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Microkernel

• Minimize the kernel part of the system  

• More modularity, flexibility, reliability and trustworthiness.  

• Implement the smallest set of functionality 
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User-Level Scheduling

• Export scheduling policies form the kernel 

• Makes the system more generic and flexible  

• Allows to implement different scheduling policies without  any kernel code adjustment 

• Allows to build environments with different scheduling requirements
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CPU Inheritance Scheduling

• Processor scheduling framework 

• by Bryan Ford and Sai Susarla  

• Idee: 

• Applications & OS can implement customize local scheduling policies 

• Threads donate CPU to others threads 

• Threads can act as schedulers for other threads  

• Hierarchy of schedulers
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CPU Inheritance Scheduling

• Export scheduler from kernel to the user level.  

• Dispatcher stays in kernel space
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CPU Inheritance: Threads

• Root scheduler thread 

• owns real CPU time  

• donates its available time to other threads  

• one root scheduler thread for each real CPU  

• Client thread  

• inherits some CPU resources 

• Scheduler thread  

• a client thread 

• has its own clients  

• spends most of its time to donates own CPU resources
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CPU Inheritance: Threads

• Logical hierarchy of schedulers  

• Each root and scheduler thread can 
implement different scheduling 
policies 

• Root scheduler of a CPU determines 
the base scheduler policy for the 
assigned CPU
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CPU Inheritance: Requesting CPU Time 

• No thread can run unless another thread donates some CPU resources to it  

• except the root scheduler thread 

• Thread becomes state ready 

• Dispatcher notifies the scheduler thread 

• Several handling options 

• scheduler thread has some CPU time 

• scheduler thread already donating its CPU time  

• scheduler thread doesn’t have any CPU time left  

• scheduler thread actually preempted
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CPU Inheritance: Requesting CPU Time 

• Scheduler thread has some CPU time 

• scheduler thread donates CPU time to client 

• Scheduler thread actually preempted 

• event is irrelevant for scheduling at this moment  

• the dispatcher resumes the currently running thread
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CPU Inheritance: Requesting CPU Time 

• Scheduler thread already donating its CPU time  

• currently running thread will be preempted  

• control is given back to scheduler
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CPU Inheritance: Requesting CPU Time 

• Scheduler thread doesn’t have any CPU time left  

• scheduler notifies responsible scheduler  

• leads to a chain where different scheduler threads are woken up
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CPU Inheritance: Relinquishing the CPU

• Running thread may block to wait for an event 

• Dispatcher returns control of the CPU to its scheduler thread  

• Scheduler has choice 

• donates CPU time to another thread 

• returns control of the CPU to its scheduler
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CPU Inheritance: Donation CPU

• Blocked thread donates the rest of its CPU time to another thread  

• If an event occurs 

• donation ends  

• CPU is passed to the donator thread 

• Possibility to inherit CPU time from more than one source
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CPU Inheritance: Priority Inheritance

• High-priority thread is blocked while waiting on a resource that a lower-priority thread 
holds 

• Solution: thread that holds the resource inherits the priority of the blocked thread
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CPU Inheritance: Overhead

• Dispatcher costs 

• specifying the thread to switch after an occurred event 

• iteration through trees 

• Context switch costs 

• additional context switches 

• heavily differs from system to system
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Scheduling Hierarchy Depth Dispatcher Time (µs)

Root scheduling only 8.0
2-level scheduling 11.2
3-level scheduling 14.0
4-level scheduling 16.2
8-level scheduling 24.4

Table 1: Dispatching const [4]

4.2 Avalanche Effect
While in the implementation it is possible that a single
thread inherits CPU time from more than one source at
a given time, it can happen that consumption of CPU time
from multiple donators will produce an ”avalanche e↵ect”
[4]. In this case every time a thread is preempted or woken
the dispatcher sends multiple scheduling requests at once to
donator threads and each produces more scheduling requests
by wake up intermediate-level schedulers. But in practice it
is unusual that a thread inherits from more than one or two
di↵erent threads at once.

Also a high depth of the scheduling hierarchy structure can
cause a large number of requests. But as already described,
there is no need to support an unlimited depth in practice.

5. CONCLUSION
In this paper the concept of CPU inheritance scheduling as
one possible solution for user-level scheduling was shown.
This solution allows to implement di↵erent scheduling poli-
cies for applications in a single system. In comparison to the
traditional approaches CPU inheritance brings two source of
overhead: dispatcher and context switch. The reduction of
the scheduling hierarchy depth should minimize dispatcher
overhead and the system remains su�cient for all practical
purposes. And since the scheduler threads run in the same
address space so the context switches is cheap. Therefore the
CPU inheritance scheduling allows to implement user-level
scheduling with low overhead in comparison to traditional
approaches.
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CPU Inheritance: Problems

• Avalanche Effect 

• consumption of CPU time from multiple donators  

• High depth of the scheduling hierarchy  

• can cause a large number of requests 

• CPU accounting  

• scheduler threads use virtual time
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Conclusion

• Allows to implement different scheduling policies  

• Has low overhead  

• context switch costs are low 

• limited depth of the scheduling hierarchy 

• Some optimizations are needed 
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Questions
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