernst and Matthias H. F. Jurisch

Feasibility to replace Interprocess Communication by the Message Passing Interface in
microkernel contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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based on the reviews. The papers contained herein are the final versions submitted just before
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Abstract:

The talk presents the WINGERT research operating system which aims to explore novel OS design 
patterns for real-time and mixed-criticality systems. Strongly influenced by existing micro kernel 
designs like L4, we think that a kernel providing a minimal set of abstractions and fast context 
switches is a key element to achieve high performance and deterministic system behavior.

We present the WINGERT architecture and discuss the use cases of "thread migration" for cross-
address space RPCs (remote procedure calls) in detail to build hierarchical systems on top of this 
design concept.

Another strong research focus is on resource sharing in such systems: WINGERT provides Futexes 
(fast user space mutexes) for resource sharing between trusting parties. Untrusting parties utilize 
thread migration RPC to trusted servers instead. We discuss the benefits of the locking architecture 
in detail.
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ABSTRACT
This paper provides an introduction in supporting USB in
a Microkernel-Framework. In order to understand the main
thoughts, a quick overview about the USB-specification is
provided. Microkernels have a small trusted code-base, so
the major part of the USB-Framework has to been imple-
mented in userspace which is the USB-drivers themselves
and the UHCI. The several USB-drivers has to cooperate
with each other or the UHCI by exchanging messages. The
task of sending and receiving messages is handled via IPC.
This leads to a bottleneck by communicating to the kernel,
because each IPC is realized as a system call. In case of
HelenOS, a microkernel operating system we choose to use
as example, a solution is provided by reducing the commu-
nication overhead.

Keywords
USB-Stack, USB, USB-Framework, Microkernel, HelenOS

1. INTRODUCTION
20 years of microkernel and 19 years of universal serial bus.
It’s time to marry these two technologies together. This pa-
per describes an example implementation of an USB frame-
work inside microkernels.

2. PURPOSE
This paper describes an USB framework for microkernel sys-
tems. Additional the USB framework will keep the micro-
kernel philosophy.

2.1 Idea
We use the idea of microkernel and build an USB framework
on top. An USB microkernel framework has several service

∗B.Sc. in Computer Science
†B.Sc. in Computer Science

applications. These services will handle the USB framework
and abstract a generic USB interface to interact with appli-
cations which use the framework.

2.2 Problem
The USB framework sevices need a complex mechanism to
handle the necessary USB functionality. This paper de-
scribes the necessary complex mechanism to solve this prob-
lem.

3. USB SPECIFICATION
USB stands for Universal Serial Bus and is developed by In-
tel Corporation. Today (in year 2014) this bus system is the
most common used peripheral bus system for desktop pcs.
The term ”peripheral bus” describes a bus system to provide
a wide support for a wide variety of devices. These devices
can be a keyboard, mouse, etc. USB supports hotplugging.
This means an USB device can be added or removed dur-
ing runtime. In this paper we use the USB specification 2.0
[Cor00] to get a basic information about USB.

There are several kinds of USB port connectors to connect
an USB device into USB. This connectors provide the same
physically background inside the USB cable. The only dif-
ference is the form factor of an USB connector. USB uses
a differential voltage for signaling. The USB Cable on USB
2.0 and backwards has four wires.

Figure 1: Wires of an USB cable. [Cor00]

Figure 1 shows the USB cable wires. The data wires are
twisted to reduce signaling failures from electromagnetic
fields. The other two wires are there to provide a five volt
power supply and ground. Newer USB 3.x specifications
have more than one twisted data wire to provide a higher
bandwidth. Each USB specification describes how an USB
cable needs to be build to provide the USB specification
conditions.

The first USB 1.0 specification was released in November
1995. Since then Intel released USB 1.1, 2.0, 3.0 and 3.1
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specifications. Each of them is backwards compatible to the
previous USB specification.

3.1 USB Device
An USB device is usually a peripheral device like a key-
board, mouse, printer, video, storage, etc. This device offers
an USB connector and the internal firmware of the device
follows an USB specification.

Figure 2: Certification logo of USB 3.0 Standard.
[Wik14c]

Figure 2 shows an example of the USB 3.0 certification logo.
Only USB 3.0 certification devices can use this logo.

3.1.1 Classes
The USB specification describes a wide area of USB device
classes. In this paper we handle with the following USB
classes: HID (human interface device), UVC (USB video
device class) and MSC (mass storage).

Each USB class has an unique identifier in the USB specifi-
cation. If an USB Device doesn’t fit in any USB class like
a fancy USB lamp, there also exists a vendor specific USB
class. An USB class provides a generic interface to interop-
erate with a generic USB device class driver. For example
a BIOS does provide a generic HID driver to interoperate
with a connected USB keyboard. The generic HID interface
is specified by the used USB specification.

3.1.2 Descriptors
An USB device knows what functionality it offers. Besides
the functionality it knows the consume of his power supply.
These information stands in the descriptor table of an USB
device. The firmware contains the descriptor table and pro-
vides this information. It’s necessary that an USB device
provides a descriptor table. The descriptor table contains
the following kinds of descriptors:

Device Descriptor Contains general information about the
connected USB device like the device class. Every USB
device has only one device descriptor.

Configuration Descriptor Contains information about the
configuration of the connected USB device. There also
exist a way to configure an USB device at runtime if
necessary.

Interface Descriptor Describes a specific interface with
a configuration. An interface provides zero or more
endpoint descriptors.

Endpoint Descriptor An endpoint is a communication chan-
nel to send or receive data to or from an USB device.
Each endpoint has a number to identify the endpoint.

The device descriptor contains two important information
about the USB device.

VID Stands for Vendor ID. A company which will produce
an USB device needs a registered ID. The VIDs are
managed by Intel.

PID Stands for Product ID. Each different USB device which
is produced by a specific company needs a Product ID.

A combination of VID and PID provides an unique identifier
for any USB device.

3.2 Endpoint Transfer-Types
All transfer messages on USB has little endian encoding. An
endpoint descriptor has a transfer type to describe the kind
of message which is provided at the specific endpoint. The
USB specification has four kinds of transfer types, which
are:

Control Control transfers are used to get or set configura-
tions, commands or statuses of an USB device. This
type of transfer is used in all kind of USB devices.

Bulk A bulk transfer provides a large data transfer support.
This is usually used in mass storage devices which re-
quire a high bandwidth. Common used in MSC class
devices.

Isochronous Like a bulk transfer type but provides a guar-
antee of required bandwidth. Common used in UVC
class devices.

Interrupt This kind of interrupt isn’t an interrupt in an
usually case. An interrupt transfer type provides a
periodically request of small data. Common used in
HID class devices.

There exists a special endpoint with the number 0. An USB
device must have this endpoint. This endpoint offers a con-
trol transfer type. Over this endpoint the descriptor table
is accessible to enumerate devices on the USB system.

4. USB HOST CONTROLLER
An USB host controller is an electrical hardware chip. Each
pc which supports USB has an USB host controller inside the
northbridge on a desktop pc. This chip handles some USB
operations on hardware. These operations are some time
critical operations which cannot be handled by software.
The operations and interfaces are specified by a host con-
troller interface standard. There are four different host con-
troller interface standards. These are OHCI, UHCI, EHCI
and XHCI. The USB host controller doesn’t implement the
full USB specification. On top of an USB host controller
driver must run an USB implementation. This implementa-
tion is usually known as USB stack.

Figure 3 shows the architecture model of an USB host con-
troller, USB stack (described as USB System SW) and an
USB driver (described as Client SW). These three layers are
usually involved to run an USB system.
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Figure 3: Host Composition. [Cor00]

5. MICROKERNEL
A microkernel (µ-kernel) aims the goal, as against the mono-
lithic kernels, to store the minimum amount of functionality
in the privileged mode, which are needed to run an operating
system. The functionality is reduced to inter process com-
munication (IPC), thread management and memory man-
agement. As the monolithic kernels also implement the de-
vice drivers, filesystems and other components, microkernels
only implements these software as userspace programs. This
reduces the Lines Of Code (LOC) up to 10.000 [KE13, sec.
2] in the seL4 kernel. The advantage of the small amount
of LOC is the reduced error-proneness. This prevents the
microkernel to crash as often as a monolithic kernel, because
most of the functionality is implemented in userspace. When
an userspace program crashes, e.g. a device driver, it will
be simply restarted without taking effect on the kernel run-
time. Figure 4 shows the principles of a monolithic kernel
vs. microkernels.

Figure 4: Structure of monolithic kernel vs. micro-
kernel [Wik14b]

In both approaches an userspace program invokes a system
call to get access to a needed functionality from the kernel.
In case of Unix, the amount of system calls is 40 [hl14],
whereas the L4 gets along with only 10 system calls [hcl14].

The main concept goal of microkernels is to store the most
functionality in userspace. This leads to the concept of
client-server-communication. Both, the server and client,
are running in userspace. A server can be imagined as a
daemon process, which offers a special service, e.g. a filesys-
tem service, to consumers which are the clients. The server
handles the communication with the microkernel by using
system calls. The communication between server and client
is handled by IPC, which will be described in detail in chap-
ter 5.3 Inter Process Communication.

5.1 Related Microkernels
This section gives a short overview of existing microkernels
with the main concepts and ideas in their chronological or-
der.

Mach This Microkernel was developed by Carnegie Mellon
University at 1985 [CMU14]. It’s often mentioned as
the pioneer of microkernels and so it’s seen as the first
generation. Mach abstracts the pipe of Unix by using
IPC. The developer introduced the concepts of tasks
which are sets of system resources, threads - a single
unit of execution, ports as a message queue for IPC
between tasks and messages which are a collection of
data objects to send to the different ports. But IPC is
also the bottleneck of Mach. It slows down the kernel
up to 50% compared to a native Unix implementation.

Minix 3 Minix 3 [Min14] was developed by Andrew S. Tanen-
baum and released in 2005. The motivation behind
this microkernel is security, flexibility and high relia-
bility. It’s the second generation of microkernels.

L4 This Kernel was developed by Jochen Liedtke as re-
placement of L3. The main idea is a well designed,
reduced IPC layer to eliminate the bottleneck of IPC
known in Mach. Liedkte has written the source code
in pure i386 assembly language. With this implemen-
tation Liedtke revolutionised the family of microker-
nels. Many research centres and universities began to
implement the L4 Kernel in high level programming
languages. Popular results are the L4Ka::Hazelnut,
L4ka::Pistachio (both developed at the University of
Karlsruhe), L4/Fiasco from Dresden University of tech-
nology, OKL4 and seL4 both impelled by Gernot Heiser.

5.2 Processes
In the context of operating systems (OS) there exist two
kinds of processes. The processes in kernelspace and pro-
cesses in userspace. Userspace processes don’t have the per-
mission to interact directly with the hardware of the under-
laying platform. As mentioned before in section 5, micro-
kernels only implement the minimum amount of functional-
ity as processes in kernelspace, which are needed to run an
operating system. But there are a lot of services of an OS,
which need to interact with the underlaying hardware, e.g. a
filesystem or a systemtimer. These services don’t run in the
privileged kernelspace, which would hurt the principles of a
microkernel. So they have to be implemented in userspace.
This causes us to take a closer look to the userspace pro-
cesses.
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Userspace processes are typically split into two parts, server
and clients. Servers offers a special functionality, by inter-
acting with the kernel via system calls, to the clients. The
communication between servers and clients is handled by a
RPC-type Inter Process Communication IPC, which is de-
scribed in detail in section 5.3 Inter Process Communication.

Figure 5: Principles of client-server [Wik14a]

Figure 5 shows the concept of client and server communica-
tion. In this case the client is simply called software. In fact
there is no technical difference between servers and clients,
so servers are software too.

5.3 Inter Process Communication
Inter Process Communication IPC allows separate Processes
to communicate via messages. This concept is the premise
for the client-server model described in section 5.2. Without
IPC it would not be possible to strictly divorce the clients
from servers and the most hardware near software like device
drivers had to been implemented in privileged kernelspace.

There are two concepts of IPC - synchronous and asyn-
chronous.

synchronous Synchronous IPC forces the sender and re-
ceiver to block the execution of the program and wait
for the other side to perform the IPC. When the IPC
was performed the execution can be continued. There
is only one decision for the programmer, either to im-
plement an infinity-timeout or a zero-timeout for the
waiting, if a deadlock occurred and the IPC can’t be
performed.

asynchronous Asynchronous IPC is analogous to known
concepts of network communication. The sender sends
a message and continues executing. The receiver waits
for the message by polling the sender. But this forces
the kernel to maintain buffers for messages. This is
the bottleneck of older microkernels which Liedkte has
discovered. So he chooses to ban asynchronous IPC
from his L4 implementation.

In most microkernels is only support for synchronous IPC
integrated, to prevent the performance issues. But this is
going to cost the comfort of the programmer, because he
has to handle the rendezvous of both sides manually.

6. MICROKERNEL USB-FRAMEWORK
In this section we give a detailed overview about the required
features to support USB in microkernel-based operating sys-
tems. The main challenge is the design of an USB framework
inside the microkernel-architecture. This chapter discusses
a working USB framework based on the example of HelenOS
[hel14].

6.1 Related Microkernel USB-Stacks
In the following section we will show the example of an ex-
isting operating systems, based on a microkernel, which sup-
ports USB.

6.1.1 HelenOS
HelenOS aims the goal to be a very portable OS. At the
moment HelenOS only supports USB 1.1 with keyboards
and mice, but it worth to take a closer look to the principles
of implementation. The USB subsystem [hel14] in HelenOS
consists of these thoughts:

• drivers for host controllers

• drivers for USB devices

• mechanism to start device drivers when hotplugging
occurred

• allow client programs to use the plugged in devices

• drivers have to communicate with each other

HelenOS offers a great feature to achieve the last three goals,
the HelenOS Device Driver Framework DDF [hel14]. This
generic framework is used by developers to implement spe-
cific device drivers. In fact that the framework supports the
features

• start drivers automatically,

• driver to driver communication and

• offer a layer for exposing device interfaces to client
programs,

it’s a good idea to use it as backend for building USB device
drivers. This offers a great advantage for implementing USB
device drivers, because each driver is a standalone task that
communicates with other tasks (drivers or clients) through
IPC. The meaning is, that complicated drivers could be built
modulary by splitting the driver in multiple tasks which co-
operate with each other. So the effort of maintaining the
driver is reduced and also the number of bugs of each parti-
tion.

The cooperation of multiple drivers is used in HelenOS for
the implementation of the UHCI (host controller driver).
The developers decided to split this driver in two tasks. One
driver for the UHCI itself and a second driver as OHCI (hub
controller) driver and for the root hub. The UHCI and
OHCI are strictly coupled. That means, if one driver is not
started or has a failure, the other doesn’t work at all.
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Another meaningful usage of the coorperation are multiple
interface devices (MID). These (USB) devices support sev-
eral interfaces to access the functionality of the device. A
good example for a MID are digital cameras. One way to ac-
cess the photographs is through a specific vendor interface,
which needs a special driver. As fallback solution, when the
vendor interface crashes or is simply not supported, digital
cameras can be accessed via a mass storage driver. These
two capabilities would be implemented in two drivers, which
cooperate via DFF to support one MID.

The next step to understand the USB subsystem in HelenOS
is to take a closer look to the USB devicetree.

Figure 6: Example of devicetree in HelenOS [hel14]

Figure 6 shows an example of a possible scenario, when an
USB hub, an USB keyboard, an USB mouse and a printer
are connected to the host controller UHCI. In order to ex-
plain the concepts of the devicetree it’s only necessary to de-
scribe some parts of it, because all connected devices work
in a similar way. The first component to look at ist the
host controller. The UHCI offers a function called uhci-hc
which is invoked by all connected drivers to register the de-
vice. The host controller then connects all registered devices
directly to the PCI-bus.

The leaf USB keyboard represents a connected keyboard de-
vice, which is obviously a MID. As mentioned before MID
drivers are split into tasks - two in this case. When the de-
vice is plugged in a generic Human Interface Driver (HID)
starts up. The main task of this driver is to capture key
events and send them to connected clients. Clients in this
context are processes which consumes the key-inputs from
the keyboard driver.

The second driver is the MID-driver. It handles the com-
munication between the device and his parent- and children-
leafs by offering a special function ctl. Below the communi-
cation inside the devicetree is described in more detail.

The concept of the communication inside the tree is lean-
ing on parent-only communication, which means that drivers
can only communicate with their direct parents. The advan-
tage of the parent-only communication is the exact adaption
of the physical topology to the virtual device tree. But a big
disadvantage is the performance. Let’s examine a scenario,
when the mouse is plugged in to the above devicetree (see
Figure 6). The following Figure 7 shows the principles of
the communication in this scenario.

Figure 7: Communication scenario [hel14]

At first the mouse is plugged in and the MID driver starts.
At this point the driver tries to register at the UHCI, but it
only has the possibility to contact it’s direct parent, which
is in this case the root hub. So the MID driver asks the root
hub for an UHCI-handle. But the root hub isn’t the UHCI
and has to forward the request to his direct parent. This
scenario repeats until the UHCI is reached. The UHCI then
answers the request and sends his answer over all leafs to
the MID driver of the plugged in mouse. Obviously an USB
transfer within the same concept is an enormous overhead
and would slow down the transfer itself. But since the MID
driver and the UHCI has exchanged their ids, the transfer is
handled by a function SCHEDULE USB TRANSFER, of-
fered by UHCI, directly called by the MID.
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ABSTRACT
The Universal Serial Bus has gained importance on the desk-
top market in the last years. Nowadays, even systems like
the Raspberry Pi use them for tethering different peripher-
als. When building a shared USB server in a microkernel en-
vironment problems like controlling access-restrictions and
scheduling bus access are important. It is also unclear, how
such a system should encapsulate the USB access.

In this paper we will compare different approaches for solv-
ing these problems. Due to the universal purpose of this
bus-system, we will illustrate an application- scenario which
will address both real-time- and a multimedia-applications
simultaneously. We will focus on the main-problems in such
an environment. The first will be how the access to the bus
can be restricted and which patterns are suitable for our
application-scenario. The second will be how the bus can
schedule the communication while assuring the real-time-
ability. Different algorithms will be discussed. Finally, dif-
ferent design ideas for the server interface will be compared
while targeting to retain existing implementations. From
this discussion we will propose a design for a USB driver
server and discuss its strengths and weaknesses.

Keywords
Microkernel, Universal Serial Bus, Shared Resource, Real-
time, libUSB, Scheduling, Access Rights Management

1. INTRODUCTION
Microkernels in general allow a secure isolation of different
applications running on them [5]. The separation of pol-
icy and mechanism makes it possible to decrease the size of
trusted code which makes it easier to build safety-critical
applications.

When mixing safety-critical applications with conventional
applications without security implications, the isolation of
microkernels allows these applications to run on the same

computing node. When there is no need for sharing any re-
sources, a reasonable configuration of the microkernel will
usually even allow the safety-critical application to work
properly when the conventional application misbehaves.

If the applications share a resource, some kind of mechanism
has to be provided for sharing this resource and protecting
it against denial-of-service-attacks (DoS). Simply allowing
all applications to access the resource will not be a sufficient
solution. This can be done by implementing another appli-
cation that acts as a server for the other applications when
they try to access the shared resource. For making the re-
source accessible, the server will send and receive messages
through the inter-process-communication-mechanism of the
microkernel.

The Universal Serial Bus (USB) is a very popular bus sys-
tem for accessing peripherals. It is quite common that a lot
of peripherals are attached this way. This will turn the USB
into a shared resource, when different applications need to
access different peripherals that are made available through
the bus.

Since it is very common to use the USB as a shared resource,
a sufficient mechanism for sharing is needed. In this paper,
a design for this kind of mechanism will be provided. The
sharing itself will lead to two questions:

1. Which USB transaction can be excecuted when?

2. How will access permissions for devices be checked?

In chapter 2 a quick overview of USB is given. Chapter 3
will provide a short application scenario. A general overview
of implementing USB support in microkernels is given in
chapter 4. Ideas on how to solve the problem 1 are discussed
in chapter 5. Chapter 6 describes solutions for problem 2.
A design overview over the server is given in chapter 7.

2. USB
The Universal Serial Bus [10] is a serial bus system widely
used on the desktop market. It is used for different tasks
such as tethering peripherals in PCs, as powering gadgets
like a fondue pot. USB is standardized by the USB Imple-
menters Forum; the current version of the standard is V3.1,
published in 2013.
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The bus is strictly hierarchical and host-centric, this means
every information exchange will be routed through the host.
This can be seen in the design of the USB connectors. The
connector type A (see figure 1a) always faces towards the
host and the connector type B (see figure 1b) always faces
towards the device.

(a) USB connector type A
[3]

(b) USB connector type B
[3]

Figure 1: USB connectors

The descriptor hierarchy in the USB specification is a very
important concept from a software point of view. Descrip-
tors allow to get information from a USB device about what
kind of device is the current one, what configurations are
available and what configuration endpoints can be used.
Therefore, there are device desriptors containing configura-
tion descriptors that contain endpoint descriptors themselfs
that contain interface descriptors.

The device descriptors contain the information describing
the device, for example the Vendor IDs and Product IDs.
These device descriptors also contain information about the
device’s device class. A device class specifies the type of de-
vice, for example keyboard, storage device and other device
types are possible. By providing a default driver for these
device types, they can be supported without a special driver
provided by the manufacturer, given, the device follows the
device specification properly.

For the configuration definition, the configuration descrip-
tors are used. Endpoint descriptors describe the endpoints,
that can be used as endpoints for communication. Every
endpoint is the end of a unidirectional pipe to the USB host.
IN -endpoints are used to send information to the host and
OUT -endpoints are used to obtain messages from the host.

For the data transfer there are four different transfer types:

Control transfer: This transfer type is used to exchange
status information or similar data.

Interrupt transfer: This transfer type should be used to
send urgent data, since it has a guaranteed latency.

Isochronous transfer: This should be used for periodic data
transfer, for example for video streams. This transfer
type guarantees a certain bandwidth.

Bulk transfer: When transfering large amounts of data
without time restrictions, this transfer type should be
used.

3. APPLICATION SCENARIO
For a better understanding of the problems that arise from
using the USB as a shared resource, we will provide a short
application example.

In the automotive industry, the trend is going towards Android-
based media centers in cars. If we want to use this Android
media center as a computing node for real time data pro-
cessing of a sensor communicating via USB, we need some
kind of architecture that supports the sharing of the USB.

We consider the following example: A media-center in a car
is running Android. The installation of user-provided apps
is allowed. It is possible to connect mp3-players via an USB
slot and use them as storage devices to play music. Addition-
ally, a tachometer is attached via USB to the media-center,
to gather the mileage information.

To prevent malicious apps to change the mileage data and
to interfere with the data from the tachometer, we need a
microkernel based system, that runs the Android system as
one task and the real-time application as the other. In this
way, changing the mileage data from the Android system
is not possible. The only problem that remains is how to
share the USB between the Android system and the real
time mileage application.

4. THE USB-SERVER
To approach this problem we first have to take a look at what
is needed to provide USB support in a microkernel environ-
ment. Sharing access to the USB hardware for all applica-
tions running in the microkernel environment is considered
a bad idea, because there could be conflicts between the
several applications that access the bus. Therefore, imple-
menting a server that encapsulates the required USB func-
tionality is a better choice. To get a short overview of what
is generally required, we will briefly discuss the USB-driver
approach in the Linux kernel.

In the Linux kernel (see figure 2) there are three layers of
USB drivers:

1. The host controller driver, which provides access to the
host controller hardware that controls the USB

2. The USB core, that helps higher level drivers access
the bus system and

3. USB device drivers, that provide support to several
USB devices.

Figure 2: USB drivers in Linux[8]
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When an USB device driver tries to send data to the device
it handles, this is done through USB Request Blocks (URB)
[6]. An URB encapsulates all information that is required
to do a complete USB transfer.

The straightforward approach to supporting USB in a micro-
kernel would be to implement a server containing the layers
1 and 2 of the Linux USB stack. The server can receive
URBs from different client applications and forward these
transfers to the USB. Layer 3 would be implemented by dif-
ferent client applications that have access to the server and
send him URBs.

If we follow this architecture, we can identify two problems:

1. How can we decide, which URB should be processed
next, so that no DoS attacks against the USB server
are possible?

2. How can we restrict access to the bus so that only
trusted applications can read and write from safety/security-
relevant devices?

If we reconsider the application example, we can see that
when no sufficient solution for the first problem is provided,
it will be possible for an Android app to spam the USB so
that no mileage data can be received by the real-time appli-
cation. If no solution for the second problem is provided, it
might even be possible for a malicious android app to send
commands to the mileage data sensors and disable them or
bring them to an inconsistent state. In the following chap-
ters we will discuss solutions for these two problems.

5. BUS ACCESS SCHEDULING
For using shared resources, we have to define who will be
the next to be granted access to this resource. This is called
scheduling. The easiest solution for this problem is to simply
use a first-come-first-serve algorithm for all clients. This
could be implemented through a simple FIFO-datastrucure.
If we think of the application example, this is problematic.
A malicious Android app could submit lots of URBs and
therefore block the real-time-applications access to the bus.
This could result in the real-time application not receiving
the mileage data. Even the real-time application itself could
be threatened. Urgent URBs might be submitted later than
non-urgent URBs. This could result in the urgent URBs
being sent later than when they are due.

Therefore, we will compare several scheduling algorithms for
real time scheduling. A very popular scheduling algorithm
in this domain is earliest deadline first (EDF) [7]. The idea
of this algorithm is to add a deadline to each task. The dead-
line describes at what time a certain task has to be finished.
The next task to be started is the task with the closest dead-
line. It can be proven that preemptible EDF is an optimal
algorithm when scheduling for a single resource. It can even
be proven that if an EDF schedule fails to comply with a
deadline, no solution that complies with all deadlines is pos-
sible. Since not all tasks have a deadline, finding sufficient
deadlines can be problematic.

Another quite important algorithm is least laxity first (LLF)
[4]. This scheduling algorithm calculates the laxity l with

deadline d, remaining task execution time c and current time
t, determined by

l = (d− t) − c

which can be seen as the time that can pass until the task
has to start. The task with the smallest laxity l is the task,
that is executed first. LLF can be proven to be optimal for
scheduling for more than one ressource. It is not applicable
in our case, because we don’t quite know the execution time
c. Also, for tasks with equal execution time LLF behaves
exactly the same as EDF. It is reasonable to assume, that
processing URBs has a quite similiar execution time.

Fixed priority scheduling [1] assigns each task a fixed pri-
ority. The task with the highest priority is scheduled first.
Scheduling algorithms for periodic tasks like RMS [7] are not
covered here, since we are not dealing with periodic tasks.

For our problem, we will regard the USB host controller as
the resource that is scheduled. The tasks to be scheduled
will be the single URBs to be sent. A possible solution for
efficient host controller scheduling would be to use EDF for
scheduling the URBs. Every URB has an attached deadline.
Non-urgent packages could be attached a deadline infinitely
in the future. In this case, a misbehaving client could still
block the bus by submitting URBs with very close deadlines.
This could be fixed by a static configuration that is read by
the USB server at startup. In this configuration, the appli-
cations that have to use real-time features could be listed.
These could be the only applications that are allowed to set
the deadline of an URB. All URBs sent by other applications
will have a deadline infinitely in the future, these would be
scheduled with a FIFO algorithm.

For providing a different scheduling algorithm for the non-
real-time applications, two queues could be provided. One
(with a high priority) would be scheduled with an EDF algo-
rithm and conatins only URBs by privileged real-time appli-
cations. The other queue (with low priority) would contain a
queue of non-real-time URBs; this queue could be scheduled
with any non-real-time scheduling algorithm. This design
can be seen in image 3. The numbers in the orange squares
represent the deadline of the URBs.

Figure 3: Scheduling with two queues

6. ACCESS RIGHTS MANAGEMENT
The application scenarios in chapter 3 show that having mul-
tiple applications and multiple USB-devices can be danger-
ous, especially if a sensitive environment is concerned. The
access of applications to USB-devices need to be restricted
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and managed by the system in order to prevent a failure or
even a malicious threat to harm the sensitive environment.
The proposed USB-server as the only module to access the
USB-host of the system stands between the potential mis-
use of applications on USB-devices. Therefore it needs to
manage which applications may make use of which devices.

Let us say that the USB-devices to be protected are objects,
then pairs of objects and rights can be called domains. The
system needs to know any domain combined with any object
to make a decision. The result can be seen as a table, where
e.g. the rows are domains and the columns are the objects.
Each box in the table then holds the rights between the
specific domain and the corresponding object. This table is
redundant, since many combinations of domains and objects
do not have any entries. By declaring that every empty cell
of that table means that there are no access-rights between
this domain and the object (white-listing), the redundancy
can be minimized. Also, the principle of least privilege is
maintained. Finally this table can then also be seen as a
list of domains, where each domain holds a list of object-
right-pairs (called capabilities), or as a list of objects, where
each object holds a list of domain-right-pairs (called Access
Control Lists (ACL)) [9].

In an ACL each object (the USB-devices) holds a list of
domains (the applications) and which rights they provide,
like read and write on the devices. This list will be queried
each time a domain wants to access an object. Unlike the
ACLs, capabilities are domain-driven. That means that each
domain will hold a list of objects and the information on how
it may access these objects. Therefore, the concepts of ACLs
and capabilities can be seen as complementary.

The ACL and the capabilities both have their advantages
and disadvantages. The capabilities are efficient; using generic
rights, like copying and inheriting a domain’s capability-
list, provide a top-down-structure where access-rights can
be controlled for subdomains. On the other hand, if an ob-
ject’s rights need to be revoked system-wide, e.g. because
the object is removed, each domain’s capability-list concern-
ing that object must be reconsidered. If then an object is
being removed without revoking all domain’s rights before-
hand, orphan-rights may occur and lead to even more prob-
lems. Since in an ACL any object holds their own list of
domain-right-pairs, this problem doesn’t occur there. But
having many domains will cause the ACLs to grow very long,
thus making finding, inserting and deleting items in this list
less efficient [9].

But even though the capabilities provide some very useful
features, there occurs a major problem for our case. The
concept of capabilities is that the access to an object is
granted purely on the mere possession of a capability. An
application must therefore obtain and use their capability
on accessing an USB-device, and therefore the application’s
code has to be adjusted. Practically, many changes on the
APIs would be needed. ACLs on the other hand can be used
in a centric and isolated USB-server-module. Every time an
application wants to access a device via the USB-server, the
server will query its ACL and decide whether or not this
query will be granted.

In our use-case it is stated that there are a few, very distinct
applications but multiple, also very distinct USB-devices.
But USB-devices like thumbdrives can be added to the sys-
tem on runtime (hotplugging) and they may be completely
unknown to the system beforehand. On the one hand, the
system needs to react to an arbitrary USB-device and give
the applications access-rights. Following the principle of
least privilege mentioned above, any newly added device
which was unknown a priori will therefore not be access-
able by applications at all. This leads to the question, how
the access-rights are created and provided for hotplugged
devices. Obviously there is a wide range of different USB-
devices which can’t all be known beforehand. Furthermore,
providing basic rights in general is a security threat, while
not providing any rights to hotplugged devices renders them
useless and therefore isn’t an option either. Our use-case
states that both types of applications need to be handled at
best; e.g. a real-time-safety device as well as a multimedia-
application based on Android. While the safety-devices have
our priority in this paper, the usability of an USB-thumbdrive
containing music-files still needs to be as good as possible.

While there are plenty of possibilities to authenticate USB-
devices and applications, like a key-system, there will always
be the need to adjust the system more or less, e.g. that every
USB-device needs an authenticating key through which ba-
sic access-rights can be determined by the USB-server. This
will render any unprepared USB-device useless, thus making
a plug-and-play of an arbitrary USB-thumbdrive containing
music-files impossible. Therefore another option is to create
a configuration which will be read on boot. It will determine
which applications have which rights on which USB-device.
While not all different devices can be covered, groups of de-
vices can. Using the USB device descriptors (see chapter 2),
classes and subclasses (like mass-storage-device) can be used
to group unknown devices and provide basic access-rights to
the applications. Additionally the vendor- and product-IDs
can be used as well. This way, common USB-devices like
thumbdrives can still be used when hotplugged, while crit-
ical devices can still run safely. Adding group-rights to the
concept of ACLs basicially equals a minimal Role Based Ac-
cess Control model (RBAC ) [2].

7. SERVER DESGIN
The implementation of USB support in a diversified and he-
terogeneous environment can be realized with a server that
solely receives URBs. The desgign can be seen in figure 4.
The URBs are processed by the server and forwarded to
the USB controller hardware. This has the advantage, that
porting e.g. linux drivers for USB devices can be quite easy.
When running a linux kernel on top of the microkernel, a
pseudo driver that simply sends URBs to the USB server
can be implemented. All existing USB device drivers for the
linux kernel can be reused.

After an URB has been sent to the server, it is checked
whether the client sending this URBs has sufficient rights
for performing this operation. The rights are realized based
on the concept of ACLs described in chapter 6. On boot,
for each plugged-in USB-device the respective Access Con-
trol Entries (ACE) will be created based on the definitions in
the static configuration. These will most likely include crit-
ical USB-devices who e.g. need to run in real-time. When
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Figure 4: Architecture of the proposed server

an USB-device is hotplugged — e.g. USB-thumbdrives and
the like — the server will determine the respective ACE by
reading the static configuration again. The configuration
can contain rights for explicitly stated devices by device-ID,
or group-like rights for multiple unknown devices through
using device descriptors. If then the application is sufficient
to access the device, it will be granted. If no sufficient rights
can be determined for the application, the access will be de-
nied and any URB sent to the server will be ignored.

After having passed the ACL, the URBs can be submit-
ted to the bus scheduling module, that applies a scheduling
algorithm described in chapter 5. This component then de-
cides, which URBs should be processed next and accesses
the USB master controller hardware. This can be done by
accessing the USB device controller io hardware provided by
the microkernel.

8. CONCLUSIONS
In this paper we have discussed a design-pattern for a share-
able USB-server based on microkernel-architecture. The ap-
plication scenario is focused on a heterogenous and diver-
sified environment, where critical, possibly real-time USB-
devices and user-friendly mulimedia devices both need to be
addressed. The critical real-time devices are granted a pri-
ority here, whereas the less critical ones need to be treated
as good as possible.

The main issue is that non-real-time components can inter-
fere with the real-time-components maliciously. Therefore
we figured that the biggest threats on this shared USB-host
concern the bus-scheduling as well as the access-management.
Additionally, we focused on making the least possible changes
to the environment, so that no changes on neither the USB-
devices nor the applications (e.g. USB-drivers) are needed.

Providing access to the bus is done by submitting URBs to
a USB server, that then forwards the requests to the bus.
The provided solution will allow the leveraging of existing
Linux driver code, since this approach uses URBs, just as
linux USB device drivers. Also, a host controller driver for
a Linux VM that accesses the server can be easily imple-
mented, because this driver would simply need to forward

URBs.

Providing a real-time-ability without being harmed by non-
real-time components is reached by mixing priority based
and deadline scheduling. The solution is working well, when
there is only few real-time activity. Intense activity of real-
time based applications will basically exclude non-real-time
applications from the bus.

By using the concept of ACLs and the principle of least privi-
lege, the access to USB-devices can be restricted. Due to the
wide range between real-time-ability and consumer-usabilty,
tradeoffs had to be made. While whitelisting cancels out un-
known and therefore possibly malicious devices in general,
the static configuration allows an administrator to explic-
itly grant access to hotplugged devices. Using USB-device
descriptors for device-classifications adds to the usability.
But granting general access-rights to the system lowers the
security-level, e.g. by using adjusted USB-devices and ap-
plications. This ultimatively means that the administrator
of this implementation needs to adjust the security-level to
his needs, starting at highest security and lowest usability
as default configuration.
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ABSTRACT
The dominant male in the last 35 years of microkernel devel-
opment was the Interprocess Communication (IPC). Since
the day microkernel came up, using IPC as the message pass-
ing model was never changed. Only the message latency was
reduced by a factor of 250 times between 1993 and 2014,
caused by kernel improvements and hardware development.
Maybe this decision should be reviewed in favor of the also
long known Message Passing Interface (MPI). This paper
will give an introduction to the two message passing models
to name theoretical problems which will come up in the case
of using MPI as a IPC replacement.

1. INTRODUCTION
Since the microkernels came up, the message passing was

always done by the Interprocess Communication (IPC). Now
that the microkernels are about 35 years old [Mic14] and
the ways to pass messages inside a kernel have developed,
it could be time to check whether a replacement is advis-
able. This paper will introduce the Message Passing In-
terface (MPI) and the actual dominant male Interprocess
Communication (IPC) in the way it is implemented in the
actual L4 microkernel family. A comparison of these tech-
nologies and a feasibility study with all detected problems
and possible solutions for them is shown at the end of this
paper. This list could possibly be incomplete and was not
tested by a real implementation. They are generated out of
theoretical work and should be proved practically.

2. MESSAGE PASSING INTERFACE (MPI)
The Message-Passing-Interface (MPI) is a specification

which tries to solve the problem between portability, effi-
ciency and functionality. The development of MPI began in
the year 1992 based on existing ideas and libraries for com-
munication. Today the most recent MPI version is MPI-3
[Mes12]. MPI should not be recognized as an implementa-
tion, more as a library which defines return values, functions
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and parameter. Based on this library, there are many ex-
isting open- and closed source implementation for different
programming languages. The fact that all are implemented
along this specification makes them compatible. Originally
MPI was designed for distributed shared memory (DSM) ar-
chitectures, which were becoming popular at the time when
MPI was developed. As the architecture trends changed
towards Non-Uniform Memory Access (NUMA) and No Re-
mote Memory Access (NoRMA), MPI was adapted. Since
this day MPI was able to handle both architectures seam-
lessly and transparently to the developer. Today MPI runs
on virtually any available hardware platform. This is solved
by maintaining a distributed shared memory architecture
regardless of the underlying physical circumstances of the
machine [Wil07][Mic]. A reason for using MPI could be one
of the following:

• Portability: Only a little or no work to do if a appli-
cation is ported from one MPI conform platform to
another.

• Standardization: MPI is a message passing library
which could be declared as a standard. MPI is sup-
ported by the most current available platforms and
has replaced many other competitors over the years.

• Performance: Most of the MPI implementations are
well developed and tested over many years. MPI is
used in the context of parallel programming, so it was
optimized to gain a high throughput of messages.

• Functionality: There are about 435 routines defined in
the current MPI-3 standard, which includes the ma-
jority of the older MPI standards.

2.1 Point-to-Point Communication
The MPI point-to-point functionality typically invokes mes-

sage passing between two different MPI tasks. Two tasks
running on the same host (or even inside same process) do
not know anything of the other side process. MPI commu-
nication has one explicit sender and another task which is
performing the receive operation. MPI has different routines
for sending and receiving messages [Bla14].
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These are for example:

• Blocking send / blocking receive

• Non-blocking send / non-blocking receive

• Combined send and receive

The perfect case of communicating is that both sides of com-
munication are present at one time. This is often called a
rendezvous. But this is rarely the case in the real world.
Somehow the implementation of MPI must handle the gen-
eral case of being not present when the other side wants to
send or deliver a message. For this case MPI manages a sys-
tem buffer to meanwhile save the messages. This MPI buffer
is handled by the implementation and is not accessible by
the user or any programmer. This buffer could be gener-
ated on both sides (sender and receiver). As said before,
MPI has got two types of communication, the blocking and
non-blocking operations. Most of the MPI routines could be
used either one or the other way [Bla14]. These two types
will be described in the following points:

Blocking Operations:

• Will only “return” if it is safe to possibly change the
application buffer (where the send data is located) and
the receiver’s data is not influenced by continuing com-
putation.

• A blocking send can be a rendezvous between the two
threads, which means that there is some kind of hand-
shaking between the two processes.

• A blocking send operation could possibly be asynchronous
if the system buffer of the receiving thread could be
used to hold the messages.

• A blocking receive only“returns”after the data is trans-
ferred and available for this processes.

Non-blocking:

• Non-blocking operations return to the caller immedi-
ately, because it is not necessary to wait on communi-
cation events to complete.

• These operations only request the MPI library to per-
form a send operation to the receiving partner when it
is available.

• Non-blocking operations are mostly used to avoid loos-
ing computation time while waiting for a synchronous
operation.

• MPI provides functions to check whether a message
was delivered or is still waiting in the system buffer.

Another feature of MPI is that messages are transmitted
in the right order by guarantee. It is not possible that a
message overtakes another. Messages which are sent first
will be received first.

2.2 Group and Communicator
There are two control mechanisms inside the MPI specifi-

cation to guarantee a collision free communication. A group
is an abstract to combine MPI processes which are perform-
ing the same computational operation. A process could be-
long to more than one group, but has a unique identifier in
every group.

The other mechanism is called the communicator, which
could be separated into intra-communicator and inter-comm-
unicator. A communicator is responsible for handling com-
munication operations for the processes of a group. As sim-
ply could be imagined, the intra-communicator handles com-
munication of processes inside the group, while the inter-
communicator handles the communication with processes of
other groups. A communicator which is always available is
the MPI COMM WORLD, where all processes belong to.
The whole group and communicator design of MPI is shown
on figure 1.

Figure 1: Overview of the MPI group and commu-
nicator mechanism.

3. INTERPROCESS COMMUNICATION (IPC)
In an operating system the kernel is the most important

object, which is normally separated in two parts: the ker-
nel space (privileged mode) and the user space (unprivileged
mode). The early monolithic kernel concepts all the basic
system services, like file system, memory management, I/O
communication and interrupt handling are being executed
in the privileged mode. Today’s monolithic kernels have got
a layered design, which can be found from the basic process
management up to the high level interfaces of the kernel
space. The issue is that all the basic services are running in
privileged mode causing serious problems, i.e lack of exten-
sibility, large kernel size and bad maintainability [J. 06].

At this point the microkernel concept was born. The idea
of the microkernel is to increase the reliability by providing
only the basic process communication and I/O control inside
the kernel space and moving the other system services into
the user space. The system services inside the user space
are a form of normal processes, so called servers. On the
other hand the basic servers are not longer inside the ker-
nel space and therefore the microkernel needs a concept to
allow communication between the servers by entering the
privileged mode with a context switch. The servers are sep-
arated processes with their living environment. To open a
communication channel, the microkernel needs a mechanism
to allow an Interprocess Communication. Therefore the so
called IPC mechanism is used [Raf]. IPC is not only a part
of a microkernel and can also be found in a monolithic kernel
like Linux. Normally in a monolithic kernel a process is the
representation of a program in memory. In the microker-
nel context a process is called as task. The smallest section
of virtual parallel execution of a program is called thread
in both environments. The IPC mechanism differs between
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tasks and processes. In the process context the communica-
tion is often done without the kernel via a pipe. In the task
context a IPC via the kernel is always necessary [Dav99].

The IPC communication in the microkernel is done via mes-
sages. A microkernel has smaller code than a monolithic
kernel, because basic services are moved into the user space.
That means for the microkernel that it has to pass around
more messages and the IPC performance has a very sig-
nificant role in execution time. This is one of the issues
of the microkernel against a monolithic kernel, because a
monolithic kernel has no boundaries for the address space
and can push easily pointers around. Microkernels use the
message queue and several other techniques to communicate
between servers, tasks and the kernel itself [Dav99]. The
idea of IPC inside a microkernel is to create communica-
tion between threads and tasks in different address spaces.
Each message in a microkernel has got a message tag and
an optional list of message data. The message is passed
from the sender’s MessageData register to the kernel and
the kernel copies the message unbuffered to the receiver’s
MessageData register. The communication is normally syn-
chronized which means that the microkernel only delivers
messages when the receiving thread is ready for receiving.
The sending thread is blocked until the message is success-
fully delivered or a defined timeout has been reached [Ste].

The two fundamental IPC operations in a microkernel are
send and receive. The send operation delivers messages from
the calling thread to a destination thread, while the receive
operation requests a message from another thread. The IPC
messages can be marked with a flag whether the operation is
blocking or non-blocking. If an IPC message is blocking, the
IPC and the thread is blocked until the destination thread
has performed the receive request. On the other hand, a
non-blocking operation fails immediately if the target thread
is currently not ready for receiving the IPC message. To
reduce the IPC overhead on the microkernel the IPC op-
erations can be combined, which means that sending and
receiving is done in one operation [Raf]. In this case the
thread sends the message data to the destination and waits
for a reply, which saves time by saving one context switch.

To identify a thread or task in a microkernel environment,
the kernel holds lists with capabilities. Capabilities rep-
resent an address of the destination thread or task. It is
comparable with IP addresses at a TCP/IP network. Ca-
pabilities are not only an address of a destination, they can
also represent permissions to access services. Each server
inside the user space has got a capability. For example if a
task needs to access the USB driver which is running in user
space, than the task will be able to request the capability
from the kernel. The kernel looks up if the task has the
permission to access the USB driver and sends the capabil-
ity to access the USB driver to the task. Now the task can
start the IPC communication with the USB driver. If a task
tries to send IPC messages to a capability without the per-
mission, the kernel would terminate this task because this
IPC communication is transferred and checked inside the
kernel. IPC Messages in a microkernel environment are not
only byte transfers. A message can also contain a capability
of a server or interrupt notification from the kernel. The
IPC communication is used for nearly every event, which

happens in the kernel or user space. A IPC message can
transfer address space or regions and is used to handle page
faults or exceptions from a thread.

4. COMPARISON
Generally said the Message Passing Interface (MPI) and

the Interprocess Communication (IPC) are both ways to
pass messages between processes. The first impression of
analogousness is changed the more detailed this topic is con-
sidered.

MPI could be considered as a kind of API library, whereas
IPC is more a single system call. The communication of IPC
works with an unbuffered bidirectional queue, which could
be filled with information by tasks. The whole communica-
tion of IPC is managed inside the microkernel in privileged
mode. These interactions could be explained with copying
messages over a shared memory segment. The MPI is able
to interact over a network or with a shared memory concept.
The message passing inside MPI is made transparent to the
developer, whether it is done via network or inside the mem-
ory of a local machine. Both technologies support a simple
one-to-one communication in a blocking and non-blocking
way. In addition, MPI has got more functions which allow
more comfort to the developer. MPI is able to perform 1-
to-n and n-to-1 operations via one simple function call.

The two message passing ways differ in handling the non-
blocking communication. While MPI stores the message in a
buffer until the receiver will pick it up, IPC fails and returns
after a defined timeout. So it could be possible that a MPI
communication will sleep and wait forever for the receiver
to get the message, whether IPC would return with a failure.

The data structures of MPI are defined by the kind of data
which is passed around. MPI has got no clear data structure
which must be used by the developer of an application. The
default MPI specification includes all primitive types such
as int, char, double. But with a simple data-type definition,
MPI can transfer own created structs. If a MPI message is
sent, the data is copied into a MPI message structure and
then is passed to the target.

IPC has got a fixed message register structure, which is
stored in the UTCB to transfer data between services. Nor-
mally the IPC message contains a tag and an array with
pointers into the memory. The IPC tag defines the meta
data with flags, source and destination and the array with
the payload of the message.

MPI comes with the ability to handle groups of processes.
A MPI process could generate new processes and organize
them in new groups. Each process could theoretically com-
municate with every other MPI process in the MPI environ-
ment via a communicator.

The speed of MPI was measured on an eight cores (2.53
GHz dual quad-core) and 12 GB main memory machine.
The CPUs are based on Westmere architecture and run in
64 bit mode. The nodes support 16x PCI Express Gen2 in-
terfaces and are equipped with Mellanox ConnectX-2 QDR
HCAs with PCI Express interfaces. The nodes are connected
using a 36 port Mellanox QDR InfiniBand switch. The op-
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erating system used was RedHat Enterprise Linux Server
release 5.4 (Tikanga). The processes were bound to core 1
on both nodes. The speed was measured with 1.6 µs for a
1 byte message. The execution time is nearly constant un-
til the message reaches a size of 64 byte. After this point
the time rises until a message with 1k byte takes 4 µs to
be delivered [Dha11]. The speed parameters of the IPC are
looking very different. Back in the year 1993 Liedtke [Joc93]
described the ”IPC dilemma” which was characterized by an
IPC message delivery time of about 100 µs. Also he de-
scribed a way to get a twentyfold improvement, which means
that an IPC took about 5 µs. These two values were mea-
sured on a 50 MHz machine with a L3 microkernel running
on it. Today’s time values for IPC communication are about
185 CPU cycles on a 532 MHz (= 532,000,000 cycles per sec-
ond) machine. This means an approximately time of a about
0.34 µs. This time was measured with the UNSW/NICTA
L4 Kernel seL4 [Kev13]. So without calculating the cycle
time of the MPI measurement it is obviously that the IPC
calls are much faster than the MPI ones.

5. FEASIBILITY OF SUBSTITUTION
Depending on section 4 both concepts look very different.

But as we have already seen, there are some issues that need
to be fixed or worked around to be able to use MPI as the
new IPC in the microkernel context.

The first issue which has to be taken care of is the fact
that MPI doesn’t have a capability feature. As the MPI
section has shown, MPI allows per default every process to
send a message to another. This is a security issue in the mi-
crokernel context and is managed via capabilities in the IPC
context by the kernel. This issue could be worked around by
programming the communicator of MPI that only processes
of the same group could communicate with each other. So
let’s for example assume having three processes. Process A
is the memory manager which has to send messages to ev-
ery other process. Process B and C are user processes. To
prevent process B from sending messages to process C the
simply group structures shown below are implemented:

• Group 1: process A and process B

• Group 2: process A and process C

With the pre-condition from above, it would be possible for
process B and C to send a message to process A (our mem-
ory manager) and receive a reply. It wouldn’t be possible for
process B to contact C or the other way around. With this
condition it is possible to build a specific kind of capabilities.
Also the fact of accessing resources could be managed with
this strategy. Let’s consider resources as a communication
partner outside e.g. group 1. So if process B would access a
resource outside the group there has to be a message sent to
the communicator of group 1. At this point (the communica-
tor) can be implemented as a kind of security management
which will hold some something like access lists. Another
way to solve this problem is to design resources as a com-
munication partner which could be added to a group like
our memory manager process A. Designing this fact in this
way would also drown the problem of broadcasts or 1-to-n
messages. The communicator of a group could also check if
there is a permission to do so.

Another fact that has to be thought about and solved is
the whole MPI message handling. In the non-blocking case
there is a huge issue caused by the fact, that memory space
is allocated to save the message until the receiver is avail-
able. This could be used by a malicious user-level program
to perform a denial of service attack against the microkernel
with the ability to send an unlimited amount of messages.
This lesson was first learned by the developers of the Mach
microkernel and was mentioned by Liedtke on many confer-
ences. This was one of the reasons why Liedtke was anxious
to only allow unbuffered messages.

In the blocking case there are some more facts to be taken
care of. The first is that a process which is sending with a
blocking system call could get stuck forever if the receiver
is never concerns to appear to the rendezvous for message
transferring. A real solution for this problem could lead to
dramatic overhead of administrate some kind of timers or
something else to quit the send operation. Also this maybe
handled in the communicator, but the communicator does
not have enough power to cancel a sent operation. This
could be a possible solution, if the communicator is able
to answer every blocking message operation which has been
sent to him. As already said in the MPI chapter every mes-
sage sending must be done via the communicator. So the
communicator is implemented with the ability to answer the
blocking messages with a failure after a defined time x (some
kind of time out) which will cancel the process blocking.

The last two ”issues” which have to be named is the per-
formance of the MPI calls. As shown in the last chapter
IPC is definitely faster than a MPI call. This would slow
down the microkernel dramatically. A real workaround for
this could not be named because the MPI implementations
were tuned very hard in the last years, so there may be not
more potential to optimise them. The other fact is, that
the implementation of MPI has got much more code than
the implementation of IPC. So the code in the microkernel
would rise definitely and also there has to be more trusted
and checked source code.

6. CONCLUSIONS
As the comparison of this paper showed, the difference be-

tween MPI and IPC are not that serious as the first impres-
sion after the presentation of the different technologies could
have indicated. Some of the differences like the buffering
problem for MPI could easily be solved in the microkernel
context. The bigger problems like the missing capabilities
in MPI could lead to real problems in the implementation of
MPI for microkernels. Also the fact, that a denial of service
attack is possible is a very critical disadvantage of MPI. In
the feasibly chapter some ideas are shown to handle these
problems in a, more or less, easy way. For some problems no
solutions could be named, so that they have to be accepted
in the case of replacement.

To summarize, it can be said that there could be a possi-
ble chance of replacing IPC with a implementation of MPI.
That this should be possible is showed by a MPI based mi-
crokernel called PARAM90001. The only fact that would
make this idea not practicable is that the MPI calls are not

1http://www.cloudbus.org/∼raj/
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as efficient as the IPC ones and that the microkernel could
be killed by an user-level program. Maybe MPI would be
more useful if this issues are solved somehow. Up to now
the replacing IPC by MPI in the microkernel context is not
advised and meaningful.
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ABSTRACT
Interprocess communication is one of the most important
parts of every microkernel. The Message Passing Interface is
a specification for communication between processes. This
paper examines similarities and differences between these
two mechanisms and discusses the question of the practica-
bility to replace IPC with MPI in a microkernel context.

1. INTRODUCTION
The Message Passing Interface (MPI) and Interprocess Com-
munication (IPC) are both trying to achieve the same goal
of providing processes a means to communicate in some way.
Communication in that context could mean either transmit-
ting data from one process to another or making a service
available for other processes, which is provided by a process.
For that purpose MPI sends messages through a network.
IPC on the other hand uses cross-address space. So MPI is
normally used for paralell computing while the IPC in this
paper will be considered as the communication of processes
in the context of microkernels.

In this paper we will take a look at both concepts and com-
pare them to each other. Referring to that comparison we
will discuss the possibility of implementing the process com-
munication with MPI instead of a more common standard
IPC-mechanism.

2. THE MESSAGE PASSING INTERFACE
The Message Passing Interface (MPI) is a specification, which
tries to achieve portability, functionality and efficiency. Al-
though it is mostly used in the context of parallelization, the
concept of MPI is based on the communication of processes
via messages and can thus be used on a single machine.

The work on the MPI standard started 1992 based on al-
ready existing approaches and libraries. Subsequently there
have been several versions of MPI, peaking in the most re-
cent realease MPI-3 [Mes12]. However, rather than being

an implementation, MPI is more like a library, that pro-
vides return values, functions and parameters for use in a
program. MPI as a library makes it compatible across sev-
eral languages and platforms.

In the beginning MPI was designed for distributed mem-
ory architectures, which were gaining popularity at the time
MPI was developed. However, the trend changed into hy-
brids between distributed memory and shared memory sys-
tems which were created by combining shared memory through
networks. Therefore developers changed their libraries to
handle both types of architecture. By today any hardware
platform is supported: distributed, shared and hybrid ar-
chitectures. Admittedly, the program model is still a dis-
tributed memory model, regardless of the physical architec-
ture of the machine [Bar].

There are several reasons for using MPI:

• Standardization: MPI is currently the only message
passing library that can be considered a standard. It is
supported on virtually all hardware architecture plat-
forms. Practically, it has replaced all previous message
passing libraries.

• Portability: There is little or no need to modify your
source code when you port your application to a dif-
ferent platform that supports (and is compliant with)
the MPI standard.

• Performance: Most MPI implementations are well
developed, tested and adjusted to gain a high flow
of messages, since it is often used in the context of
parallelization. Additionally, vendor implementations
should be able to exploit native hardware features to
optimize performance.

• Functionality: There are over 440 routines defined in
MPI-3, which includes the majority of those in MPI-2
and MPI-1.

• Availability: A variety of implementations are avail-
able, both vendor and public domain.

Using MPI inside a program requires the MPI environment
to be initialized. After that was done, MPI functions may
be called to send or receive messages. Once all communi-
cation has ended, the environment needs to be terminated
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as well. All communication using MPI should be completed
within one instance of the environment. Everything else is
to be considered unnecessary overhead created by the re-
peated initialising and terminating of the MPI environment
and could lead to unintended side-effects.

Figure 1: The MPI environment

MPI uses objects known as communicators and groups to co-
ordinate which processes can communicate with each other.
However, there is a communicator that holds all processes
and can be accessed by calling MPI COMM WORLD.
As soon as other communicators are defined, messages are
to be routed through these, if the processes communicating
with each other are not in the same communicator-group.
Every communicator assigns a unique ID or rank to its re-
spected processes. This is used to identify the sender and
receiver, when handling messages and controlling program
execution.

Normally every call returns zero as value coded as
MPI SUCCESS. If an error occures though, the default
behaviour of an MPI call is to abort. Still, there are ways
to overwrite that default error handling and implement an
own handling.

When sending or receiving messages, several options are
available on how the message shall be sent:

• Synchronous Send: The receive operation is syn-
chronized with its matching send operation.

• Blocking Send/Receive: The send/receive opera-
tion blocks the thread for as long as there is no corre-
sponding receive/send operation in another thread.

• Non-blocking Send/Receive: The message is saved
in a buffer and is transmitted as soon as the receiver
is ready. The thread is not blocked during the de-
lay. Functions provide information whether the mes-
sage was received already or is still inside the buffer.

MPI also guarantees that no message overtakes another,
meaning that all messages will be received in the same order

they were sent. On the other hand it does not grant fairness.
If two tasks each send a message, that corresponds with a
receive operation of a third task, only one message will be
received and it can not be determined which one will arrive.

3. INTERPROCESS COMMUNICATION
Interprocess Communication, or IPC, is a mechanism for
cross-address space communication. Modern microkernels
provide an infrastructure to implement the operating sys-
tem on top of it in the user mode, while the microkernel
runs in kernel mode, as shown in figure 3. IPC is used for
sharing information or memory between processes in strictly
seperated address spaces, which means sender and receiver
of an IPC call are always different threads.

Figure 2: Division of kernel and usermode in a mi-
crokernel, by the example of Minix 3. Adapted from
[Tan06]

Since applications use cross-address space IPC to interact
with traditional operating system services [Ber92], IPC is
one of the essential parts of every microkernel. This means
that the design and implementation of the IPC mechanism
which is used has an enourmous impact on the performance
of the microkernel [EH92]. Therefore, over the years micro-
kernel designers tried several different approaches to provide
reliability and performance for cross-adress space communi-
cation. Also, some concepts come with a bunch of implemen-
tation tricks to optimize performance, like the L3 [Lie94] or
L4 [EH92].

Traditionally, an IPC mechanism offers the following meth-
ods:

• Send

• Reply

• Receive from a specific sender

• Wait for a message from any sender

To reduce the number of system calls, newer IPC concepts
encaspulate common usecases into

• Send and receive a message from a certain thread (=Re-
mote Precedure Call, RPC), as shown in fig. 3

• Reply and wait for the next message
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Figure 3: Sequence diagram for a Remote Pro-
cedure Call. Retrieved from http://www.ibm.com/

developerworks/library/l-asyncl

You can break down any IPC concept to being either syn-
chronous or asynchronous.

• Synchronous IPC: The sender and receiver need to
meet (rendezvous style). When both are ready, the
message is copied directly from the sender to the re-
ceiver. If one thread has not arrived yet at the rendez-
vous point, the other one will wait blocking. Therefore,
this method needs no buffering.

• Asynchronous IPC: Asynchronous IPC calls do not
need to meet at a specific point. Typically, the send
procedure returns immediately, so that the sender does
not have to block. At the receiver’s side, one can ei-
ther wait or poll. To avoid heavy copy overhead, some
asynchronous IPC concepts, like the seL4, restrict the
payload to one word.

Furthermore, there were various concepts introduced on how
to address the targets and control who can interact:

• Clans & Chiefs: A thread can only communicate
with its siblings (”clan”) or its parent (”chief”). Outgo-
ing communication is routed through the chief. [Lie92]

• Thread IDs: The target is specified by its unique
thread ID

• Capabilities: Endpoint capabilities define IPC tar-
gets

4. COMPARISON
MPI is a specification while IPC can be implemented in sev-
eral ways. However, there are several points where both
techniques either collide with each other or drift apart. Es-
pecially considering both are trying to achieve the same
thing: Communication between processes. Still, while work-
ing with these, you have to keep in mind that one is orig-
inally meant to be used for parallel computing, while the
other one is used in a microkernel context. For this sec-
tion we will to look at the Fiasco.OC microkernel([Fia14])

regarding the IPC and at OpenMPI([Ope13]) as an imple-
mentaion of MPI.

The Fiasco.OC only uses synchronous IPC, so both commu-
nication partners have to meet for the message transfer and
one partner blocks while the other one is not ready yet. Once
both partners are ready, they use capabilities to achieve the
transmission of the message. MPI threads communicate via
their IDs, which are distributed by their parents. These par-
ents are the communicators. Each process can communicate
with another process that is within the same communicator.
If a message has to be transmitted beyond that, it has to
be routed through the sender’s and receiver’s corresponding
communicators. While MPI can as well do the transmis-
sion synchronously, it also provides methods to do it asyn-
chonously. In that case the message is stored in a buffer
until the receiving partner of the communication picks it up
and deletes it from the buffer. The receiver can occasionally
check if there are any messages to be picked up, and the
sender can check if the messages has been received.

To achieve synchronization in MPI, so called barriers have
been implemented. These barriers are being called via meth-
ods and block the calling process until every process of the
group (or clan) has reached the same barrier and has called
it itself. One reason why the Fiasco.OC relenquished this is
because a denial-of-service attack could cause the kernel to
deny any more messages to be written into the buffer (be-
cause of a bufferoverflow), thus denying the IPC. In addition,
MPI allows the message not only to be sent via a one-to-one
communication, but to be broadcasted to multiple processes
at once. This way, the same data can be distributed to all
processes for computing. In almost the same manner a pro-
cess can receive data from multiple processes. That can be
used to collect the results of a parallel calculation.

Another difference between IPC and MPI is that MPI does
not have a permission-like concept like IPC with its capa-
bilities. A process in an IPC environment needs to have a
capability of the receiver to be able to send a message to
that process. In contrast to that, an MPI process can send
a message to any other process that is within the same group
(clan) of processes.

As mentioned before MPI offers several options on how a
message can be sent. These options include methods to
transmit all primitive types of data (int, char, double, etc.).
Additionally, MPI provides the possibility to create user-
based data-types to be sent to the target process. Of course
that process also needs to know that data-type. IPC on the
other hand uses a virtual register with a fixed structure in
the user-level thread control block (UTCB) to transfer data
from sender to receiver.

5. REPLACING IPC WITH MPI
As stated in section 4, MPI is a specification for an IPC
mechanism which aims specifically at parallel computing.
So the real question is: Would it be possible to model mi-
crokernel IPC after the MPI standard and what would be
the advantages and disadvantages?

Since the original L4 did not include an asynchronous IPC
mechanism, most microkernels from the L4 family do not
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support this communication method. If one would want to
replace the microkernel IPC by MPI, he would need to either
choose a kernel which supports the methods defined in the
Message Passing Interface or to redesign the IPC concept of
the chosen microkernel.

Similarly, the microkernel would need to use the clans &
chiefs model for message distribution, because this is sim-
ilar to the groups concept specified by MPI. The original
L4 used this model, but some newer implementations aban-
doned it again, for example the seL4, which on the other
hand supports asynchronous IPC. One reason for the aban-
donment was an increase in performance when not using
clans & chiefs, because some messages do not need to be
transferred via the chiefs. Again, you would need to choose a
microkernel which implements this model, or redesign an ex-
isting microkernel for the use with the clans & chiefs model.

The biggest problem would be, that the MPI specification
includes many features which are not needed in the micro-
kernel context, like for example an I/O interface to work
with files. The MPI standard specification consists of 822
pages[mpi12], whereas the complete L4 specification consists
of only 218 pages[Tea06] with only 20 pages covering IPC.
Implementing MPI in an microkernel would blow up the ker-
nel code unnecessarily and, which is much worse, infringe the
most essential paradigm of microkernel developing: keeping
the kernel as small and simple as possible[Lie95].

The only real advantage of replacing microkernel IPC with
MPI would be, that the IPC bindings would be standardised,
which could achive better compability between different mi-
crokernels and their corresponding userspace-environments.
But standardising microkernel IPC bindings by implement-
ing the Message Passing Interface is, as shown in this paper,
not a resonable decision. The better approach would be to
design a new and clean API which fits the needs of micro-
kernel IPC.

6. CONCLUSION
In this paper we examined the differences between the Mes-
sage Passing Interface and microkernel IPC. For that pur-
pose we first looked at what MPI and IPC are. Afterwards
we analyzed the differences. By doing that we showed how
both of them are designed for their special purposes and then
discussed the possibility of implementing IPC with MPI in a
microkernel context. The analysis concluded in the realiza-
tion, that this would not gain any real advantages and the
better approach would be to define an API standard for the
programming language bindings.
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ABSTRACT
This paper presents a scheduling mechanism known as CPU
Inheritance Scheduling [2] with focus on microkernel oper-
ating systems. In traditional operating systems scheduling
is performed by a scheduler inside the kernel and scheduling
policies are typically predefined, which isn’t flexible enough
for some applications. The main objective of CPU Inher-
itance Scheduling [2] is to support a more flexible way for
even user applications to create scheduling policies in form
of scheduler hierarchies in which threads can work as sched-
ulers for other threads. This design principle of a schedul-
ing mechanism provides the option of bringing environments
with different scheduling requirements together on one single
system with negligible scheduling overhead, even in micro-
kernel operating systems where context switches are more
expensive.

General Terms
Theory

Keywords
Scheduling, Microkernel Operating System, User-Level
Scheduling Mechanism

1. INTRODUCTION
A scheduler is often implemented as a component in the op-
erating system’s kernel space and is generally transparent
to user applications. In addition, scheduling mechanisms in
todays common operating systems are usually designed to
follow a combination of fixed scheduling disciplines. Which
techniques in detail are used depends on the consideration
of which use in particular a system is intended to and how
exacly processes should be scheduled. Unfortunately there
is no ”best strategy”. User application threads should re-
spond as fast as possible. In batch processing threads high
latency is acceptable but thoughput is of interest, whereas
real-time environments require a scheduler that threads can
meet deadlines. To satisfy the increasing requirements of to-
days applications, it should be possible to combine different
scheduling approaches as needed in a single system.

This paper presents a design concept for a hierarchy of threads
which can act as schedulers for other threads – known as
CPU Inheritance Scheduling [2] – in a microkernel operat-
ing system. Since keeping the TCB (Trusted Code Base)
as small as possible in such systems is a major goal and
to provide sufficient scheduling flexibility for applications,
the scheduling mechanism is almost entirely located in user

space (see Aegis Exokernel [1]). Following these design prin-
ciples, combining environments with different scheduling re-
quirements (e.g. interactive and real-time applications) can
coexist in a single system with an acceptable loss of perfor-
mance, since context switching is more expensive due to a
higher scheduling overhead.

Chapter 2 describes the functional principle of CPU Inheri-
tance Scheduling [2] in a microkernel operating system, gives
an overview of an example scheduling hierarchy and covers
problems that come with scheduling mechanisms in general
(e.g. priority inversion) and accounting of CPU resources.

Chapter 3 presents an evaluation of CPU Inheritance Schedul-
ing [2] in a microkernel operating system regarding per-
formance and usefulness and Chapter 4 gives a conclusion
about this work.

2. CONCEPT
In traditional operating systems, the scheduler is included in
the kernel. The major benefit is that there is no additional
communication needed. As sequel you incur a static system
without the opportunity to combine several uses. For ex-
ample it is not possible to merge some real time (e.g. car
safety system) with general purpose applications (e.g. en-
tertainment features). In this section we suggest a way to
get the scheduler out of the kernel, and how its possible to
run different mechanisms in one single system.

The main scheduler is the root of all the schedulers you
want to combine, which has the control about the CPU.
A scheduler can be seen as a thread that spends most of
its CPU resources to other threads, which are called client
threads. These clients can also act as other schedulers which
have their own client threads. A scheduler can spend its
CPU time that it gets from its scheduler. If the given CPU
time of a client thread expires, the scheduler preempts the
current thread and runs another client. If a client blocks
because of an expected event, it returns its control back
to the scheduler, which can then choose another thread or
relinquish the control to its scheduler. This happens until
some scheduler finds a client that is requesting time.

In Figure 1 an exemplary configuration is shown. The sched-
uler S0 is the root scheduler which has one client thread that
consumes its resource for its own use. The other client of
S0 is the second scheduler which donates its resources to its
client threads T1 and T2. The root scheduler S0 could be
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Figure 1: Scheduling hirarchy.

a fixed priority scheduler with a second scheduler S1 and a
general purpose applications with a low priority. The second
scheduler S1 could use a real-time scheduling mechanism and
spend its time to real time applications.

Some low-level mechanisms, like thread blocking, unblocking
and CPU donation, still have to be in the kernel. These low-
level mechanisms are done by ”the dispatcher” which works
without making any scheduling decisions. It is deticated for
accepting events (e.g. timer interrupt) and directing these
to certain threads. Through its access to the hardware it is
the only part that has to be in the kernel space [2].

If a client thread wakes up (e.g. a resource is available) or
is created it requests CPU time from its scheduler for its
execution. This information is delivered to the responsible
scheduler by the dispatcher. If the notified scheduler is wait-
ing for such a message it wakes up and requests execution
time from its own scheduler and so on. If a notified sched-
uler is already donating its CPU time then the currently
running thread will be preempted and the control is given
back to its scheduler. Then it can make a new decision how
it donates its CPU time. If the notified scheduler is awake
but actually preempted, then the dispatcher knows that the
event is irrelevant at the moment and the currently running
thread is resumed immediately.

If the scheduler is not activated through a delivered mes-
sage or a blocking thread within a fixed time the dispatcher
preempts the running thread and passes control to the sched-
uler. The scheduler is now capable to account the expired
time and choose another thread to run.

2.1 Priority Inheritance
Sometimes it is an advantage, if a client thread donates its
CPU time to a low-priority thread. If a client thread is
waiting on an event that is dependent from another client
with lower priority it could donate its CPU time to this
thread (priority inheritance [2]). This is necessary when a
third thread with a middle-priority exists, because it has the
ability to prevent the execution of the high-priority thread
(priority inversion [5]). This happens when a high-priority

thread blocks at a resource held by a low-priority thread.
The middle-priority thread is now capable to preempt the
low priority thread. Since it holds the resource, the medium-
priority thread prevents the execution of the high-priority
thread indirectly.

This problem occured on a mars mission with the rover
”Mars Pathfinder[3]”. A high-priority management client
requested a communication channel that was already held
by a low-priority data gathering client. The management
client blocked and the gathering client continued. Very in-
frequently an interrupt occured and caused the execution
of a medium-priority and long running thread. This thread
prevented the low-priority thread from running and conse-
quently the blocked management thread, too.

This technique can also be used for a RPC call[4]. A high
priority client can donate its CPU time for the duration of
the request to the server. It would be feasible if the dis-
patcher automatically perform voluntary donation appro-
priately when the running thread blocks.

It is possible that a single thread inherits execution time
from more than one source. For example if two threads run-
ning on a multicore system donating its current CPU time
to another thread holding the required lock. In practice
a thread can not use more than one CPU at once. It only
makes sense to inherit CPU time from more than one source
if the duration to release the lock takes longer than the time
given from the first source. For example two threads do-
nating their time to a thread that is using the requested
resource. The thread can now use the inherited time from
the first thread to work on. If the given time expires, it can
use the time given from the second thread to finish its work
and release the lock. A technique for this is called band-
width inheritance[5] and can be seen as a extension of the
priority inheritance protocol. Through this it is possible to
donate the time from all threads, that attempt to acquire
the resource, to the holding thread.

2.2 Accounting
Schedulers often have to account the CPU resources are con-
sumed by its client threads to decide which to start next.
These information are often used for a variety of applica-
tions (e.g. usage statistics) and can be measured by many
possible accounting mechanisms. In this document we sug-
gest a statistical and a timestamp based type which have to
be part of each scheduler in the system. Its possible to use a
timer which activates an accounting function in equal inter-
vals which assigns the expired time to the current thread.
This method is very efficient if the used scheduler mecha-
nism is based on a periodical interval. An alternative high
accuracy method is to account the expired time between
each context switch. A drawback is the fact that this kind
of accounting extends the context switch time significant be-
cause it can be expensive to read the current time in some
systems.

The CPU accounting becomes a little more complicated when
the scheduler is stacked on other schedulers. If the root
scheduler preempts a client scheduler thread to donate time
to its clients then the client scheduler has no information
about this and assigns the expired time when it is resumed
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Figure 2: Scheduling structure.

to its client. For example if S1 has donated its time to one of
its clients then the root scheduler S0 preempts S1 and in this
way the current running client thread. When S0’s client fin-
ishes, the preemted thread returns and its scheduler assigns
the expired time from S0’s client to its own client.

If these inaccuracies can not be ignored it is possible to elim-
inate this problem through the creation of a virtual time for
each scheduler [2]. When a context switch or timer interrupt
occurs the current active scheduler gets its time increased.
With this method it is possible to account the consumed
time correctly.

2.3 Multiprocessor Support
It is possible to run a seperate instance of the root scheduler
on each processor. This brings the disadvantage, that a
client thread is bounded to its scheduler and consequently
to its CPU. In the most cases this constellation is not needed,
except each CPU is dedicated to a specific usage.

If real multiprocessor scheduling is needed a multi-threaded
scheduler is assumed, so that different threads can be dis-
tributed to the existing processors.

3. EVALUATION
The results of experimental tests in [2] based on a prototype
implementation in a user-level threads package with a sam-
ple multilevel scheduling hierarchy show that the concept de-
scribed in Chapter 2 works as expected. Schedulers arranged

in a hierarchy supporting different scheduling policies coex-
ist in one single system without interfering with each other.
For example, it is ensured that client threads scheduled by
a real-time scheduler running with high priority don‘t get
interrupted by background threads which are scheduled by
a low-priority Round-Robin scheduler (Figure 2). Perfor-
mance analysis in [2] shows that CPU inheritance schedul-
ing is applicable and practical, even in microkernel operating
systems where system calls commonly require more context
switches.

3.1 Test Environment
Bryan Ford, Sai Susarla and their team implemented a pro-
totype in a user-level threads package. This package pro-
vides the common techniques like mutexes, semaphores and
inter-thread communication. Furthermore separate thread
stacks and a virtual CPU timer were used for preemption
and timer interrupts. The dispatcher itself is isolated from
the system and will be executed in the currently running
context. It supports unlimited scheduling depth and com-
plexity. The dispatcher is written in 158 lines (semicolons)
and the scheduler in about 100 lines. All measements were
taken on a 100 MHz Pentium with 32 MB RAM and FreeBSD
2.1.5.

In the following, the used scheduling hierarchy is shown. The
root scheduler is a nonpreemptive fixed priority scheduler
which arbitrates between three client schedulers (Real-time,
Timesharing and Background). The first client scheduler
with the highest priority is a real time ratemonotonic sched-
uler with two client threads. The second client scheduler is a
lottery scheduler which manages another lottery- and a fifo
scheduler. The third, with the lowest priority, is a simple
round robin scheduler. The full structure is shown in figure
2.

3.2 Performance
CPU inheritance scheduling [2] in comparison to traditional
scheduling techniques causes additional context switch over-
heads: dispatcher costs and context switch costs.

Dispatcher Costs
Dispatcher Costs are caused by the dispatcher itself.
Depending on the depth of the scheduling hierarchy,
the dispatcher has to iterate through trees and linked
lists in order to compute the next thread to run. How-
ever, in practice, a limited depth of the scheduling hi-
erarchy to four or eight levels should be suitable for
almost any purpose. This provides a flexible way for
CPU inheritance scheduling and acceptable computa-
tional overhead.

Context Switch Costs
Costs of additional context switches to and from sched-
uler threads occur when using CPU inheritance schedul-
ing. Due to the fact that the scheduling overhead for
a single context switch varies widely in different envi-
ronments, this overhead is not considered. Instead, ad-
ditional context switches that occur when using CPU
inheritance scheduling are counted. While in the test
environment (Section 3) for example, there is little
overhead for switching because it is running in user-
mode, in a kernel environment it is more expensive.
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Figure 3: Scheduling overhead and overall slow-
down.

So comparing costs for a single context switch is not
really useful to get information about performance is-
sues of CPU inheritance scheduling. However, count-
ing the number of additional context switches shows
that for each ordinary context switch on average, ap-
proximately one additional scheduler thread invoca-
tion can be expected.

Figure 3 shows the scheduling overhead related to the over-
all slowdown in microkernel and monolithic kernel operating
systems. Because microkernels commonly require more con-
text switches, it is desirable to keep per context switch costs
as small as possible. If scheduling is mainly implemented
in user-space, where per context switch costs are almost
free, CPU inheritance can be used in such environments to
achieve scheduling flexibility with negligible overhead as the
test results and performance analysis in [2] show.

4. CONCLUSION
In this paper a possibility for a multi-level scheduling hierar-
chy was shown. It allows the existence of varying scheduling
policies in a single system. The framework from [2] prevents
priority inversion by priority inheritance and shows that the
presented concept can even be used in environments in which
context switches happen more often, because the additional
per context switch overhead is small.
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Abstract—”The most processor scheduling mechanisms in
operating systems are fairly rigid, often supporting only one
fixed scheduling policy, or at most a few scheduling classes
whose implementations are closely tied together in the kernel
part. This paper introduces a solution for user-level scheduling
based on CPU inheritance, a novel processor scheduling frame-
work, developed by Bryan Ford Sai Susarla, in which arbitrary
threads can act as schedulers for other threads. With user-level
scheduling, operating systems can support scheduling policies
which can be adapted to the needs of individual applications.
Therefore operating systems that support user-level scheduling
are more flexible than others. Conclusively we give a little outlook
to Exokernels which carry out user-level scheduling.”[1]

I. INTRODUCTION

The idea of an microkernel based operating system is to
minimize the kernel part of the operating system, in order to
permit modularity, flexibility and a small ”Trusted Computing
Base”. Modern microkernels just include a messaging service
for inter-process communication (IPC) and the scheduling
mechanism. So all resource-management policies of the oper-
ating system have to be implemented at user-level as a server
application. If an application wants to use a service of these
policies, it must communicate via IPC messages to the specific
server.

Traditionally, operating systems use a fixed scheduling
scheme to share the CPU resources, typically based on priori-
ties. Mostly a few variants of the basic policies are provided,
such as support of several ”scheduling classes” to which
threads with different purposes can be assigned to (e.g. real-
time) or fixed-priority threads. Normally these variants are
hard-coded into the the system implementation and cannot be
easily adapted to the needs of individual applications. So if we
could move the scheduling mechanism into the user-level the
operating system would be even more flexible.[1]

In this paper we report about one solution to implement
scheduler threads in the user-level, which is used in a frame-
work for inheritance scheduling. We also show the introduced
overhead of this solution.

The idea of inheritance scheduling is that threads can act as
schedulers for other threads themselves. The scheduler threads
temporarily donate their CPU time to a selected thread while
waiting on events of interest such as timer interrupts. The
thread which gets the time from the scheduler can also act
as a scheduler thread. This allows to build a logical hierarchy
of schedulers as illustrated in Figure 1.[1]

Fig. 1. Example for a scheduler hierarchy[1]

II. RELATED WORK

In their paper ”CPU Inheritance Scheduling”, Bryan Ford
and Sai Susarla present a new processor scheduling framework
in which user-level threads can interact as schedulers. These
scheduler threads can implement different scheduling policies,
so that one single system supports multiple policies at once.
The goal of this framework easily adapts scheduling techniques
to the needs of individual applications. In their paper Ford and
Susarla demonstrate that such flexibility can only be provided
with minimal overhead, depending on factors such as context
switch speed and frequency.

III. USER LEVEL SCHEDULING

Generally, threads are scheduled on a low level, either by
the kernel scheduler or by some user-level thread packages.
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Fig. 2. Example for a scheduler donation[1]

With the concept of CPU inheritance scheduling, inroduced in
the work of Bryan Ford and Sai Susarla, higher-level threads
gain the ability to voluntarily donate and request CPU time to
and from other threads. The sole thread that actually owns real
CPU time is the root scheduler that can transfer its available
portion of actual CPU time temporarily to other client threads
(which can be scheduler threads). On multicore systems, there
exists one root scheduler thread for each real CPU. It is
technically not possible to implement one sole root scheduler
that manages all CPUs at once. Scheduler threads primarily
spend their time donating its CPU resources to client threads,
that inherit this allocated portion as their virtual CPU.

For CPU inheritance scheduling a few low-level mecha-
nisms still have to be in the kernel. One of these mechanisms
is called ”dispatcher”. The dispatcher implements the function-
ality of thread blocking, unblocking, and CPU donation. Also
the dispatcher receives events (e.g. an interrupt or wake-up of
a thread) and redirects them to the threads that are waiting
for those events. The real scheduling decisions are made by
the scheduler threads, so the dispatcher is not an own thread,
it runs under the context of a scheduler thread in the kernel
space. Figure 2 shows an example for scheduler donation,
where the root scheduler S0 donates its CPU time to S1 which
is a scheduler thread that spends its CPU time further to T2.

Following this principle a tree-like hierarchy can be
evolved by all participating clients distributing their CPU time
among a chain of threads. Thus, recently created threads cannot
be run until they are provided with CPU time from their
responsible schedulers. Hence CPU time has always to be
requested as soon as a thread needs to be processed. In that
case the dispatcher sends a notification through an IPC to a
Mach-like message port of the scheduler thread to wake it up.
This mechanism can lead to a chain reaction where different
scheduler threads are woken up. While in traditional systems
priority inheritance would be used, CPU inheritance allows
running threads to voluntarily donate their time rather than
block and wait for an event to occur. As for instance one
thread is holding a lock, another thread that needs to obtain
that locked resource donates its CPU time to the former thread
(more in section III-A2). As soon as the resource lock is
released the donation ends and the CPU is passed along to
the donator thread again. But it is also feasible for a sole
thread to receive CPU time from more than one other thread
simultaneously.

While in the implementation of inheritance scheduling the
dispatcher is automatically invoked by the IPC primitives
to perform voluntary donation, a voluntary donation or an
explicit dispatcher call could be implemented as well. But
one eventual problem arises from threads that consume CPU
time from multiple donators an hence will always produce an
”avalanche effect” when they are woken or preemted because
the dispatcher sends multiple scheduling requests at once,
which on their own could result in even more requests by
woken up intermediate-level schedulers. But in reality this is
hardly probable due to the fact that a thread inherits from
more than one or two different threads contemporary. It is
also possible that threads relinquish the CPU as soon as all
their work is done. In this case the dispatcher hands back the
CPU to its scheduler. This procedure can go up the hierarchy
until some thread is found that is willing to work.

A. Timing

For preemptive scheduling it is important to have a mea-
surable knowledge of time, therefore a periodic interrupt is
accurate enough in the most cases. This means, that for user-
lever scheduling all what is needed is a way for a scheduler
thread to be woken up after an amount of time has elapsed.
A solution to support this, is that every scheduler thread can
register timeouts with an own interrupt handler. So when a
timeout occurs, an IPC message is sent to the corresponding
schedulers port, waking up the scheduler.[1]

1) CPU Usage Accounting: Most schedulers have to ac-
count the usage of the CPU to decide which thread to run
next. As with scheduling policies, there are many possible
CPU accounting mechanisms, each with different cost/benefit
tradeoffs. But there are two well-known approaches to CPU
usage ac- counting: statistical and time-stamp based.[1]

Statistical accounting
By statistical CPU usage accounting mechanisms the scheduler
wakes up on every clock tick to change the quantum of
the running thread. This method is only efficient when the
scheduler generally wakes up on every clock tick anyway.[1]

Time stamp-based accounting
In case of time-stamp based CPU usage accounting mecha-
nisms the scheduler reads the current time on every context
switch and elevates time since the last context switch, to
change the quantum of the corresponding thread. This method
provides extremely high accuracy, but also increases the time
for context switch times, especially on systems where reading
the current time is expensive. Thus the costs are much higher
than on other systems.[1]

For the root schedulers one of these methods can be
implemented directly. For other schedulers which get their
CPU time from other schedulers (e.g. root schedulers) CPU
accounting becomes a little more complicated. Because the
CPU time which is donated to the schedulers are already
”virtual” and cannot be measured accurately in a time-stamp
based accounting mechanism. For example, in Figure 2, if
scheduler S1 measures the CPU usage time from thread T2
they add the CPU time from the high-priority thread T0 when
S0 preempts T1 and donate the CPU time to T0 and S1
don’t recognize this. In most cases, this inaccuracy may be
ignored because of the assumption that high-priority threads
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Fig. 3. Example of priority inheritance[1]

consumes relatively little CPU time. Otherwise, in the case
these inaccuracies can’t be ignored each scheduler thread need
to take virtual time informations for his clients.[1]

2) Priority inversion: Priority inversion is the effect when a
low-priority thread holds a lock on a shared resource while the
high-priority thread is waiting for a message from the resource
(e.g. answer of an I/O request). One solution to avoid this effect
for user-level scheduling is to implement a priority inheritance
mechanism.

Priority inheritance means that a high-priority thread can
implicitly donate it’s CPU time to a low-priority thread when
this thread holds a resource which the high-priority thread
needs. So the low-priority thread implicitly runs under the
priority of the high-priority thread. Actually, you can say the
thread inherits this priority. Figure 3 shows an Example for
priority inheritance, S0 donates its CPU time to the thread T0
with a high priority. The low-priority T1 holds an resource
which is needed from T0. T0 recognizes this and donates its
CPU time to T1, so the thread can work with the resource
under the priority from TO and release it after that. Increasing
the priority of thread T1 to the priority of TO (inheritance
of priority) is necessary to avoid that a middle-priority thread
prevent or interrupt the execution of T1. After releasing the
resource T1 also release the CPU time from T0, so T0 can
continue its work.[1]

B. Scheduling Overhead

Up to this point we revealed the new potentials of user-
level scheduling, but still they need to be surveyed to the
extent to which they may be applicable in real world situations.
In particular we will look at the efficiency and the implicit
overhead produced by user-level scheduling compared to well-
known traditional scheduling algorithms.[1]

There are two sources of overhead that need to be ac-
counted for: in the first place there is the additional processing
time inroduced by the dispatcher while it is processing the
thread that will be switched to next after an event occurred.
The overhead is produced due to iterating through linked lists
and trees whose lenght depends solely on the scheduling hier-
archies depth. Even if in theory the dispatcher can administrate
an unlimited hierarchy depth of scheduler threads, in practice
there is no need to apply/adopt so many scheduling levels since
it creates a ”source of unbounded priority inversion”, as stated
in section III-A2. To minimize computational overhead in hard
real-time systems, for example, could limit the depth to eight

Fig. 4. Over all slow down related on scheduling overhead [1]

or even four levels. Compared to just the root scheduler, 4-
level scheduling would cause about twice as much processing
overhead, 8-level scheduling even three times as much.[1]

The second source of overhead to be accounted for are the
extra context switches between the several scheduler threads.
As the impact of context switches heavily differs from system
to system the design concept of the CPU inheritence model
can be more or less expensive through various applications.
The costs of context switches in user-level packages will be
very subtle, but multiple times more significant in monolithic
kernels for example.[1]

To get an idea of the real-world-performance that could
be achieved by an implementation of the CPU inheritance
framework, Figure 4 [1] shows some statistics that have been
collected by Ford and Susarla during the measurement of dif-
ferent applications running in FreeBSD 2.1.5. The plot actually
shows the tolerance of a system to scheduling overhead for
a hypothetical L4-like microkernel. The statistics contain the
compute- intensive application gzip compressing an 8MB file,
the GNU C compiler gcc building a 20k-line programm, the
I/O-intensive application tar copying 8MB of source files, and
finally an extremely I/O and fork-intensive 3000-line Unix
shell script configure.[1]

It is obvious that microkernels must be much less permis-
sive to scheduling overhead due to the quantity of context
switches that they perform. Even the L4 with its user-level
device drivers would add two additional context switches per
device interrupt. Assumed that all scheduling in FreeBSD
was done in user mode, this would add roughly one more
context switch for the scheduler invocation and hence keep the
overhead negligible (shown in Figure 4 by arrow A). Taken gcc
as an example (arrow B) the context switches introduced by
the gcc must stay under 6 microseconds to keep the overhead
under 2%.[1]

IV. VIEW: EXOKERNEL

Exokernels develop the idea of microkernels (Figuer 5
illustrates the architecture of mircokernels) one step further
by outsourcing more mechanism, such as the scheduling
mechanism, from kernel space to user space. From application
perspective they have the goal to reduce several abstractions
of the hardware. They try to avoid too many abstraction
levels between hardware and the applications itself, making
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Fig. 5. Architecture of a mircokernel[2]

it possible to choose the best suited alternative without having
unnecessary overhead. Speaking of abstractions, a typical
example is the illusion of a filesystem that is created by regular
operating systems to hide the real structure of the hard disc
that, in reality, is build up from sectors and not just files.
At the same level as the abstraction layer of the filesystem
and the memory management, usually the security layer,
suchlike Unix-style permission and ACLs (Access Control
Lists), is located here also. To improve efficiency and meet
the requirements, the scheduling of processor time is shifted
into user-space as well, giving more flexibility and allowing
adapted scheduling algorithms. Exokernels are structured in
a way to provide application-specific customization. So it is
easy to change the scheduling policy or to provide further
concurrency models[6] such as workers, actors, or futures [5,
3, 4].

V. CONCLUSION

In this paper we present the idea of CPU inheritance
scheduling as one possible solution for user-level scheduling.
CPU inheritance scheduling is a simple way to implement user-
level scheduling with low overhead. One positive ability of
CPU inheritance scheduling is the possibility to create a tree-
like hierarchy of schedulers. With this ability it is possible to
implement individual scheduler policies for applications.

One of the reasons why CPU inheritance scheduling has
low overhead is that the whole hierarchy of schedulers and
their clients run in the same address space so the switching of
client threads is cheap. But this is also a negative point because
every thread of an application has access to the memory of all
other applications. This is a critical security problem which is
not acceptable.

To use the concept of CPU inheritance scheduling for
more than one address space, one possibility is to define the
hierarchy of schedulers and assign applications to one of them
before building the operating system (e.g. in a XML-file or
with a Lua script). Every thread which an application creates
has to assign to the scheduler of the application. The schedulers
are all using the same address space. So every application can
use more address spaces. The switching of a client thread can
invoke an address space switch. Switching the address space is
very expensive ( on some processors the TLB must be flushed
and so on). Every time a scheduler gets CPU time an address
space switch is necessary. This is the point why the concept of
CPU inheritance scheduling respectively user-level scheduling
is not used in operating systems yet.
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ABSTRACT
IPC performance of first-generation microkernels used to be
too poor to create fast systems which adhere to Liedtkes
minimality priciple. In fact, commercial implementations of
microkernels like Mach and early L3 versions started to de-
viate from this principle and incorporated the most perfor-
mance critical servers/drivers into the kernel again. It was
a long held believe, that IPC performance of microkernels
was already at its optimum at approx. 100 microseconds
(5000 CPU cycles at the time) for an empty message. But
radical new approaches and tight hardware optimization all
the way down to cache showed, that the real limit should
have been 5 microseconds. This finally enabled completely
new application scenarios.

1. INTRODUCTION
Microkernels began to pop up in the early 1980s. They were
the first to achieve the separation of traditional operating
system functions like drivers or filesystems from the com-
mon monolithic kernels. This enabled not only easier work
on programming and experimenting with these components,
since they were securely isolated from the rest of the sys-
tem. Microkernels would also enable completely new appli-
cations, by allowing competing implementations of common
operating system facilities like memory management run-
ning simultaneously on a single system. Probably the most
commercially attractive new possibility of mikrokernels was
the ability to let them serve as an easily portable machine
abstraction on which other operating systems are built upon
– not unlike modern virtualization techniques. This would
allow the creation of new computer systems, which are com-
patible to common ones like UNIX or MSDOS – in this
context called an “OS personality” – but simultaneously en-
abling engineers the usage of the completely new paradigms.

The main primitive used in interacting with microkernels
and tasks running on them, a simple but powerfull interpro-
cess communication (IPC) mechanism, quickly turned out
to be a painfull bottleneck. IPC messages to drivers and

other services were an order of magnitude slower than their
systemcall counterparts in monolithic kernels, which severly
degraded performance of common workloads. Due to this
pressure, most OS developers saw their hand forced to de-
viate from most of the microkernel approach and reincorpo-
rated performance critical compontants into the kernel.

This paper shows the development-timeline of the IPC per-
formance of microkernels. Section 2 compiles the first at-
tempts at microkernel-based operating systems and how they
deviated from an “ideal” microkernel environment. The sub-
sequent section takes a look at the second generation of mi-
crokernels, detailing the techniques used to shrink the IPC
latencies. This spans the first early attempts all the way
to modern implementations. Section 4 then shows how a
modern OS emulation works, using L4Linux – a L4-based
linux kernel – as an example. Section 5 concludes the paper
with a discussion of new applications made possible by sys-
tems like L4Linux and an outlook on modern mikrokernel
applications.

2. FIRST GENERATION MICROKERNELS
CHORUS [5] was an early experimental operating system
kernel which explored the idea of a distributed, message-
based, modular kernel in its first iterations V0 and V1. Be-
ginning with its third iteration, V2, the authors wanted to
explore the idea of adding a binary compatible UNIX em-
ulation using a microkernel with a few isolated servers im-
plementing device, file, network, and process management.
While succeeding partially in their approach, the authors
abandoned the idea of secure isolated servers in version V3.
The authors argued, that while the concept seems elegant,
the overhead of message passing between these most perfor-
mance critical services prohibits Chorus to become commer-
cially competative UNIX implementation. While the ser-
vices were still handled similiar to normal user processes
(e.g. paged, scheduled, ...), they were moved into a single
address space and are always executed in the priviledged
machine state.

Mach [2] has a very similiar history to Chorus. The aim was
to create an extensible kernel using simple abstractions with
network transparency, and the possibility to emulate an OS
personality like UNIX. The authors succeeded and [14] even
went as far as implementing external memory management
support, a technique self-evident in modern microkernels.
However [7] takes a closer look at the performance of this ap-
proach by comparing the commercial UNIX implementation
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OSF/1 with an integrated kernel to an OSF/1 implementa-
tion based on Mach. The authors meassured a performance
degradation of up to 40% using the multi-user benchmark
“AIM III”. Previous observations, like [6], came to similiar
conclusions by comparing Ultrix and Mach, with degrada-
tions depending on workload from 4% to 66%. As a coun-
termeassure, [7] combined the servers responsible for the OS
personality together in kernel-mode – a process coined“colo-
cation”. The process fixed the degradations but turned the
system away from a clean mikrokernel approach.

Another promising approach was the L3 microkernel. The
system described in [13] is built on top of the L3 microker-
nel and emulates a MSDOS personality. The system applies
most of the concepts of microkernels: drivers and resource
management are handled in processes outside of the kernel.
Solely some specialized drivers are part of the kernel, like
a SCSI driver or a driver emulating a RS232 port as a vir-
tual DMA (which in turn is handled by user-space software).
Memory management however was still part of the kernel,
but plans already existed to implement this feature exter-
nally. But most importantly, the L3-kernel already partially
featured the iconic IPC interface of the famous L3 descen-
dant L4.

3. THE BREAKTHROUGH
Even though the success of microkernels was stalled by the
setbacks presented in section 2, work never stopped. Many
microkernels brought isolated techniques for improved IPC
performance, but it seemed as though a 100µs latency was
a practical limit, which could only be beaten by faster hard-
ware. Some analysis like [3] even suggested, that further
work is futile because IPC performance is becomming irrel-
evant in the face of common workloads. The work of [10]
effectively proved both hypothesises wrong. An improved
version of L3 is presented, which is the first to combine most
IPC improvements together with new radical restructurings
of the microkernel.

Most of the changes concern the IPC mechanism itself. The
smallest change was the expansion of IPC systemcalls send,
reply, receive and wait by combined versions like “call” (send
and receive) and “reply&wait”. Since these are a very com-
mon use-cases, they save two systementry/exit calls (and ad-
dress space changes) per call. And since the calling thread
will immediately block anyway, a direct process switch is
performed, donating the rest of the timeslice to the receiver.
This direct switch however is not performed on the way
back via reply&wait, if another thread is already waiting
to deliver a message. The handling of the next message is
prioritized, to raise the responsiveness of servers. The last
change to the IPC mechanism itself was the way messages
are copied to the receiver. Traditionally, messages were first
copied from the senders address space into a buffer known
to the kernel, then the address space was switched to the
receiver, and the message copied into the receiving window.
Simply mapping the data from the senders address space
into the receiving window would have eliminated both copy-
processes, but this would have security implications: the
sender might change the message before the receiver was
done, enabling a covert communication channel. One copy
process however can be eliminated, by temporarily mapping
the target region into a communication window, and copy-

userspace a

userspace b

kernel

address space

(a) Twofold copy through buffer.

userspace a

userspace b

kernel

address space

(b) Direct copy through mapped communication win-
dow.

Figure 1: Direct message copy eliminates one copy process.
Graphic adapted from [10]

ing the message into this window. The message will appear
in the right place for the receiver due to the mapping. The
process is illustrated in figure 1.

Other changes were less aimed at the concept of IPC, but on
their technical implementation. Two big changes involved
the bookkeeping of the kernel. One technique, coined “Lazy
Scheduling”, changed the way the process queues were main-
tained. Normally, a kernel would keep blocked/waiting and
ready processes in queues and move communicating pro-
cesses accordingly among theses list. But handling the-
ses queues would (a) cost time, (b) cause cache misses, or
even worse (c) cause TLB misses. Instead of keeping theses
queues in perfect order, modern kernels just flag a calling
thread waiting in the thread control block (TCB) and do
the bookkeeping at the next time the queues have to be
parsed (e.g. at the end of a timeslice during scheduling).
This change works extremely well together with the direct
process switch method. Other bookkeeping was also done
lazily: the state of the 486-coprocessor is not saved on pro-
cess switch. Instead it’s just locked until another process
tries to use it. The state is then saved for the previous pro-
cess and unlocked for the current.

The rest of the changes concern the overall implementa-
tion. Most stalls were attributed to frequent cache- or TLB-
misses. To lower the probability of these misses, the kernel
working data was kept as small as possible (saving cache
misses) and consolidated on as few pages as necessary (sav-
ing TLB misses). The authors even went as far as com-
ming up with complicated schemes to store wakeup-times
for sleeping processes. The same authors advocated in [11]
to aim for small code and datasize of the kernel, citing the
size of the L4-kernel code as slightly less than 12Kb (about
300Kb were common for first-generation kernels). Other
technical changes aimed at raising processor utilisation and
optimising for the common case. The IPC code is preceded
by what in later publications would be called a “fastpath”,
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Figure 2: The flow-graph for IPC code. Left side shows the
“slowpath”. Right side shows the “fastpath”, with the grey
node leading to the “slowpath”. Graphic taken from [4]

which contains optimised code for common IPC cases – for
example a simple message by send&receive to another pro-
cess. This code is very small, and mostly checks if the cur-
rent IPC is indeed the common case, jumping to the full IPC
code (called “slowpath”) if it is not the case. Figure 2 shows
a flow-graph for common IPC code. The slowpath contains
a complicated checks with a lot of branches and long jumps,
while the fastpath almost only contains branches which jump
to the slowpath. If the fastpath is successful, the processor
never branched and its pipeline stayed near full utilisation
during the whole call.

Some early versions of the L4-kernel were even completely
implemented using hand-written assembly language. This
code was better than code generated by contemporary com-
pilers, and didn’t need to adhere to any calling conventions.
Liedtke, the author of L4, argued in [12], that kernels are
just something inherently hardware-dependant. This ap-
proach however was quickly abandoned, as modern incarna-
tions of microkernels are usually implemented in C/C++.
Only the most performance-critical sections, like the IPC
fastpaths, stayed as hand-written assembly for a long time.
Modern compilers however, allow the replacement of even
this code. In [4], this approach is evaluated. Fastpaths are
implemented in C, with the code-generation of compilers in
mind, e.g. by moving loads or annotating code with com-
piler specific functions like “__builtin_expect”1. Unavoid-
able assembly, which cannot be expressed in C (e.g. toggling
hardware interrupts), is placed into inline-assembly sections,
which most compilers support.

The combination of all the named changes to the L3-kernel,
caused a very drastic improvement in IPC performance. Ta-
ble 1 lists the timings for messages of various lengths. The

1This function allows the compiler to optimise
pipeline/branch-prediction utilisation of the target proces-
sor

Size (Byte)
Kernel 8b 12b 128b 512b
Mach 115 115 124 172

L3 5.2 (4.5%) 7.6 (6.6%) 9.8 (8%) 18.1 (10%)

Table 1: Time consumed in µs for IPC of different message
sizes. Results taken from [10].

final speed for a simple “ping-pong” message was 5µs us-
ing an Intel 486 DX-50 processor. The 100µs barrier, which
seemed unbreakable at the time, was distinctively broken.
In [10] some insight is offered into how these numbers are
accomplished. Lazy scheduling and the shrinking and opti-
mising of data structures have the most noticable impact for
smaller messages. It’s not clear how much effect each trick
has on the IPC performance, since a lot of these tricks have
synergetic effects. For larger messages however, the over-
head of any IPC work becomes very small relative to the
copy-process of the message. Due to this, the direct copy
optimisation has the biggest impact on performance when
sending big messages.

4. EMULATING AN OS ON L4
Section 3 showed, how propper IPC performance can be
achieved. The shown numbers finally enable a fully mi-
crokernel based OS personality emulation. [8] offers a de-
tailed look at just how this can be accomplished. The au-
thors developed a special version of the Linux kernel called
“L4Linux”, which can turn a L4-kernel into a Linux binary-
compatible operating system.

A pure microkernel like L4 doesn’t need any special facil-
ities to emulate a system like Linux (or any other POSIX
system). The IPC facilities play the most important role in
this. Memory management (e.g. paging), interrupt- and
exception handling are all represented by IPC messages.
Any L4 task can be set as the pager or exception han-
dler. The IPC system is enough to serve as a virtual plat-
form for a Linux-kernel. Linux is an optimal candicate for
porting, as most of its code is architecture-independent.
Process- and resource management, file systems, network-
ing and even device drivers2 are all completely independent.
The architecture-dependent part encapsulates the address
space construction mechanisms, process interaction (espe-
cially the system call interface) and some very low-level
drivers (e.g. DMA). All these mechanisms are however al-
ready implemented by the L4-kernel, so the architecture-
dependent part of Linux for L4 contains code which accesses
these mechanisms on L4. The Linux-kernel then is simply
a task runnning on L4. The regular system-call interface of
Linux is replaced with code using the L4 IPC interface.

To understand how binary-compatibility for between a reg-
ular Linux and the L4 kernel can be achieved, a look at the
system-call mechanism of Linux/POSIX systems is necces-
sary. All system-calls have an assigned number/ID and a
number of arguments. When a process wants to perform a
system-call, it places the system-call number in a designated
register, places the arguments on the stack3 and performs

2Appart maybe from the fact, that some devices only exist
on some architectures
3On Linux the arguments are placed in registers too to speed
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a privileged instruction (most processors have a designated
TRAP instruction). This causes an interrupt to be fired,
which the kernel needs to handle. The interrupt handler
in this case examines the system-call registers and performs
the call. If a L4-thread performs a privileged instruction,
an exception is raised. This in turn will cause the creation
of an IPC message, which is sent to the registered excep-
tion handler of the thread. So all a L4Linux has to do to
run normal Linux binaries, is to simply run them as nor-
mal L4-tasks and register an exception handler which checks
the exceptions that these processes cause. If the exception
looks like normal system-call behaviour, the exception han-
dler translates the call to a regular IPC-message which is
sent to the L4-linux kernel. In literature, this exception
handler is called a “trampoline”. This trampoline however
is only required for strict binary-compatibility. Linux bina-
ries which are linked against a dynamic library version of
libc, can simply be linked against an adapted version, which
instead of Linux system-calls creates direct IPC messages to
the L4Linux kernel, bypassing the trampoline.

The authors of L4Linux performed a microbenchmark to
meassure the overhead of such a trampoline and the adapted
libc-library. The benchmark involved meassuring the time
a getpid4 system-call needs. While a regular Linux kernel
needed 1.68µs, the a L4-version required 3.95µs using the
adapted libc, and 5.66µs using the trampoline mechanism.
While this 2.4x markup seems big at first, it quickly vanishes
in macrobenchmarks, which reveal the true cost to be a 6-7%
performance regression.

5. POSSIBLE APPLICATIONS
While it seems unproductive at first, to emulate an OS
personality, or porting a whole monolithic kernel to a mi-
crokernel, all while suffering (albeit nowadays small) per-
formance regressions, this approach opens up interesting
new applications. One of the early reasons was raising the
portability of operating systems. A microkernel encapsu-
lates most of the hardware-dependant parts of an OS, while
the rest (e.g. L4Linux, Linux-applications, etc.) is mostly
hardware-independent, apart maybe the need for recompi-
lation if the processor architecture is changed. Due to this,
a hardware change only requires the retargeting of the mi-
crokernel, which is fairly small. The rest of the system just
needs to target the microkernel and can be ported straight
away. Another early application of microkernels was trans-
parent distribution of the systems to multiple computers.
An application can’t see, if it’s exchanging IPC messages
with its target directly, or if it’s sending these to a proxy-
task, which sends messages back and forth over a network
to another computer.

These elegant software engineering tricks are not the only
“pros” on the list for microkernels. Since the codebase for
microkernels is very small, the code of such a kernel isn’t
typically larger than 10000 lines of C/C++. This codebase
is much easier to check, and – as [9] showed – can also be
formally proven correct. This opens up a lot of possibilities
for security applications. One possible application for ex-
ample are cryptographic modules running isolated from the

up the call, if the system-call has less than 6 arguments
4One of the simplest system-calls.

rest of the system. A L4-task could perform encryption and
keep the keys stored securely, providing this service to exist-
ing applications running on a L4Linux kernel. Assuming the
correctness of the microkernel, this encryption-service could
never be compromised by applications, even if the Linux-
kernel is completely exploitable. A similar approach is used
by [1] to keep the security functions of an encrypting cell-
phone isolated from the Android OS running on a L4Linux.

6. CONCLUSION
This paper showed a timeline of the development of micro-
kernel systems. Section 2 listed three early examples of de-
ployed UNIX/MS-DOS systems, which used microkernels as
a foundation. Most of these systems used a relatively “pure”
microkernel before before abandoning their efforts due the
to performance problems exhibited by contemporary micro-
kernels. Section 3 showed the necessary changes to a micro-
kernel, which caused an unexpected breakthrough in perfor-
mance. Section 4 showed how a common operating system
can be ported to use a microkernel as a virtual platform,
while maintaining binary-compatibility. While the perfor-
mance penalty of emulating an OS personality on modern
microkernels is fairly limited, systems like these remain a
rare sight, usually limited to specialised security applica-
tions, as discussed in Section 5.

7. REFERENCES
[1] Hochsicherheitshandy der Telekom erhält
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ABSTRACT
This paper gives an introduction to the topic of side- chan-
nel attacks. After an explanation of basic cryptographic
primitives, we show two successful side-channel attacks that
might also be used against cryptography in a microkernel
environment. The first attack works in a virtual machine
environment. While the second attack uses sound recorded
from a smart phone.

1. INTRODUCTION
Side-channel attacks are a common problem everyone faces
when implementing cryptographic algorithms. This paper
gives an introduction to the topic of side-channel attacks
and their application to virtual machines (and by extension,
microkernels).

To understand what side-channel attacks are and why they
work, you need to know the basic principles of public key
cryptography and their underlying mathematical implemen-
tations.

The second section of this paper explains the RSA algorithm
for public key cryptography and the square-and-multiply
algorithm used to quickly calculate exponentiation of large
numbers modulo a prime number. The third section explains
what a side channel attack is, and how it relates to the
implementation of the square-and-multiply algorithm. The
last section shows two successful side-channel attacks that
might also work in a microkernel environment.

2. PUBLIC KEY CRYPTOGRAPHY
The main feature of public key cryptography is the pub-
lic/private key pair.

The public key, as the name suggests, can be published
for everyone to see. The public key is required to either
send messages to the owner of the private key, or to check
signatures made with the private key.

The private key must be kept private. It is usually stored
in encrypted form (using a symmetric cipher such as AES).
The private key is used to decrypt data that was encrypted
with the public key. It can also be used to sign messages by
encrypting a suitable hash value.

Leaking the private key (or parts of it) compromises the
public key encryption. Everyone in possession of the correct
private key can decrypt and sign messages. Knowing parts
of the private key might significantly reduce the search space
for finding the private key.

The RSA algorithm large numbers as key pairs. The minimal
recommended key size is 1024-bits. The basic encryption
operation is as follows:

c ≡ me (mod n)

where m is the message, e is the public key exponent, n is
the modulus (a product of two large prime numbers), and c
is the ciphertext.

The decryption is as follows:

m ≡ cd (mod n)

where c is a previously created ciphertext. d is the private
key exponent (the multiplicative inverse of e (mod n)), and
n is the modulus.

While the public key exponent is usually small (a popular
value is 65537), the private key exponent is usually about
the same size as n. One efficient way to quickly compute
the exponentiation is the so called square-and-multiply algo-
rithm.

The square-and-multiply algorithm is based on the following
observation:

xn =
{

x · (x2)
n−1

2 , if n is odd
(x2) n

2 , if n is even

For example the exponentiation 213 might be rewritten as
(((2)2)6 · 2) (because the exponent 13 is odd). The result can
be finally reduced to ((((2)2 ·2)2)2 ·2). The result is a series of
exponentiation and multiplication. The intermediate results
can be reduced mod n if required.

As an additional example, the square-and-multiply algorithm
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is shown in Algorithm 1.

Data: x, e, N
Result: y
let en, ..., e1 be the bits of e;
y ← 1;
for i = n down to 1 do

y ← Square(y);
y ← ModReduce(y, N);
if ei = 1 then

y ← Mult(y, x);
y ← ModReduce(y, N);

end
end

Algorithm 1: The square-and-multiply algorithm

For more details, see [2, 5, 3].

3. SIDE-CHANNEL ATTACKS
Side-channel attacks use the physical implementation of a
cryptographic function to gain information about the secret.
It does not use a weakness of the algorithm, but uses only
the information from other sources of the system, on which
the cryptosystem is running.
The most common types of side-channel attacks are:

• Acoustic cryptanalysis - attacks which use the noise
emitted by the computer while using the cryptographic
function.

• Data remanence - attacks which gain information about
the secret from the data which was used by a cryp-
tographic function. It does not matter whether the
data resides in memory, on the hard disk or on another
storage medium. The data can be restored after the
cryptographic function delete them.

• Differential fault analysis - this attack creates a fault in
the cryptographic function to gain information about
the current state of the function. A fault can be created
with high temperature, to high or low voltage or with
electric or magnetic fields.

• Electromagnetic attacks - attacks which use the elec-
tromagnetic field to gain information about the secret
of the cryptographic function.

• Power monitoring attack - this attack used the charac-
teristic of the power consumption for each instruction
of the CPU.

• Timing attack - attacks which measure the execution
time of parts of the cryptographic function to gain
information.

For example the Power monitoring attacks can be used to
gain the secret out of the square-and-multiply algorithm.
The Power Monitoring Attacks can be divided into two cate-
gories: Simple Power Analysis (SPA) and Differential Power
Analysis (DPA). To explain the attack, we use the same
example as in the previous section.
213 which can also be written as ((((2)2 · 2)2)2 · 2).
The processor consume a different amount of power for the

Figure 1: Power variations on an embedded proces-
sor. Source: [4]

square operation than for the multiply times 2 operation.
With a digital oscilloscope the secret can be read from the
difference of the power consumption of the processor. In
this example it show a short, long, short, short consumption
which is represented binary as a 1011. If we want the decimal
value of the secret, we must read the binary value from right
to left, which will be a 11012 or 1310. See figure 1. This was
the Simple power analysis attack.

Power variations, observed during work of the
embedded processor, computing RSA signatures.
The left (short) peak represents iteration without
multiplication (key bit is cleared), and the right
represents iteration with multiplication (key bit
is set). The low power pause between iterations
has been artificially implemented to make key
decoding trivial. This would be more complex
on the real world devices that, differently, try to
obfuscate it. See world devices that, differently,
try to obfuscate it. See figure 1.

The Differential Power Analysis attack uses the same method
as the Simple Power Analysis to gain information about the
secret. The DPA use statistical methods to filter out noise,
which can be created by other processes. To use the DPA
attack, it is necessary to receive the power consume of the
cryptographic function with the same secret several times.

4. REAL WORLD EXAMPLES AND APPLI-
CATION TO MICROKERNELS

Now that we’ve looked at the basics of cryptography and the
theory behind side-channel attacks, it’s time to examine two
recent attacks that affect virtual machines (and eventually
microkernels).

The articel “Rsa key extraction via low-bandwidth acoustic
cryptanalysis” [1] shows how it is possible to extract the
private key with just a microphone recording in the vicinity
of the computer that does the decryption. It is a form
of acoustic cryptanalysis and to some extend also a power
monitoring attack. The power consumption is the main
factor of the acoustics that result in leaking the private key.

One interesting attack scenario shown in [1] is “self-eaves-
dropping”. With “self-eavesdropping”, the attacking applica-
tion is listening to the device that it is running on. The goal
is to obtain the private key of another application running
on the same device.

Self-eavesdropping can be used on virtual machines and
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microkernels. The only privilege that a process needs is
access to the microphone. Because both attacker and victim
are running on the same device, there is no time constraint
to the execution of the attack. If decryption and encryption
is provided by a service process in a microkernel, it is also
possible that the attacker listens on the microphone while
sending chosen ciphertexts to the decryption service.

What can be learned from this attack? The microphone
should be considered as a security critical hardware and as
such should only be accessible by trusted processes. Other
than that, there probably isn’t much a kernel can do to
prevent the attack. Countermeasures must be implemented
at the algorithm level of cryptographic software.

The second article “Cross-VM side channels and their use
to extract private keys” details an “access driven” attack
running inside a virtual machine, targeting another virtual
machine running in parallel. The attack is targeted at a
specific version of GnuPG and the Xen hypervisor. The
attack works by allocating a continuous segment of mem-
ory and accessing that memory in a specific pattern to fill
the processor cache lines. Observing timings, the attacking
process can figure out which cache lines were evicted. This
information is then used to gain knowledge from the GnuPG
process.

Apart from the specific targeting of a cryptographic software
and hypervisor, this attack might also work in a microkernel
environment. The attack doesn’t need any special privileges.
It just needs a virtual machine (or microkernel process)
running on the same machine as the other virtual machines
or processes. In a hypothetical attack, this could be used to
extract keys in a cloud based virtualization scenario.

The cross vm side-channel attack, conducted by Zhang, et
al. [6] is the first published (so called) “access-driven” attack
that is accurate enough to extract data that can be used to
reconstruct a private key.

The attacking virtual machine measures level 1 cache tim-
ings in a so-called “prime-probe protocol” where continuous
memory pages are allocated and divided into blocks each
corresponding to a cache line. Issuing jump instructions to
each page forces the addresses into the cache.

Depending on the instructions that the victim executes,
some of the cache lines are replaced. Once the attacker is
rescheduled, the time to access each allocated page changes,
which in turn can be used to determine which instructions
were executed.

There were several obstacles that the authors faced:

• The Xen hypervisor periodically reschedules virtual
CPUs (VCPUs) to different physical CPUs (PCPUs).

• Processes or VMs other than the victim might be sched-
uled to execute.

• “Noise” introduced by task switches, other VMs, etc.

The authors found ways to circumvent or diminish those

problems. The Xen hypervisor has a high priority for so-
called Interprocess Interrupts (IPIs). A second VM effectively
spams the attack process with IPIs, with the effect that Xen
preempts the victim and schedules the attacker. This allows
the attacker the frequent measurement of the cache timings.

The authors chose a support vector machine (SVM) to clas-
sify the cache timings. The SVM was trained with a carefully
crafted environment that mirrored the targeted attack sce-
nario.

The SVM output was further filtered using a hidden markov
model. In the end, the private key fragments from the hidden
markov model were stitched together with custom algorithms
based on those that are used to reconstruct DNA data.

After the stitching process, the amount of uncertain bits
was low enough to allow a brute-force attack to reveal the
missing bits. According to the authors, the search space was
only 9,832 keys.

While the attack was targeted specifically at Xen and GnuPG,
the basic principle can be applied to various systems and
software. Zhang, et al. suggest some countermeasures to
avoid this kind of side-channel attack, none of which are new:

• Avoiding co-residency. Use a dedicated computer for
high-security tasks, isolated from other tasks.

• Use side-channel resistant algorithms.

• Core scheduling. Sacrifice low latency scheduling for
improved security.

What can we learn from this attack? How does it relate
to microkernels? Even though the attack is targeted at a
virtual machine / cloud environment, it could be applied to
a microkernel environment.

Many microkernels might still be running in a single-core set-
ting. This mostly eliminates the need to manipulate process
scheduling. Compared to a virtualized cloud environment, a
modern microkernel probably pollutes the L1 cache much less
when switching tasks, which makes the timing measurements
more accurate.

One solution might be to flush the cache on each context
switch, at the cost of a performance. Instead, security critical
services could be tagged as such. The microkernel only flushes
the cache when a context switch occurs to or from such a
critical process. The countermeasures suggested in [6] also
apply.

5. CONCLUSION
There are many side-channel attacks that can be used to
attack computer systems. Many of them apply to microker-
nels as well as every other type of kernel. Some might be
mitigated by kernel-level measures, such as flushing the cache
or restricting access to resources such as the microphone. For
other attacks, it is probably best to fix the security critical
software, that is the crypto-algorithms.
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