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Motivation



Motivation

• kernels should have a high reliability

• in comparison to monolithic kernels small enough to

make verification process worthwhile

• trusted codebase

• security concerns
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Methods



Dig into the past

• search for (partly) verified µ-Kernel

• research which parts are verified and why

• how does the verification process work

• compare verifications
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Learn about formal methods

• firm understanding about the fundamentals

• used methods by the µ-kernel?

• do we benefit from it?
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Definitions



Theorem Prover

• assist in formalising proofs

• no automated process

• human guidance and skill needed

• example theorem prover is isabelle with resolution based

on higher-order unification
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Linear Temporal Logic

• temporal reasoning

• derived from FOPL with new temporal operators:

• � Always

• © Next

• ♦ Eventually
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Model Checkers

• let M be a state-transition graph

• let f be a formula of temporal logic

• find all states s of M such that s |= f
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Results



RUBIS

• verified only the IPC
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RUBIS IPC

Task 1 Task 2

Task 4 Task 3

Asynchronous

Asynchronous

Synchronous

Synchronous

Processor 1 Processor 2

Figure 1: RUBIS Mixed Synchronous and Asynchronous

Communication
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LTL Property Example

�(P(0) → Q(0) ∧ (P(1) → Q(1)) ∧ . . . ∧ (P(m) → Q(m)))

• ports need sound state before reusing

• property expressed as LTL

• P(p) = (Port_State[p] = CREATED)

• Q(p) = (empty(Port[p].messages))

• also expressed as promela definition
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RUBIS Results

• lots of errors related to return codes

• memory management errors
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Fluke

• verified only the IPC

• IPC is important and highly concurrent with a complex

implementation

• makes it worthy target for formal methods
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Fluke Formal Methods

• uses spin

• uses subset of C
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Fluke Results

• found mutex bugs

• found race condition

• scaling problems

• maintenance problems
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seL4

• interactive machine-assisted and machine-checked proof

• proven over 150 invariants

• discovered about 140 bugs

• revealed 150 problems within the specification

• uses theorem prover isabelle/hol

• tries to offload problematic code to userspace (memory

management)

• executable specification in haskell subset

• implementation in a C subset
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Refinement Layers

Figure 2: Refinement layers in the verification of seL4
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seL4 Results

• claims to have no nullpointer access (the kernel itself)

• functional correctness for the c kernel implementation

• proof maintenance

17



Conclusions



Conclusions

• IPC is obviously an important component for µ-kernel

• IPC is a high candidate for verification

• agreement on a subset of standard language

• existing code proven with model checker

• model checker have a short learning curve

• non-existing code proven with theorem prover

• in my estimation seL4 did the most and best job so far

• ⇒ seems to be a general pattern to µ-kernel verification
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Open Questions



Languages

• languages with built-in mechanisms for formal verification

• languages which are designed to make verification easier

• verification of compilers
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Famous Quote

”Beware of bugs in the above code; I have only proved it

correct, not tried it.“

— Donald E. Knuth
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Questions?
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