
Solution approaches towards verified µ-Kernel

Danny Ziesche

August 25, 2017

RheinMain University of Applied Sciences



Outline

Motivation

Methods

Definitions

Results

Conclusions

Open Questions

1



Motivation



Motivation

• kernels should have a high reliability

• in comparison to monolithic kernels small enough to

make verification process worthwhile

• trusted codebase

• security concerns

2



Methods



Dig into the past

• search for (partly) verified µ-Kernel

• research which parts are verified and why

• how does the verification process work

• compare verifications

3



Dig into the past

• search for (partly) verified µ-Kernel

• research which parts are verified and why

• how does the verification process work

• compare verifications

3



Dig into the past

• search for (partly) verified µ-Kernel

• research which parts are verified and why

• how does the verification process work

• compare verifications

3



Dig into the past

• search for (partly) verified µ-Kernel

• research which parts are verified and why

• how does the verification process work

• compare verifications

3



Learn about formal methods

• firm understanding about the fundamentals

• used methods by the µ-kernel?

• do we benefit from it?

4



Learn about formal methods

• firm understanding about the fundamentals

• used methods by the µ-kernel?

• do we benefit from it?

4



Learn about formal methods

• firm understanding about the fundamentals

• used methods by the µ-kernel?

• do we benefit from it?

4



Definitions



Theorem Prover

• assist in formalising proofs

• no automated process

• human guidance and skill needed

• example theorem prover is isabelle with resolution based

on higher-order unification

5



Theorem Prover

• assist in formalising proofs

• no automated process

• human guidance and skill needed

• example theorem prover is isabelle with resolution based

on higher-order unification

5



Theorem Prover

• assist in formalising proofs

• no automated process

• human guidance and skill needed

• example theorem prover is isabelle with resolution based

on higher-order unification

5



Theorem Prover

• assist in formalising proofs

• no automated process

• human guidance and skill needed

• example theorem prover is isabelle with resolution based

on higher-order unification

5



Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually

6



Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually

6



Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually

6



Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually

6



Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually

6



Model Checkers

• let M be a state-transition graph

• let f be a formula of temporal logic

• find all states s of M such that s |= f

7



Model Checkers

• let M be a state-transition graph

• let f be a formula of temporal logic

• find all states s of M such that s |= f

7



Model Checkers

• let M be a state-transition graph

• let f be a formula of temporal logic

• find all states s of M such that s |= f

7



Results



RUBIS

• verified only the IPC

8



RUBIS IPC

Task 1 Task 2

Task 4 Task 3

Asynchronous

Asynchronous

Synchronous

Synchronous

Processor 1 Processor 2

Figure 1: RUBIS Mixed Synchronous and Asynchronous

Communication

9



LTL Property Example

�(P(0) → Q(0) ∧ (P(1) → Q(1)) ∧ . . . ∧ (P(m) → Q(m)))

• ports need sound state before reusing

• property expressed as LTL

• P(p) = (Port_State[p] = CREATED)

• Q(p) = (empty(Port[p].messages))

• also expressed as promela definition

10



RUBIS Results

• lots of errors related to return codes

• memory management errors

11



Fluke

• verified only the IPC

• IPC is important and highly concurrent with a complex

implementation

• makes it worthy target for formal methods

12



Fluke

• verified only the IPC

• IPC is important and highly concurrent with a complex

implementation

• makes it worthy target for formal methods

12



Fluke

• verified only the IPC

• IPC is important and highly concurrent with a complex

implementation

• makes it worthy target for formal methods

12



Fluke Formal Methods

• uses spin

• uses subset of C

13



Fluke Results

• found mutex bugs

• found race condition

• scaling problems

• maintenance problems

14



Fluke Results

• found mutex bugs

• found race condition

• scaling problems

• maintenance problems

14



Fluke Results

• found mutex bugs

• found race condition

• scaling problems

• maintenance problems

14



Fluke Results

• found mutex bugs

• found race condition

• scaling problems

• maintenance problems

14



seL4

• interactive machine-assisted and machine-checked proof

• proven over 150 invariants

• discovered about 140 bugs

• revealed 150 problems within the specification

• uses theorem prover isabelle/hol

• tries to offload problematic code to userspace (memory

management)

• executable specification in haskell subset

• implementation in a C subset

15



Refinement Layers

Figure 2: Refinement layers in the verification of seL4

16



seL4 Results

• claims to have no nullpointer access (the kernel itself)

• functional correctness for the c kernel implementation

• proof maintenance

17



Conclusions



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification

18



Open Questions



Languages

• languages with built-in mechanisms for formal verification

• languages which are designed to make verification easier

• verification of compilers

19



Famous Quote

”Beware of bugs in the above code; I have only proved it

correct, not tried it.“

— Donald E. Knuth

20



Questions?

20


	Motivation
	Methods
	Definitions
	Results
	Conclusions
	Open Questions

