
User-level CPU Inheritance Scheduling

Sergej Bomke

6.08.2015

Microkernel

• Minimize the kernel part of the system

• More modularity, flexibility, reliability and trustworthiness.

• Implement the smallest set of functionality

2Sergej Bomke WAMOS2015

…

Device drivers

Hardware

Scheduler, dispatcher

Virtual memory

File system

IPC

Applications

Hardware

Scheduler, dispatcher

Virtual memory

IPC

Applications ServerDevice
Driver

IPC

User
Space

Kernel
Space

Systemcall

User-Level Scheduling

• Export scheduling policies form the kernel

• Makes the system more generic and flexible

• Allows to implement different scheduling policies without any kernel code adjustment

• Allows to build environments with different scheduling requirements

3Sergej Bomke WAMOS2015

CPU Inheritance Scheduling

• Processor scheduling framework

• by Bryan Ford and Sai Susarla

• Idee:

• Applications & OS can implement customize local scheduling policies

• Threads donate CPU to others threads

• Threads can act as schedulers for other threads

• Hierarchy of schedulers

4Sergej Bomke WAMOS2015

CPU Inheritance Scheduling

• Export scheduler from kernel to the user level.

• Dispatcher stays in kernel space

5Sergej Bomke WAMOS2015

Hardware

Dispatcher

Virtual memory

IPC

Applications ServerDevice
Driver Scheduler

User Space

Kernel Space

CPU Inheritance: Threads

• Root scheduler thread

• owns real CPU time

• donates its available time to other threads

• one root scheduler thread for each real CPU

• Client thread

• inherits some CPU resources

• Scheduler thread

• a client thread

• has its own clients

• spends most of its time to donates own CPU resources

6Sergej Bomke WAMOS2015

CPU Inheritance: Threads

• Logical hierarchy of schedulers

• Each root and scheduler thread can
implement different scheduling
policies

• Root scheduler of a CPU determines
the base scheduler policy for the
assigned CPU

7Sergej Bomke WAMOS2015

CPU 0

CPU 1

Root Scheduler
(real-time fixed-

priority
RR scheduler)

Scheduler
Server

Server 1

Waiting
thread

port

Server 2

Root Scheduler
(lotery scheduler)

Scheduler Thread
(FIFO scheduler)

Scheduler Thread
(BSD scheduler)

Scheduler Thread
(RR scheduler)

Scheduler Thread
(BSD scheduler)

Thread

Thread

Real-Time
Threads

Threads

Scheduler Thread
(FIFO scheduler)

CPU Inheritance: Requesting CPU Time

• No thread can run unless another thread donates some CPU resources to it

• except the root scheduler thread

• Thread becomes state ready

• Dispatcher notifies the scheduler thread

• Several handling options

• scheduler thread has some CPU time

• scheduler thread already donating its CPU time

• scheduler thread doesn’t have any CPU time left

• scheduler thread actually preempted

8Sergej Bomke WAMOS2015

CPU Inheritance: Requesting CPU Time

• Scheduler thread has some CPU time

• scheduler thread donates CPU time to client

• Scheduler thread actually preempted

• event is irrelevant for scheduling at this moment

• the dispatcher resumes the currently running thread

9Sergej Bomke WAMOS2015

CPU S0 T0Reques

T1

CPU S0 T0

T1

CPU Inheritance: Requesting CPU Time

• Scheduler thread already donating its CPU time

• currently running thread will be preempted

• control is given back to scheduler

10Sergej Bomke WAMOS2015

CPU S0 T0Reques

T1

CPU S0 T0

T1

CPU Inheritance: Requesting CPU Time

• Scheduler thread doesn’t have any CPU time left

• scheduler notifies responsible scheduler

• leads to a chain where different scheduler threads are woken up

11Sergej Bomke WAMOS2015

CPU S0

S1 S2

T0

T1T2

T3RequestRequestReques

CPU Inheritance: Relinquishing the CPU

• Running thread may block to wait for an event

• Dispatcher returns control of the CPU to its scheduler thread

• Scheduler has choice

• donates CPU time to another thread

• returns control of the CPU to its scheduler

12Sergej Bomke WAMOS2015

CPU Inheritance: Donation CPU

• Blocked thread donates the rest of its CPU time to another thread

• If an event occurs

• donation ends

• CPU is passed to the donator thread

• Possibility to inherit CPU time from more than one source

13Sergej Bomke WAMOS2015

CPU Inheritance: Priority Inheritance

• High-priority thread is blocked while waiting on a resource that a lower-priority thread
holds

• Solution: thread that holds the resource inherits the priority of the blocked thread

14Sergej Bomke WAMOS2015

resource lock

preemt block

preemt

release done

T0

T1

T2

blocks

resource lock

preemt

priority of T0

block release
done

T0

T1

T2

done

CPU Inheritance: Overhead

• Dispatcher costs

• specifying the thread to switch after an occurred event

• iteration through trees

• Context switch costs

• additional context switches

• heavily differs from system to system

15Sergej Bomke WAMOS2015

Scheduling Hierarchy Depth Dispatcher Time (µs)

Root scheduling only 8.0
2-level scheduling 11.2
3-level scheduling 14.0
4-level scheduling 16.2
8-level scheduling 24.4

Table 1: Dispatching const [4]

4.2 Avalanche Effect
While in the implementation it is possible that a single
thread inherits CPU time from more than one source at
a given time, it can happen that consumption of CPU time
from multiple donators will produce an ”avalanche e↵ect”
[4]. In this case every time a thread is preempted or woken
the dispatcher sends multiple scheduling requests at once to
donator threads and each produces more scheduling requests
by wake up intermediate-level schedulers. But in practice it
is unusual that a thread inherits from more than one or two
di↵erent threads at once.

Also a high depth of the scheduling hierarchy structure can
cause a large number of requests. But as already described,
there is no need to support an unlimited depth in practice.

5. CONCLUSION
In this paper the concept of CPU inheritance scheduling as
one possible solution for user-level scheduling was shown.
This solution allows to implement di↵erent scheduling poli-
cies for applications in a single system. In comparison to the
traditional approaches CPU inheritance brings two source of
overhead: dispatcher and context switch. The reduction of
the scheduling hierarchy depth should minimize dispatcher
overhead and the system remains su�cient for all practical
purposes. And since the scheduler threads run in the same
address space so the context switches is cheap. Therefore the
CPU inheritance scheduling allows to implement user-level
scheduling with low overhead in comparison to traditional
approaches.

6. REFERENCES
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler activations: E↵ective kernel
support for the user-level management of parallelism.
ACM Trans. Comput. Syst., 10(1):53–79, Feb. 1992.

[2] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn,
O. Krieger, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. Scheduling in k42. White
Paper, Aug, 2002.

[3] D. L. Black. Scheduling and resource management
techniques for multiprocessors. PhD thesis, Citeseer,
1990.

[4] B. Ford and S. Susarla. Cpu inheritance scheduling. In
Proceedings of the Second USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’96, pages 91–105, New York, NY, USA, 1996. ACM.

[5] E. A. Lee and S. A. Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Lee and
Seshia, 2011.

[6] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos. First-class user-level threads. SIGOPS Oper.

Syst. Rev., 25(5):110–121, Sept. 1991.
[7] NICTA-National Information and Communications

Technology Australia. seL4 Reference Manual, April
2015.

[8] J. Stoess. Towards e↵ective user-controlled scheduling
for microkernel-based systems. SIGOPS Oper. Syst.
Rev., 41(4):59–68, July 2007.

CPU Inheritance: Problems

• Avalanche Effect

• consumption of CPU time from multiple donators

• High depth of the scheduling hierarchy

• can cause a large number of requests

• CPU accounting

• scheduler threads use virtual time

16Sergej Bomke WAMOS2015

Conclusion

• Allows to implement different scheduling policies

• Has low overhead

• context switch costs are low

• limited depth of the scheduling hierarchy

• Some optimizations are needed

17Sergej Bomke WAMOS2015

Questions

18Sergej Bomke WAMOS2015

