5. Übungsblatt

1. In dieser Aufgabe wird ein neuer Operator \diamond für Mengen eingeführt. Seien A und Bdazu Mengen und

$$A \diamond B = \overline{A \cap B}$$

Verwenden Sie die Ihnen bekannten Gesetze für das Rechnen mit Mengen, um die folgenden Eigenschaften zu belegen:

- i) $A \diamond A = \overline{A}$
- ii) $(A \diamond A) \diamond (B \diamond B) = A \cup B$
- iii) $(A \diamond B) \diamond (A \diamond B) = A \cap B$
- 2. Seien A und B endliche Mengen, dann gilt der folgende Zusammenhang

$$\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$$

Dieser Zusammenhang ist als Prinzip von Inklusion-Exklusion bekannt.

- i) Benutzen Sie nun das Prinzip von Inklusion-Exklusion. Eine hessische Hochschule bietet genau die zwei Vorlesungen "OOP" und "Diskrete Strukturen" im ersten Semester an. Sei $A = \{\text{Informatikstudenten die OOP besuchen}\}$ und $B = \{\text{Informatikstudenten die Diskrete Strukturen besuchen}\}$. Wir wissen #A = 65, #B = 85 und 15 Studenten hören beide Vorlesungen. Wieviele Studenten sind mindestens eingeschrieben?
- ii) Benutzen Sie nun ein geeignetes Venn-Diagramm, um die Richtigkeit des Prinzips von Inklusion-Exklusion zu belegen.

Hinweis: Zählen Sie die Mächtigkeiten der beteiligten Teilmengen!

- 3. Gegeben sind die Mengen $A = \{\alpha, \beta\}$ und $B = \{\Gamma, \Sigma, \Psi\}$.
 - i) Geben Sie die kartesischen Produkte $A \times B, \, B \times A$ und $B \times B$ vollständig an.
 - ii) Wieviele Elemente sind in den Mengen $A \times A$ und $A \times A \times A$ enthalten. Verallgemeinern Sie Ihr Argument und geben Sie an, wieviele Elemente in A^t enthalten sind, wenn t > 0.

Besprechnung und Vorrechnen in den Übungen ab der KW 46 vom 12. November 2012 bis zum 16. November 2012