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Abstract

Dense vectorial word representations trained on large text corpora encode se-
mantic relatedness into a spatial property. Recent work has utilised this infor-
mation to implement a similarity measure for documents: theWordMovers Dis-
tance (WMD) which formulates a transport problem based on these word vec-
tors. However, the necessary pairwise term comparison of float embeddings
is time consuming. The Relaxed Word Moving Distance (RWMD) lifts some of
the tight constraints of the WMD to speed up the calculation. In this work a
method for a fast calculation of document similarities based on the RWMD is
developed: the Relaxed Hamming Word Movers Distance (RHWMD). Instead of
calculating the spatial distance between word vectors in real-valued Euclidean
space, theHammingdistancebetweenbinary hash representationsof these vec-
tors is used. These binary hashes are obtained by training a neural auto-encoder
networkon theembeddings. Theencoder-decoderproduceswell suitedapprox-
imations of the original embeddings and retains the spatial characteristics of the
embeddings to one another. The RHWMD is evaluated on a German information
retrieval data set and outperforms the de-facto standard Okapi BM25 for cor-
pus subsets with less than 100k documents. The method also surpasses Term
Frequency-Inverse Document Frequency (TF-IDF) and the WMD. When used in
combinationwithBM25 for fast pre-selectionand subsequent re-rankingatmost
baseline performance is achieved. The computation gains a 20-fold speedup in-
crease over WMD standard implementations. This first proof of concept shows
the potential of the approach for retrieval and clustering.
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Chapter 1

Preface

The riseof informationandcommunications technology in the20thcentury trans-
formed many societies, businesses and research in such way that information
is now one if not even the central resource. Whole businesses, such as Alpha-
bet, IBM, Oracle, SAP (to name only some of the largest) are primarily concerned
with aggregating, filtering andprocessing information. Themost successful tech
companies apart from hardware manufacturers are those who offer services or
products working with information. As hardware became more and more ef-
ficient and cheap, data even in large quantities could be stored and searched
at any time. The manifestation of the Internet in the late 20st century offered
everyone the possibility to become a content creator themselves and thus the
amount of produced content grows at amuch larger rate than can be conceived
by any person or even indexing system. Now people, businesses, governments
andeven technical devicesproduce, store and retrieve information continuously
using this infrastructure.

The amount of this data — be it text, images, video, audio or others — is
hard to conceive. Google claims to have answered 1.2 ∗ 1012 text search queries
in 2012 [74]. Information Retrieval (IR) systems are devised for searching and
sorting through the data heaps. The most successful ones are those who are
best in selecting the most relevant documents and sorting them by their rele-
vancy such that the needs of the user are satisfied. This, however, is a very dif-
ficult task with much research dating back to the very beginning of digitisation
[40, 2, 5, 60]. The challenges include handling vast amounts of raw and at best
only semi-structured data, the continuous addition of new data and of course
devising a relevance scoring function itself. Computers are inherently good for
processing statistical data but for a high quality text search it is often necessary
to include knowledge about semantics in regards to content. Processing and
analysing such textual content is the actively researched area of Natural Lan-
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Figure 1.1: Illustration of determining the similarity of two documents (blue and grey) if
their words are mapped into a space where their spatial distance encodes similarity. If
the distance that each word needs to travel is small, both documents are very similar.

guage Processing (NLP). For businesses this becomes a critical part of operation
as unused information is lost business value and might set them back against
their competitors - regardless whether they offer the information as a service or
use it internally to improve their production.

To efficiently process unstructured text many systems have been devised.
One current approach is to embedwords in a vector space [1, 55, 4, 52, 42]. These
term embeddings can be used to determine the semantic similarity between
word pairs by calculating their spatial distance. An IR system can work with
these vectors by calculating the respective differences between all the words
of a query and the candidate documents [35]. This, however, can not be done
for large document collections because calculating all the distances is computa-
tionally too expensive. It also does not scale well when increasing the amount
of candidate documents.

1.1 Motivation

This work introduces a novel relevance scoring function utilising both statisti-
cal data describing the distribution of words over documents and the term em-
beddings obtained using deep learningmethodologies. This ismotivated by the
quite recent advances in research regarding the formerly addressed high qual-
ity word representations that are able to capture and encode semantics learned
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from the domain they were trained on. With the new word embeddings there
is much pioneering work done and many (most notably deep learning related)
results are very promising. Calculations are computationally expensive because
the embeddings are dense real-valued vectors in high-dimensional1 Euclidean
space. This challenge is addressed in this work by transforming the real-valued
vectors into binary hash codes to enable a faster distance computation.

1.2 Overview

Thereare twomajor challenges concerning thedevised system: First theproduc-
tion of binary hash codes for words and secondly the implementation of these
codes for a practical search system: Therefore, the heart of this thesis concerns
these two topics:

1) TheNeural Embedding Compressor: In Chapter 3 the transformation of the
Euclideanembeddingspace toHammingspacebyuseofaneural auto-encoder
model is discussed in detail. After the formal definition a series of experi-
ments is conducted using different parameter configurations to assess the
models’ ability to reconstruct theembeddingvectors. The focus is thenonus-
ing themodel to transform real-valued vectors into binary hash codes for fast
Hamming distance calculations between words. The chapter concludes with
observations regarding thequality of the codes’ nearest neighbours basedon
the Hamming distance.

2) Information Retrieval: Obtaining good nearest neighbours is the premise
onwhich the subsequent Chapter 4 is built upon. Theword pair distances are
used in conjunction with statistical data regarding word distributions as the
fundamental building blocks to implement a fast document similarity mea-
sure: the Relaxed Hamming Word Movers Distance (RHWMD). A procedure is
defined which utilises the hash codes to calculate a similarity score between
documents. To use the RHWMD, a search system called the Ungol Index is
implemented. The Ungol Index is used for ranking documents in a German
information retrieval task. It is studied whether the original desired spatial
properties of the original word embeddings are retained, if the novel scoring
function is able to rank documents with high quality and whether utilising
the Hamming distance offers the desired computational speed-up. Finally,
the ranking performance of the RHWMD is compared to theWordMovers Dis-
tance (WMD), Best-Match 25 (BM25) and Term Frequency-Inverse Document
Frequency (TF-IDF).
1Usually around 300 dimensions.
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Figure 1.2: This is a high level overviewof the system implemented in thiswork. Theneu-
ral embedding compressor is used to produce binary files containing the hash codes.
The Ungol Index is constructed for a free document collection by mapping the docu-
ments’ contents to the hash codes. The search uses the index and the RHWMD for the
evaluation of the ranking quality.

The following Chapter 2 compiles the theoretical foundation on which the
systems’ implementation is built upon. Additionally, related works and refer-
ences for further reading are provided. The findings of Chapters 3 and 4 are dis-
cussed in Chapter 5. Here the strengths and weaknesses of the approach are
reviewed and some attempts for improvement are formulated. The Appendix
compiles data not further analysed or discussed and a lookup table for themost
important Python implementations.

1.3 Notation

Themathematical notationused in the following tries toadhere to theusual con-
ventions: MatricesM are capitalised. Vectors v are bold faced. Matrix multipli-
cation is denoted as A · B or simply AB. A dot product either uses a dot u · v
or is simply abbreviated: uv. For concatenation the operands are simply con-
catenated and written in brackets, e.g. [uv] or [AB]. Sub-scripted characters
Aij are used for addressing and selection. To denote variation, characters are
super-scripted: t′ ̸= t.
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At the very end a glossary not only enumerates abbreviations or technical
terms but also mathematical constants used throughout the whole thesis. This
isdesigned toguide through themany formulasusedwithouthaving to re-define
the constants all the time. This is also helpful to find all other equations which
involve the respective constant.

Examples are given in either English or German. English examples aremeant
as illustrations and are not based on real world data. Wherever examples or ex-
cerpts are given in German, they come from the data used for implementing the
Ungol Index.
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Chapter 2

Essentials

This section presents methods relevant to this thesis, namely various strategies
towards estimating document similarities. Handling text on a computer poses
the fundamental challenge of its representation. For example, character encod-
ing is basically an arbitrary way of defining a table which maps a number to a
symbol. Text is just the concatenation of these numbers and this way of storing
textual data offers no useful information regarding the latent semantic structure
thatmay exist there. Natural LanguageProcessing (NLP) is inherently concerned
with devising ways to unveil the grammatical, lexical and semantic information
hidden in unstructured text. To determine the similarity of documents one ap-
proach is to work with their words as atomic data. Word order is generally not
regarded; at best n-grams of words are considered. Hence, for this work, the re-
lationship of words to one another and the distribution of words over document
collections is very important.

This chapter is designed to provide all the necessary theoretical foundations
for the following chapters. Relevantworks are providedwherever suitable. First,
an introduction to ofmethodsworkingwith Bag ofWords (BOW) vectors, a com-
mon approach for information retrieval, is given. Both Term Frequency-Inverse
Document Frequency (TF-IDF) andBest-Match 25 (BM25) are explained andused
later in Chapter 4 for evaluation. In Section 2.2, approaches for mapping docu-
ments to real-valued vectors are presented. Following in Section 2.3 methods
for the production of word embeddings are presented. Because they are used
in Chapter 3, fastText and Global Vectors for Word Representation (GloVe) are
explained in more detail. This chapter concludes in Section 2.4 with a detailed
description of theWord Movers Distance (WMD). This is the origin of the Relaxed
HammingWordMoversDistance (RHWMD)developed inChapter 4 andalsoused
for evaluation later.
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2.1 Bag of Words

One approach to design a document similarity measure is using Bag of Words
(BOW) encodings. Here the idea is to work with vectors representing a text doc-
ument where each component of the vector stands for a specific token. A doc-
ument is then a (often very) sparse representation with all non-zero elements
having a specificweightwhich expresses the importance of thatword in the doc-
ument. To obtain a measure of similarity, these vectors are compared without
reducing their dimensionality. In case of a search application, this demands for
transforming the query and the candidate documents to these vectors and or-
dering the candidate documents by similarity to the query. An example for such
a term-document matrix was given in Section 2.2.1. This method is very well re-
searchedandused inpopular document database systems such as Elasticsearch
(ES) and Apache Solr [73].

2.1.1 Inverted Indexes

Main focus of this work is the application of such similarity measure to Informa-
tionRetrieval (IR). To search througha large corpus of documents, every attempt
at processing a query linearly on the raw data automatically leads to an unac-
ceptable response time. Thus, for enabling fast searches, a common approach
is to build an inverted index which offers a fast lookup based on terms shared by
the query and candidate documents. Hence, the information retrieval task con-
sists of two distinct phases: First the indexing phase where the inverted index
is built from the document collection and secondly the retrieval phase where,
based on the index, a score is calculated which ranks candidate documents by
the relevance regarding the query. The former phase is further referred to as of-
fline and the latter as online.

Both phases have very different constraints and performance requirements.
The indexing procedure has oftenmuchmore relaxed time constraints. To index
a single document a few seconds is often acceptable. This only poses a problem
if the rate of incomingdocuments exceeds the capacity of the indexer. This prob-
lem is thenusually solvedbybuildingadistributed indexovermultiplemachines
— thus scaling the system horizontally — instead of fundamentally changing the
approach. The online query response however hasmuch higher demands. Here
the system calculates a score for every candidate document and hence, to pro-
vide answers quickly, calculating the score must be fast.

The main goal of an inverted index is to provide a mapping of tokens to doc-
uments and provide metrics for calculating the relevance scores in the online
phase. These tokens are usually preprocessedwords gathered from the indexed
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documents. Given a document collection D containing documents d who are
sets of unique tokens td the index Π : t 7→ {d1, d2, . . . } knows which words
originate from which documents. To use this mapping for a boolean retrieval
task, consider for example a query with three tokens t1 ∨ t2 ∨ ¬t3. The set of
relevant documents is (Π(t1) ∪ Π(t2)) \ Π(t3). Building an effective index is
subject to handling data with greater size than can be loaded into memory, het-
erogeneousdata sourcesandsometimeshighavailability contracts amongother
things. These requirements are not in the scope of this work andmainstream in-
dexer such as Apache Lucene [72] are readily available. Boolean queries can be
useful for pre-selecting candidates for a more fine-grained selection or offering
statistics about a text corpus. The order of tokens is not considered.

2.1.2 Vector Based Scoring

However, boolean retrievals are usually not decent enough for a real world ap-
plication. Consider for example the query “where are the keys to my flat?”. The
boolean retrieval approach can only combine each token by binary ∨ or ∧ and
negate single tokens. This leads to a most likely empty result set for ∧ because
the constraint of having all these tokens in a document might be to tight. For
∨ the exact opposite might happen: As nearly all documents containing English
natural text will contain words such as are, the, etc., the result set will be very
large and uninformative. So two aspects are missing for a successful text re-
trieval: how informative every considered token is and a relevance measure to
sort result sets by.

A simple approach to fulfil both requirements first encodes documents as
BOW and Normalised Bag of Words (NBOW) vectors. Here each document d is
assigned a vector bd = (#t1,#t2, . . . ) ∈ NN of the size of the vocabulary N .
Each element of the vector holds the count of occurrences of the term t in docu-
ment d. TheNBOWnormalises the vector such that each element of the vector is
divided by the total count of tokens of the document and is further denoted as:
bd. The most common approach to have a measure of similarity is to compute
the cosine distance of two documents [40]:

rcos : D ×D 7→ R
rcos(d, d

′) := bd · bd′
(2.1)
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2.1.3 TF-IDF Relevance Scoring

The formula given in Equation (2.1) is the basis for many document similarity
measures who heuristically modify the weights of specific tokens. An approach
for assigning relevance is the TF-IDF measure, first introduced by Sparck Jones
[63] and Jones [29]. Here, each token’s frequency of occurrence both locally for
the candidate document and globally across the whole corpus offers the nec-
essary statistical information to calculate a relevance score. Consider a query
document d and a candidate document d′ each containing a set of tokens.

rtfidf : D ×D 7→ R

rtfidf(d, d
′) :=

∑
t∈d

#td′ · idf(t)

idf(t) := log |D|
|{d ∈ D : t ∈ d}|

(2.2)

The higher the score, themore relevant is the candidate document d′ for the
query d. The Term Frequency (TF), further denoted by #td of token t in docu-
ment d is the normalised Term Count (TC). The term frequency quantifies how
important a term in the scope of the document is regarded. The assumption is
that an important term also occurs more often in the document. This however
does not hold for very generic words such as “the” or “it”. As these terms occur
many times in most English documents, the second part of the product handles
the information content of the token globally. The Inverse Document Frequency
(IDF) of a token is the logarithm of the fraction of the total count of documents
divided by the number of documents the token appears in. This count of doc-
uments for a token is the Document Frequency (DF). Thus for a word contained
in every document of the corpus the information value of that word is log 1 = 0

and if any given word only occurs in one document, the idf value reaches it’s
maximum possible value of log |D|.

2.1.4 Okapi BM25

Building upon the TF-IDF formula in Equation (2.2), the BM25 scoring as part of
the Best-Match family of relevance schemes [54], introduces normalisation and
adds two free parameters k1 and b for domain specific tuning:

14



rBM25 : D ×D 7→ R

rBM25(d, d
′) :=

∑
t∈d

idf(t) · (k1 + 1)#td′
k1((1− b) + bl) + #td′

l := | d′ | /

[
1

|D|
∑
d′′∈D

| d′′ |

] (2.3)

The additional fraction introduces with l the ratio of the considered docu-
ments’ (d′) length to the average lengths of documents in the corpus. The basic
idea is to take into consideration that terms with low frequency in large docu-
ments donot transportmuch information andas suchmust only contribute little
to the relevance score. The two parameters control how the scoring is affected
by the local term frequency and the documents’ length in comparison to the av-
erage document length respectively. Assigning either k1 or b a value of zero, the
whole term becomes 1 and thus only the raw idf values contribute to the score.

k1 serves as a saturation parameter which restrains the contribution of very
frequent terms. For high k1 values, the influence of the l is amplified which in
turn leads to small results when solving the fraction. For small values of k1 the
influence of the documents’ length decreases and high term frequencies con-
tribute higher to the score.

b—chosen in the range of 0 and 1—only concerns the influence of the docu-
ments’ length in comparison to all other documents. The higher b is chosen, the
higher is the denominator in conjunctionwith k1 for large documents. For small
documentsd, the ratio is a valuebetween1/|D|and1,which is also reducedby b.
For large documents high values of b further increase the term value. As k1 con-
trols the influence of long documents locally (without knowledge about other
documents), b controls the influence of abnormally sized documents globally. A
common configuration assigns k1 between 0.5 and 2 and b between 0.3 and 0.9.
This similarity measure is developed heuristically and some efforts have been
made to improve upon this [37, 64, 38]. In general, how these parameters are
set and what kind of pre-processing works best usually depends on the target
domain [66].

2.2 Document Embeddings

A way of encoding semantic information of words is following the so-called Dis-
tributional Hypothesis which states that semantically close words tend to share
the samecontexts [21, 13, 43]. This implies that toautomatically find relatedness
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amongstwords, their immediatewords contexts provide the vital information to
do so. Several approaches exist and map words, paragraphs or documents to
real-valued vectors: the embeddings. One of the most desired properties of the
produced embeddings is their spatial closeness for semantic relatedness. This
means if two terms or two documents are very close concerning their contents,
than the corresponding embedding vectors are also very close in their space.
An example is given in Table 2.1 where the nearest neighbours regarding cosine
similarity of two word embeddings learned with fastText [4] are shown.

2.2.1 Topic Modelling

Some approaches to produce document embeddings, can be subsumed under
the name Topic Modelling. Here a document is viewed as amixture of topics and
the similarity of documents can be determined by comparing their topics. A fun-
damental method is Latent Semantic Analysis (LSA)/Latent Semantic Indexing
(LSI) by Deerwester et al. [10] where amatrix is constructed correlating word to-
kens’ TF or TF-IDF (see Section 2.1.3) to documents. An example for such a TF-
document matrix is given below where eight documents either cover forests or
traffic:



d1 d2 d3 d4 d5 d6 d7 d8

forest 5 1 2 3 1 1 0 0

stag 2 4 6 5 0 0 0 0

. . . . . .

traffic 1 0 0 0 9 3 4 3

car 0 0 1 0 7 1 9 8

. . . . . .

ist 9 8 4 9 3 6 9 9

und 8 5 9 9 5 4 4 9


(2.4)

Noweach document can be represented by a columnof thismatrix and each
words by a row. Working with these high dimensional vectors has several draw-
backs, namely their sparsity and outlier values among others. Thus much effort
is put into smoothing and transforming them into a lower-dimensional spaces.

To create document embeddings, the matrix is decomposed using Singular
Value Decomposition (SVD) which leads to word tokens being summarised to
topicswhich describe a document. The document embedding vectors can than
be compared (e.g. using cosine similarity) to obtain a measure of relatedness
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Gott Satan
Position Word (e2) Distance Word (e2) Distance

1 e1 = gott 0.0000 e1 = satan 0.0000
2 gottes 0.1723 satans 0.2139
3 „gott 0.2215 satana 0.2787
4 göttliche 0.2542 satanic 0.3126
5 göttlich 0.2651 satanas 0.3135

20 gottesvolkes 0.3212 dämon 0.4010
21 jahwe 0.3220 sünder 0.4026
22 jhwh 0.3247 dämonen 0.4030
23 gottesverehrung 0.3252 luzifers 0.4125
24 göttlichem 0.3273 teufels 0.4138

50 verehren 0.3586 darkthrone 0.4458
51 gottebenbildlichkeit 0.3607 teuflischen 0.4470
52 offenbarung 0.3607 slayer 0.4474
53 erlösung 0.3613 azazel 0.4474
54 schöpfung 0.3615 diaboli 0.4488

Table 2.1: Some nearest neighbours determined by cosine distance of the fastText em-
bedding space. The values in the respective Distance column are 1 − cos(ϕ(e1, e2))

where ϕ is the angle between the embeddings of two words.

based on the topics best describing the candidate documents. This concept is
further developed asProbabilistic Latent Semantic Analysis (pLSA)/Probabilistic
Latent Semantic Indexing (pLSI) by Hofmann [23]. Instead of using SVD, a latent
class model which models the probability of word co-occurrence as a mixture
of conditionally independent multinomial distributions is used for the dimen-
sionality reduction. This is taken a step further by Blei et al. [3], Pritchard et al.
[53] with Latent Dirichlet Allocation (LDA)/Latent Dirichlet Indexing (LDI) where
the probabilisticmodel is enriched by the assumption that the topic distribution
follows a Dirichlet prior. The produced document embedding vectors can now
be compared, for example using their cosinedistance, Jensen-Shannondistance
[11, 48, 14] or Hellinger Distance [22].

2.3 Word Embeddings

In the following sections some approaches for the production of word embed-
dings are presented. Most of the explained methods learn word representation
vectorson large text corpora. Thisworksbyoptimisingamachine learningmodel
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such that it maximises the log probability of it correctly predicting a centre word
based on its surrounding context words or vice versa. One of the most famous
approaches isWord2Vec [41, 42] andpresentedhereafter in Section2.3.2. A chal-
lenging part of creating such amodel is the amount of calculations necessary to
tune the models’ weights. The second part of this section explains two meth-
ods which create word embeddings based on global co-occurrence counts: the
Positive Pointwise Mutual Information (PPMI) in Section 2.3.4 and GloVe in Sec-
tion 2.3.5.

2.3.1 History of Neural Word Embeddings

Collobert et al. [7] first proposed a unified neural network model to create in-
termediate word representations. Their main goal was to develop an alterna-
tive to the task specific feature engineering often used for tackling NLP related
problems. The Neural Probabilistic Language Model proposed by Bengio et al.
[1] follows this idea and is improved by TheHierarchical Probabilistic Neural Lan-
guage Model by Morin and Bengio [45] which tackles the scaling problem by not
computing the conditional probability for centre word with the whole vocabu-
lary at once but, following the work of Goodman [18], decomposing words in a
hierarchical set of classes. The probability is then computed by following a path
through the hierarchy to the respective word. Huang et al. [24] combine global
context information provided by the respective document with the local context
surrounding a word and use a ranking approach for scaling based on Collobert
and Weston [6] for training which differs from optimising the log likelihood of
the next word. In the following some more recent approaches will be revised in
greater detail.

2.3.2 Word2Vec

ContinuousBagofWords (CBOW)andSkip-Gram (summarised asWord2Vec) are
two neural network models proposed by Mikolov et al. [41, 42] that are trained
for predicting words in a context window. Given a sequence of word tokens, the
contexts are all sub-sequences of a freely defined but fixedwidth ofw or smaller.
Sequences are clipped on the sentence boundaries. Theword in themidst is de-
noted as centre word, the surrounding words are named context words. CBOW
predicts the centre word based on the sum of the context words, whereas Skip-
Gram predicts the context words of the centre word. More formally, given a vo-
cabulary V = {t1, . . . , tN} of sizeN , a centre word t and a sequence of context
words (t′1, . . . , t

′
w) the goal of Skip-Gram is to maximise the logarithmic proba-

bility of predicting the correct context words:
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arg max
w∑
i=1

logP (t′i|t) (2.5)

Noweachword t is assigned two vectorset, e′
t. TwomatricesX,X ′ ∈ RN×E

contain the vector representations withE denoting the freely chosen word em-
beddingdimensionality. Thusa rowof theembedding spaceet is theembedding
vector of token t. Bothmatrices are initialised randomly. To obtain the final em-
beddings, bothX andX ’ are combined by summation. The conditional proba-
bility P (t′|t) is calculated by applying a softmax on the product of one context
word vector with the centre word for all context word vectors:

P (t′|t) := softmax(et, et′) =
exp(et · eT

t′ )∑N
i=1 exp(et · eT

ti
)

(2.6)

The CBOW model works analogous. However, the computational overhead
for computing the softmax for the whole vocabulary is too big and is reduced by
either implementing a hierarchical softmax [45] or negative sampling [42]. Here
the training using negative sampling is explained: In each training step a cen-
tre word embedding et and the surrounding context word representations et′

are selected. The goal is now to increase the log-probability that the model cor-
rectly predicts the context words. To delimit the correct context words from all
other potential words of the vocabulary, negative samples e′

i are selected ran-
domly using a noise distribution from the embedding space. This is based on
the work of [20, 62]. The noise distribution which is reported to work best is a
unigramdistribution raised to the power of 3/4. A free parameterZ controls the
amount of negative samples. The function σ is a sigmoid used for introducing
non-linearity to the model and mapping the dot products to probability values.
The model is then trained using gradient descent to increase the value of the
following objective:

arg max
X,X′

logσ
(

et · eT
t′

)
+

Z∑
z=1

logσ
(
− e′

z · eT
t

)
(2.7)

2.3.3 FastText

Bojanowski, Grave, Joulin, and Mikolov [4] propose an extension to the Skip-
Gram model. Most methods to produce word embeddings assign each word a
distinct vector. This leads to the problem that for languageswith a richmorphol-
ogymany vectors are assigned tomany words which rarely occur in the training
data. Methods such asWord2Vec have no notion ofwords having different forms
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but the samemeaning. Consider theGermanwordgehen: There aremany forms
andcompoundsof thisword suchasgeh, geht, gehe,Gehstock,ausgehen,aufge-
hen, etc. Each of these words is considered independently in a method such as
Word2Vec. The fastText approach includes sub-word information; i.e. the inter-
nal structure of words represented by their character n-grams; i.e. some suc-
cessive character sub-sequence. Each character n-gram is then embodied by a
vector and the sum of all sub-word character n-gram embeddings is the word
embedding.

Given a word token t and a fixed number n > 0, the words are enclosed by
a special delimiter characters and separated into their character n-grams. Con-
sider for example the German word beispiel, an n-gram size of three and the de-
limiter tokens <, > then the resulting representation looks like this:

GBeispiel =
(
<be, bei, eis, isp, spi, pie, iel, el>, <beispiel>

)
(2.8)

The word itself is added to the n-gram sequence. Note that the character
n-gram bei and the German word <bei> are represented by two different vec-
tors. Now, contrary to Word2Vec, a word is no longer represented by a single
embedding vector et but is constructed from a new embedding matrixX which
contains all embeddings for all encountered character n-grams by summation:
Given a set of character n-gram embeddings zg ∈ X for an n-gram g and Gt a
set of character n-grams for a token t, then:

et :=
∑
g∈Gt

zg (2.9)

One great feature of the model is the ability to create new embeddings on-
the-fly by constructing the new embedding from the sub-word information of
the regarded word. The training is changed such that the model optimises the
new embedding vectors (again using a training based on negative sampling):

arg max
X,X′

logσ
( ∑

g∈Gt

zg · eT
t′

)
+

Z∑
z=1

logσ
(
−
∑
g∈Gt

zg · e′T
z

)
(2.10)

2.3.4 Pointwise Mutual Information

Anotherapproachworkswithaglobal co-occurrencematrix for termsand is called
PPMI [30]. A co-occurrence matrix Q ∈ NN×N is constructed by counting how
many times aword occurs in close proximity to anotherword for a vocabulary of
sizeN . HenceQij denotes howmany times term ti occurs near tj .
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A simple example of such a co-occurencematrix is given in the followingwith
a window size of three. The corpus, in this case, consists of four sentences with
a total of eight unique word tokens:

So the FCC / Wont let me be
Let me beme / So let me see

Using these parameters, the sentence “so let me see” is counting the follow-
ing co-occurrences (a, b), where a is the centre word and b is the co-occurring
neighbour: (so, let), (so, me), (let, so), (let, me), (let, see), (me, so), (me, let), (me,
see), (see, let), (see, me). Doing this for all the four sentences, thematrix element
Qab counts the number of times a relation (a, b) is encountered globally. The
following equation displays the final co-occurrence matrix:



so the fcc wont let me be see
so 0 1 1 0 1 1 0 0

the 1 0 1 0 0 0 0 0

fcc 1 1 0 0 0 0 0 0

wont 0 0 0 0 1 1 0 0

let 1 0 0 1 0 3 2 1

me 1 0 0 1 3 0 3 1

be 0 0 0 0 2 3 0 0

see 0 0 0 0 1 1 0 0


(2.11)

Now, given a term ti anda randomcontext term tj : P (ti)denotes theprobability
that ti occurs in a random local term pair and P (tj) calculates the chance that
tj appears as a context term:

P (ti) :=

∑N
j=1Qij∑N

i′=1,j′=1Qi′j′
P (tj) :=

∑N
i=1Qij∑N

i′=1,j′=1Qi′j′
(2.12)

P (ti, tj) represents the probability that both terms occur in the same context:

P (ti, tj) :=
Qij∑N

i′=1,j′=1Qi′j′
(2.13)

The PPMI is now defined as:

rPPMI(ti, tj) := max
(
0, log2

(
P (ti, tj)

P (ti) · P (tj)

))
(2.14)
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P (ti) · P (tj) ≈ P (ti, tj) applies if the respective probabilities are indepen-
dent which leads to a PPMI score close to zero. If two terms occur many times
in the same context but rarely in other contexts this score is high. Conversely for
very frequent terms the logarithm is negative and clipped. The PPMI calculates
a similarity score based on the co-occurrence of two words. Islam and Inkpen
[27] introduce the Second order co-occurrence PMI which yields high scores for
two words if they often share the same context.

2.3.5 GloVe

Amachine learning approach to compute high-quality word representations us-
ing global co-occurrence counts is called GloVe by Pennington et al. [52]. Here,
instead of sequentially processing word windows, the global co-occurence ma-
trix Q of size N × N is used. based on weighted sub-sequences of the input
word sequences. The columns or rows of this matrix could be used as word rep-
resentations, but as the vocabulary is usually of much larger size sparsity issues
arise when training downstream models. Also the input layers of these mod-
els would be to large to be effectively trained. Apart from that, the matrix is
not very smooth, because some words occur much more frequently than oth-
ers. To tackle this problem, the dimensionality of the vectors must be reduced
while preserving as much encoded information as possible. To do so a model
is trained in an unsupervised manner. The training part consists of minimzing a
least square error of a regression model, given in Equation (2.15).

arg min
N∑

i,j=1

f(Qij) · (eT
i · ej − logQij)

2 (2.15)

The function f : R 7→ R serves to apply a penalty to very frequent words
(such as the, a etc.). The empirically found function used in the original work is
given below (with xmax = 100 and α = 3

4 ):

f(x) :=

{
(x/xmax)

α if x < xmax

1 otherwise
(2.16)

Themodel is trained using gradient descent. In each training step a random
non-zero elementQij is sampled from the co-occurrencematrix. Two randomly
initialised embedding matrices X,X ′ offer corresponding embedding vectors
ei ∈ X and ej ∈ X ′. The optimiser then adjusts the embedding vectors such
that their dot product converges towards the total logarithmic co-occurrence of
the respective tokens (see Equation (2.15)). After training, both matricesX,X ′

are combined by summation.
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In summary, the skip-gram and CBOW models capture co-occurence infor-
mation for each window at a time whilst the GloVe model collects the counts
of the global co-occurence statistics of all words. Both models are heavily used
downstream in a variety of applications of deep learners to NLP.

2.4 Word Movers Distance

Using the formerly described BOWmodels for retrieval tasks proved to be quite
successful. These approaches have some drawbacks however as they always
rely on having a unique representation of a token. Some effort must be put into
preprocessing such that inflections, paraphrases etc. can be distinctly mapped
to a single token. This includes stemming, compound splitting (helpful for Ger-
manic languages) [12], the use of paraphrase databases [15] and the manual
maintenance of synonym lists among others. Beyond this, paraphrasing and
synonyms can not be handled by the BOWmodel.

Consider the following two example sentences:

Document 1:
Bei den Krawallen im Stadion von Dublin wurden 50
Menschen verletzt.

Document 2:
AmMittwoch kam es in Irland bei einem Fußballspiel
zu Ausschreitungen.

The two sentences obviously cover the same topic but paraphrase the con-
tent differently. The human reader is able to correctly associate Krawalle with
Ausschreitungen,Dublinwith IrlandandFußballspielwithStadion. Methodswork-
ingwith term identity such as the formerly presented BM25 struggle to associate
such documents. One way of handling this is using lists of synonyms for words.
This, however, is a very static approach and can only relate words such that they
are equally important for scoring. A different approach to tackle this problem is
presented by Kusner et al. [35] and is called Word Movers Distance (WMD). The
method is based on the EarthMovers Distance (EMD) and itsmanner of function-
ing is presented hereafter.

2.4.1 Document Similarity as a Transport Problem

Based on their training objectives, the word embedding vectors presented in
Section 2.3 try to catch semantic relation through spatial distance. Shorter dis-
tance means closer semantic relation as this distance encodes the observation
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of same or similar contexts. This inspires theWordMovers Distance as an imple-
mentation of the Earth Movers Distance — used for image retrieval tasks — for
text data. The EMD (also known as Wasserstein or Kantorovich-Rubinstein Dis-
tance Metric) tries to formulate how much cost is associated with transforming
one probability distribution into another. The cost, in this case, is the amount of
change required to carry out the transformation. This distance metric was orig-
inally popularised for image retrieval [51, 57, 56]. For these tasks this is usually
applied to the histogramof two images. The cost to transform theonehistogram
into the other is then the distance of the respective images.

This problem of finding the optimal transformation is a transport problem.
This problem is concerned with moving some amount of goods — in this case
a word embedding — from one place to another. Each movement is associated
withacost and the task is to find theoptimal routes such that thecumulative cost
of all movement is minimised. The implementation for the EMD for text docu-
ments based onword embeddings is proposed by Kusner et al. [35] asWMD. The
WMD uses the Euclidean distance of the embedding vectors as the cost. Applied
to two documents and the attempt to formulate a distance measure, each word
of the query document is allowed to be transformed into any other words of the
candidate document in total or in parts. It is auxiliary to think about each word
having an associated mass and this mass has to be segmented in a way that all
mass of the query document is moved such that it fits the candidate document.
Movingmass is associatedwith a cost and the sum of thesemovement costs de-
fines the quality of themovement plan. The bestmovement plan yields then the
quantified distance of the two documents. The formal definition is as follows:

Given each document is encoded as a sparse NBOW vector b ∈ RN for a vo-
cabulary ofN words. This vector is normalised by dividing the frequency of the
word by the total number of tokens of the document. Based on this frequency
information a flow matrix T ∈ RN×N with Ttt′ ≥ 0 is to be found which en-
codes howmuchmass of a word is moved to a corresponding target word. This
flow matrix is constrained by the requirement that the incoming and outgoing
flows must match:

N∑
t

Ttt′ = bt and
N∑
t′

Ttt′ = bt′ (2.17)

Each token t has a corresponding embedding vector et ∈ RN. The cost of
transformingone token t intoacorresponding token t′ is their spatial distance. In
theoriginal paper, the Euclideandistance is used: c(t, t′) = ||et−et′ ||2 . Thus the
transportation problem is solved by finding the flow which reduces the overall
transportation costs:
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Figure 2.1: Illustration of how the transport plan might be solved for two documents
whenusing theRelaxedWordMovingDistance (RWMD) for onedirection. For each token
of the query document (denoted in grey) the nearest neighbours are selected from the
candidate document (blue). The weighted cumulative distance between all these word
embeddings is then the total distance between the two documents.

min
T≥0

N∑
t,t′=1

Ttt′c(t, t
′) subject to Equation (2.17) (2.18)

Finding the optimal transport plan is a difficult task. Pele and Werman [50]
show that the best average time complexity scales O(t3 log t), where t is the
count of unique tokens in the documents. This can not be calculated in an ac-
ceptable amount of time online on standard hardware for large document col-
lections. Even calculating the distances offline while indexing would take too
much time as the number of possible combinations increases with each added
document and thus — even when scaling the infrastructure horizontally — this
will only work for small document collections. Also an inverted index can not be
used and hence all documents have to be scanned linearly.

2.4.2 The RelaxedWord Moving Distance

Solving the whole transportation problem for all candidate documents is com-
putationally too expensive for maintaining sane response times. The problem’s
complexity is to be accounted for by the constraints of the need to match the
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mass of the documents exactly: The mass of a word can be split up and be dis-
tributed over several words of the target document and each mass of a target
wordhas in turn tobedistributable to thesourcewordmasses (seeEquation (2.17)).
Relaxing these constraints leads to a faster solution which is introduced by Kus-
ner et al. [35] as RWMD. There one direction of moving the mass is no longer
a constraint which greatly reduces the computational overhead. The RWMD is a
lower bound to the exactWMDbut still yields comparable results on several clas-
sification tasks. Formally, when removing one of the constraints, two vectors
u = (u1, u2, . . . , uN ) ∈ RN and u′ = (u′1, u

′
2, . . . , u

′
N ) ∈ RN are constructed

containing the weighted distance to each corresponding nearest neighbour:

ut =

{
c(t, t′) · bt if t′ = arg mint′ c(t, t

′)

0 otherwise
(2.19)

u′
t′ =

{
c(t, t′) · bt′ if t = arg mint c(t, t

′)

0 otherwise
(2.20)

Finally the problem is reduced to finding the nearest neighbours for each to-
ken in both directions, weight their distance by the normalised TF and sum all
weighted distances to obtain two scores: one per relaxed constraint. The scores
are then combined by selecting themaximumof these two to obtain the tightest
lower bound:

rRWMD : D ×D

rrwmd(d, d
′) := max

( N∑
t

ut,

N∑
t′

u′
t′

) (2.21)

2.4.3 Word Centroid Distance

Even the sped-up variant of theWMD, theRWMD, is too inefficient to linearly pro-
cess large corpora. Thus another lower bound for pre-selecting candidate docu-
ments is introduced: the Word Centroid Distance (WCD). The authors show that
theWCD is a lower bound to theWMD and thus suitable for a very fast candidate
pre-selection. The drawback however is that this bound is not very tight and
many candidates may be selected. Here, simply the p2-norm of the summed up
and weighted word vectors of the two documents is used as a threshold. More
formally, given a word embedding space X of size N × E and the two NBOW
representations bdbd′ , the WCD is defined as:
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rWCD : D ×D

rWCD(d, d
′) := ||Xbd −Xbd′ ||2 =

∣∣∣∣∣∣∣∣ N∑
t

bdtet −
N∑
t′

bd′t′et′

∣∣∣∣∣∣∣∣
2

(2.22)

The algorithm proposed by the authors for the WMD to obtain the k-nearest
neighbours (K-NN) for a document is to first sort all documents by theirWCD. For
the first k documents theWMD is calculated. Then the remaining documents are
traversed and their much tighter RWMD is calculated. If this bound exceeds the
current k-th neighbours’ distance, it is not regarded. If it falls below this thresh-
old its’ exact WMD is calculated and the list of K-NN is updated. For an approxi-
mate search, not all remaining documents have to be considered.

2.5 Hashing

The following chapter covers how a neural auto-encoder network is trained to
compress word embeddings such that binary hash codes are produced for the
fast retrieval with the RHWMD. A requirement for these hashes is that they pre-
serve the spatial characteristics of the original embeddings such that it allows
fast vector comparisons. This section provides some related works regarding
hashing methods.

Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [26, 16, 9, 33, 34] is an approachwhere the high
dimensional space of the input data is separated into smaller sub-spaces. These
partitions of the space are called buckets and each data point is associated to a
bucket. Thegoalof thismethod is toproducehashcollisions fordatapoints close
to one another in metric space. This is done by assigning a code to the bucket
and adjacent buckets have close codes. The space is separated differently and
independently multiple times. Gionis et al. [16] show that this method leads to
a convergence towards the preservation of locality. A drawback of this approach
is thatmultiple hash tables (per separation) have to be built whichmultiples the
required storage space.
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Spectral Hashing

Weiss et al. [68] define the optimal hash codes. They must adhere to three con-
straints: First, theymustbeeasily computed fornovel input; Secondly, theymust
be as short as possible; Finally, similar itemsmust have similar hash codes. The
authors show that the problemof finding the optimal hash codes for real-valued
data points such that their Hamming distance best approximates the original
spatial distance is NP-hard. Their method, called Spectral Hashing, relaxes the
requirement to find the optimal codes and operates on the input data variance:
First the principle components of the data are identified using Principle Com-
ponent Analysis (PCA) [49]; secondly identifying the smallest eigenvalues along
the principle components axes and thus defining the single-dimension eigen-
functions; and thirdly thresholding these eigenfunctions at zero to obtain binary
codes.

Semantic Hashing

A different approach is proposed by Salakhutdinov and Hinton [59] and called
Semantic Hashing: There histograms of word counts form a probability distribu-
tionandareused to traina stackedRestrictedBoltzmanMachine (RBM) such that
the weights of the RBM model the joint distribution of the word counts and the
trained latent variables. Their approach assumes a conditional Poisson distri-
bution for the word counts and a conditional Bernoulli distribution for the hash
codes. Following the initial training where each RBM is trained independently
using the input of the respective larger RBM there is a fine-tuning step where
the RBM is used as an auto-encoder fine tuned via backpropagation. A similar
approach is pursued for image classification by Salakhutdinov and Hinton [58].
For image retrieval, Morere et al. [44] propose a RBM where alternating Gibbs
sampling is used to approximate the joint distribution. These machine learning
approaches proved to be very successful: Semantic Hashing outperforms LSH
significantly for an IR task [59] and for ImageRetrieval [65] both qualitatively and
regarding speed.

Word2Bits

Spectral Hashing and LSHbuild hash codes basedondata points in a continuous
space. Word vectors as formerly introduced in Section 2.3 are embedded in such
space and can thus be transformed to hash codes by these methods. The for-
mer machine learning approaches, however, expect probability distributions as
input. For text NBOW vectors are used to create hash codes representing whole
documents. Thismeans that thosemethodsareadifferent approach to solve the
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retrieval task altogether. A novel machine learning approach called word2bits
by Lam [36] tries to unify the two-step process of creating real-valued word em-
beddings and afterwards transforming them into Hamming space. Here, based
on the work of Courbariaux et al. [8] and Mikolov et al. [41], a virtual quantiza-
tion function is introduced into the CBOW function. This quantization function
maps each element of the real-valued vector to either−1

3 for elements smaller
or equal to zeroor 1

3 otherwise. The finalwordembeddings are still full-precision
float vectors but as they can only contain at most two different values they can
directly be mapped to binary hash codes. The quantized word vectors are com-
pared to Word2Vec and GloVe and perform competitively on Question Answer-
ing, Word Analogy and Word Similarity tasks.
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Chapter 3

Neural Compressor

Determining the document similarity based on the Relaxed Word Moving Dis-
tance requires many word-wise spatial distance calculations. These distance
calculations of word embeddings are computationally expensive as they involve
many real-valuedoperations. Thecomputationaloverhead increaseswithhigher
dimensionality of the underlying embedding space. This work aims at an imple-
mentationof a fast searchandoneaspectof this approachconsists of calculating
the word-wise distance in Hamming space with binary hash codes representing
aword. Thus awaymust be found to transform the Euclidean space into a Ham-
ming space while approximating the original embeddings’ spatial relation.

Based on the paper by Shu and Nakayama [61], a model for compressing
word embeddings is implemented and evaluated using different hyperparame-
ter configurations. The work is motivated by the observation that - based on the
objective functions of Skip-Gram [42, 41, 4] and Global Vectors for Word Repre-
sentation (GloVe) [52] - semantically closewords are located in near proximity to
each other in the latent embedding space. Thus, when persisting word embed-
dings independently, the inter-similarity of these words is ignored andmuch re-
dundant information is added to the set of embedding vectors. Motivated by the
idea that similar embeddings can be encoded by similar codes, this work tries to
explore whether these codes can be used for fast nearest neighbour searches in
hamming space.

Their approach achieves high compression rates without worsening the per-
formance of the downstream models they evaluate. The embeddings are com-
pressed by around 98% for a sentiment analysis task and 94% for a machine
translation task. When reducing the compression rate, even a performance gain
can be observed. In this context losslessmeans without impairing downstream
models. This, of course, is bound to the complexity of the evaluatedmodels and
can not be considered independently.
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Figure 3.1: This chapter describes theprocess of extracting discrete hash codes forwords
based on real-valued word embeddings. These hash codes are then later used for a fast
document retrieval.

3.1 The Neural Network

The network type is an auto-encoder which receives a single embedding vector
as input and generates an output vector of the same dimensionality. Each em-
bedding vector is trained prior and independently on large text corpora. For this
work both GloVe and fastText embeddings are used. The training objective is to
reduce the difference between the input sample and the generated output. For
measuring this difference, simply the euclidean distance is used. Given an em-
bedding ew for wordw sampled from the embedding spaceX of sizeN×E and
the generated output vector e′

w, the loss function is defined as:

L : RE × RE 7→ R

L(ew, e′
w) :=

1

2
||ew − e′

w||
2

2

(3.1)

The model implements the compression algorithm which is based on ad-
ditive vector quantization using multiple codebooks. There the idea is to use
discrete hash codes to select from a set of basis vectors to create a reproduc-
tion of the compressed input through vector composition. Per word one vector
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is selected from each codebook. Thus the compressed data consists of both a
discrete hash code per compressed object and a collection of codebooks, each
containing an enumeration of basis vectors per hash component.

3.1.1 Network Architecture

The model consists of the encoder, which is a fully connected feed forward net-
workwithonehidden layer andadiscretization step to learnaone-hot encoding.
The decoder uses the encoders output to select from a set of codebooks which
contain basis vectors whose linear combination result in the reconstruction of
the given embedding. The model’s performance is targeted towards minimis-
ing the loss globally over all words from the vocabulary. The word frequency
is ignored. An overview is given in Figure 3.2 and an in-depth discussion of the
model’s components follows in the next section. Three free parameters control
the size of the model and subsequently the produced codes: M is the desired
number of codebooks (which consequently is the number of code components)
andK is the code domain. For example when producing a 128 bit binary hash
code, the model usesM = 128 and glsconst : K = 2. To produce a code with
three components and 64 possible values per component, the parameter com-
bination isM = 3,K = 64. The third parameter is the dimensionality of the
embedding space and is further denotedE. All experiments in the scope of this
work were conducted on embedding spaces with 300 dimensions. In the follow-
ing, Section 3.1.2 describes the encoder ϕθ and Section 3.1.4 explains the de-
coder ψθ. The model is the combination of encoder and decoder given a set of
trainable parameters θ and the gradient descent optimises these on basis of the
loss function defined in Equation (3.1).

compressθ : RE 7→ RE

compressθ(ew) := (ψθ ◦ ϕθ)(ew) = e′
w

(3.2)

3.1.2 Encoder Model

The model’s encoder accepts a real valued vector of dimensionality E and pro-
duces a matrix of size M × K. Each of the M produced vectors is a one-hot
encoding of the component classes which defines the value of the code com-
ponent. The one-hot encoded vectors are produced by a multilayer perceptron
with one hidden layer. This serves as a feature detector for latent features of the
embedding space. The hidden layer consists of 1

2 ·M ·K neurons. Formally, the
encoder is defined as follows:
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Figure 3.2: The auto-encoder architecture of Shu and Nakayama [61]. The encoder con-
sists of two fully connected feed-forward networks and a discretization step to produce
one-hot encoded embedding codes. These embedding codes are used by the decoder
in conjunction with a set of codebooks to re-construct the original embedding. Each
codebook contains the basis vectors needed for reconstruction.
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ϕθ : RE 7→ RM×K

ϕθ (ew) := σ(f2 ◦ f1)(ew)
(3.3)

Where f1 and f2 are the first and second fully connected layers. The first
fully connected layer is given in Equation (3.4) and uses the hyperbolic tangent
as the activation function. Equation (3.5) describes the second layer which uses
the softplus function. The special function σ controls the one-hot encoding of
encoder activation and differs for training and validation. This is discussed in
the succeeding Section 3.1.3. The weight matrices A,A′ and bias vectors b,b′

are added to the trainable model parameters θ:

f1(x) := ϕ(A · x + b) with ϕ := tanh (3.4)

f2(x) := ϕ′(A′ · x + b′) with ϕ′(xi) := log(1 + exp(xi)) (3.5)

3.1.3 Gumbel Softmax

The bottleneck of the auto-encoder handles the code generation and is conse-
quently responsible for the discretization of the encoder logits. This part of the
model is crucial as thequalityof thediscretizationstepsubsequentlydetermines
the quality of the produced codes. As formerly defined, the special function σ
was used to refer to this transformation and it’s properties are described in this
chapter.

Two encoding functions σ are considered here: First the training encoding
function which is based on applying a softmax to the encoder activation per
codebook. Secondly the validation encoding function which creates a true
one-hot encoding. This comes from the need to provide a continuously differ-
entiable function while training to represent the categorical distribution of each
code component. Since themodel is trained using gradient descent selecting by
maximum from the codebookswould not allow to propagate the gradient to the
earlier layers of the network.

Given a activation vector for a codebookm : xm = (x1, . . . x|K|) and a noise
vectorg = (g1 . . . g|K|)where each term is sampled fromaGumbel distribution,
theGumbel-Softmax is defined inEquation (3.6). Theannealingparameter τ and
the properties of the noise terms gi are explained in Section 3.2.3.
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g-softmaxτ : R 7→ R

g-softmax(xi) :=
exp(f(xi))∑N
j=1 exp(f(xj))

fτ (xk) =
1

τ
· (xk + gk)

(3.6)

Thesecondencoding type, thevalidationencodingonly selects thestrongest
activation. Given the activation vector for a codebook: x = (x1, . . . , x|K|), a
simple i = arg maxx is used to construct a one-hot encoded vector of zeroes
per codebook where the i-th element is set to one.

These two encoding types operate on different premises: A low training loss
is not necessarily an indicator for a good code generator because it is possible
that many more and strongly non-discrete basis vectors are used for the recon-
struction. To use the embeddings produced by the encoder it is necessary to
choose the maximum activation. If the model fails to reconstruct the embed-
ding using only one basis vector of the each codebook at a time, no meaningful
codes can be extracted. Hence the proposed validation loss is the actual indica-
tor for the model performance because it accurately reflects the quality of the
model for reconstruction based on discrete codes. The relationship of the two
losses is described in greater detail in Section 3.2.3.

The Gumbel-Softmax function as described in Equation (3.6) uses values gi

sampled from the extreme value distribution called Gumbel1 distribution. This
distribution is usually applied todescribe extremeevents. For example tobuild a
dam high enough such that the highest flood of the next 100 years will not over-
flow it, the Gumbel distribution can be used to build a model forecasting the
maximum flood height [19]. The probability density function f(x) and the cu-
mulativedistribution functionF (x)withameanof 0andavarianceof 1aregiven
in Equation (3.7). It can be shown that usingmultivariate independent and iden-
tically distributed samples (x1, x2, . . . ) of the Gumbel distribution, the proba-
bility of any i-th component being the largest is exactly the softmax probability:
P (i is largest | x) = softmax(xi) [69].

f(x) : R 7→ R F (x) : R 7→ R
f(x) := exp(−(x+ exp(−x)) F (x) := exp(− exp(−x))

(3.7)

1After Emil Julius Gumbel.

35



3.1.4 Decoder Model

The decoder handles the linear combination of the selected codebook vectors.
Given a set ofM codebook matrices C = (C1, . . . CM ) each containingK vec-
tors with the embeddings dimensionalityE, the respective vectors are selected
by the output of the encoder x. This leads to a combination of weighted basis
vectorswhile training andahard selectionofM vectors for validation. The code-
bookmatricesCi ∈ RK×E are part of the trainable model parameters θ.

ψθ : RMK 7→ RE

ψθ(x) :=
M∑
i=1

CT
i x

(3.8)

3.1.5 Implementation Details and Adjustments

The auto-encoder is trained using the Adam implementation for stochastic gra-
dient descent [32]. The initial learning rate is set to 0.0005. Contrary to the ref-
erence implementation, the model’s fully connected layers are initialised using
the method proposed by Glorot and Bengio [17]:

P ∼ U
[
− 1−

√
d, 1−

√
d
]

(3.9)

where d is based on the dimensionality of the matrices. The codebooks are
initialised by uniformly sampling from the word embeddings.

Softmax: The former definition of the softmax differs from the original one
traceable in the paper and the reference code. There, a logarithm is applied to
the activation of the former layer x. This is not feasible because the range of the
last layer is defined by the softplus function, which is a continuous approxima-
tion for a rectified linear unit (ReLU) with some random noise added. It’s range
is in (0,∞) and given that the hyperbolic tangent of the previous layer provides
values between (−1, 1) — even with adding noise — it may yield many values
close to zero, which in turn become close to∞. This was found to result in nan
values when implemented.

Loss: The loss function defined in the original paper is the mean over the
L2-norm of the vector difference. However, the absolute values reported in the
paper’s tables indicate that in fact a function is used similar to Equation (3.1)
which stems from the reference code fragment published in [77]. Thus to obtain
comparable results, the given loss function is used.
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3.2 Experiments

The experimental series is used to answer the following questions:

1. Can the reported results be reproduced? The results presented by Shu
and Nakayama [61] indicate that themodel’s reconstruction performance
improveswhenusingmore codebookswith a smaller code codomain. The
objective is to find a set of hyperparameter configurations which repro-
duce, improve or falsify the reported results. The findings are presented in
Section 3.2. No results are reported by the authors regarding binary hash
codes. They are a special case with a configuration using K = 2. The
objective of the original implementation is to maximise the compression
factor whilst maintaining high quality embedding vector reconstructions
using codes as short as possible. Codes with many components but bi-
nary codomain are not considered. Themodel’s behaviour is evaluated in
Section 3.2.4.

2. Quality of the k nearest neighbours in hamming space. For implement-
ing a fast nearest neighbour search using hamming distances, the codes
produced by a good performingK = 2model are compared to euclidean
andcosinedistances in theoriginal linear embedding space. Thequality of
nearest neighbours in the respective spaces is discussed in Section 3.2.5.
Additionally, the distance distribution of those neighbours is discussed
and the intersection of linear and hamming distances for different model
configurations is calculated and analysed.

This sectionelaborateson theexperiments conductedwith thecompressormodel.
ThedifferentM andK parameter configurations presented in the original paper
are recreated. Additionally a full new experimental series is realised which only
considers model configurations which produces binary codes (i.e. K = 2).

3.2.1 Loss Based Model Evaluation

Table 3.1 gives an overview over the different results obtained by training the
model. All model parameters and their subsequent validation loss are selected
atapointwhereno improvement invalidation loss couldbeobserved. The trained
modelsare in linewith the findingsofShuandNakayama [61]. The table is sorted
ascending by codebook count and it can be observed that adding codebooks in-
deed correlates with decreasing loss.
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GloVe (6B) fasttext.en fasttext.de

M K |Θ| Loss Entropy Loss Entropy Loss Entropy

Baseline 20.17 - 12.106 - 11.468 -

8 8 19200 17.01 0.908 8.228 0.744 8.054 0.827

8 16 38400 16.12 0.935 7.282 0.854 7.060 0.888

8 32 76800 15.08 0.947 6.564 0.914 6.286 0.943

16 8 38400 15.48 0.933 7.203 0.787 7.008 0.811

16 16 76800 14.03 0.951 6.231 0.883 5.897 0.911

16 32 153600 12.73 0.921 5.504 0.934 5.127 0.952

32 8 76800 12.79 0.942 5.906 0.848 5.583 0.862

32 16 153600 10.95 0.907 5.001 0.914 4.622 0.930

32 32 307200 11.56 0.639 4.763 0.757 4.199 0.835

Table 3.1: Validation loss values for the parameter configurations used in the reference
work. Additionally, loss values for fastText embeddings are also provided. The entropy
value describes how well codes are distributed on average. There, a value of one de-
scribes perfectly distributed codes whereby a value of zero expresses that only one of
the basis vectors is always selected from each codebook. Although the lossmight attain
the globally lowest values for larger models, the entropy worsens at some point. This
indicates that the model is overfitting and not using the set of basis vectors optimally.
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3.2.2 Entropy Measurement of Code Distribution

For the application it is of interest how well distributed the code components
are over the codes domain. Because the codes are needed for searching in ham-
ming space, well distributed codes are required for having many discriminatory
features. It is imaginable that there can be a single value of a component ex-
pressing a specific feature. But given the small domain—with amaximumof 32
values — it is much more likely that features are different combination of code
values. To express asmany features as possible, a code distribution close to uni-
form is desirable.

To quantify this, entropy is provided as an additionalmeasurement. The en-
tropy value describes how well distributed the different code components are
over the different component classes. This measures whether there are under-
usedbasis vectors inside the codebooks. In the ideal case, all vectors arequeried
more or less equally often and thus all spatial information of the original embed-
ding space is distributed over the codes codomain. Lowentropy either indicates
that the model parameter count is bigger than necessary for catching all infor-
mation, or worse: that the model is not able to properly train on the input set.

Entropy isan information theoreticalmeasurementwhichdescribeshowmany
bits are required at minimum to encode amessage for any set of symbols. If the
distribution of symbols is not known the entropy becomes exactly the log2K for
an alphabet ofK symbols. Given that symbols are not uniformly distributed but
— for example — one of these symbols is very frequent and all other seldom oc-
cur, then the frequent symbol can be encoded with a very short code to reduce
the overall size of the encodedmessage. The entropy value describing the sym-
bols’ frequencies thus becomes smaller. Given vectors c = (p(c1), . . . p(cK)) ∈
[0, 1]K with each component holding thepartial activation count of the i-th basis
vector, then there exist asmany of these vectors as there are codebooks. The en-
tropy per codebook is calculated as described in Equation (3.10). The entropy of
the whole model as presented in the tables is the mean of these entropy values
over the codebooks.

entropy : [0, 1]K 7→ [0, 1]

entropy(c) := 1

log2K

K∑
i=1

{
0 if p(ci) = 0

−p(ci) · log2 p(ci) else

(3.10)
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(a) Values of encoder activations in epoch 500 (b) Values of encoder activations in epoch 2000

Figure 3.3: This figure anddisplays the encoder activation in epoch 500 (Figure 3.3a) and
2000 (Figure 3.3b) respectively. In this experiment in epoch 500 τ has a value of 1 and in
epoch2000avalueof 0.25. The redproportionareall activationvaluesbetween0.01 and
0.99. As the model is forced by the annealing parameter to converge towards a one-hot
encoded categorical distribution, the amount of moderate values decreases.

Tables 3.1 and 3.3 show that the entropy values are very high for most con-
figurations. This means that the codes exhibit a fair distribution over the code
domain. When the parameter θ count exceeds a certain threshold both the loss
increases and entropy decreases. This is an indicator for overfitting on the train-
ing data.

3.2.3 Gumbel and the Annealing Parameter

As described in Section 3.1.3, an annealing parameter is used in the Gumbel-
Softmax function. This parameter τ controls the interpolation of the continuous
categorical density towards a discrete one-hot encoding. The lower this param-
eter is set, the more is the model encouraged to train towards a categorical dis-
tribution. As τ approaches∞, the samples become uniform.

Shu and Nakayama [61] report using a fixed value of 1.0 for τ for their train-
ing. Jang et al. [28] describe that for low values of τ ∈ {0.1, 0.5}, the samples
approach the categorical distribution, for τ >= 1 the samples already converge
towards a uniform distribution. Their recommendation is to start with a high
value for τ and gradually decrease it towards a low value. The experiments con-
ducted in scope of this work show that starting with a value of 1.25 and whilst
training approaching 0.25 or 0.5 works best. Figure 3.3 shows how the activa-
tion of the encoder converges towards zero and one.
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GloVe fasttext.en fasttext.de

Experiment Loss Entropy Loss Entropy Loss Entropy

baseline 20.17 - 12.106 - 11.468 -

linear 14.02 0.987 6.214 0.8757 5.875 0.907

fixed-1 14.91 0.988 6.537 0.893 6.209 0.922

fixed-0.5 14.16 0.943 11.806 0 11.176 0

fixed-0.25 15.18 0.707 11.806 0 11.177 0

Table 3.2: Model key figures for different τ configurations. The row denoted with linear
change τ linearly from an initial value of 2 to 0 over 2000 epochs. Rows starting with
fixed-x use a fixed value of x for τ . The model did not train properly for values τ < 1 for
fastText embeddings.

Figures 3.4a and 3.4b show how the annealing parameter affects the model
performance while training. Higher values of τ lead to a very good training loss
but have a negative impact on validation loss. This is the expected behaviour
as described in the previous section. The less the model is forced to learn a cat-
egorical distribution, the higher is the penalty for choosing the argmax whilst
validating. As τ approaches lower values, the training loss and validation loss
converge. For the final model performance whether τ is annealed or not does
not change the overall loss much but produces slightly better code entropy. Ta-
ble 3.2 summarises how the entropy changes based on the annealing strategy.

Baseline

To obtain a baseline performance, the encoder of the model is replaced by a
module which samples uniformly from a normal distribution. This leads to a
model which optimises it’s codebook vector in such way, that the representa-
tion most likely converges towards the optimal average embedding vector rep-
resentation. This baseline is used to define howwell the activation of the actual
encoder improve the codebook’s basis vectors and subsequently themodel per-
formance. DifferentMK combinationsdidnot significantly change thebaseline
loss.
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(a) (b)

Figure 3.4: Figure 3.4a displays the loss progression when using a fixed value of τ = 1

throughout training. Figure 3.4b shows the relationship of validation and training loss
when annealing τ linearly with an initial value of 1.25 and the final value of 0.25.

3.2.4 Binary Codes

In this section, experiments for creating binary codes — i.e. train models with
K = 2 — are described. These codes are of higher importance in the scope of
thiswork because fast online searches usingHammingdistance canbe expected
towork best with binary codes. For non-binary codes, a bit-based comparison is
possible too but, when encoding the classes one-hot, only a fraction of the bits
can actually be used for discrimination.

Consider for example the two combinations (M = 8,K = 2) and (M =

2,K = 4) whose bit lengths are equal and use eight bits for encoding one-
hot. For the first configuration the maximum Hamming distance is eight, for
the second configuration only three. This effect worsens with fewer codebooks
and greater code domain. Motivated by the observed tendency for good losses
towards higher number of codebooks with smaller codomain, binary codes for
various bit counts are produced and analysed. Table 3.3 gives an overviewof the
different loss and entropy values.

The most notable observation regarding the produced loss and entropy val-
ues is the very good validation loss on bit lengths of 256 and 512. Their loss is
around 40% better than the best experiment of the former section while main-
taining a very high entropy value.

3.2.5 K-NN Distance Evaluation

To be able to use the produced codes for fast exact nearest neighbour searches
an analysis of nearest neighbours for different code configurations is presented
in this section. For this work it is desirable to have the nearest neighbours in
hamming space reproduce the nearest neighbours in the linear space. Thus it is
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GloVe fasttext.en fasttext.de

M |Θ| Loss Entropy Loss Entropy Loss Entropy

Baseline 20.17 - 12.106 - 11.468 -

16 9600 17.88 0.929 9.250 0.886 9.005 0.922

32 19200 16.82 0.972 8.303 0.851 8.037 0.960

64 38400 14.99 0.981 7.332 0.729 6.809 0.932

128 76800 11.72 0.985 5.769 0.836 5.319 0.909

256 153600 6.986 0.961 4.064 0.838 3.682 0.873

512 307200 6.921 0.970 4.092 0.829 3.762 0.849

640 384000 3.651 0.958 1.975 0.768 1.762 0.832

768 460800 3.088 0.946 1.747 0.752 1.529 0.825

1024 614400 2.368 0.780 1.406 0.726 1.208 0.813

Table3.3: Validation loss andentropy values for experimentswith a fixedvalueofK = 2.
The value ofM also describes the bit-length needed for storing the codes. A global loss
maximum for bit-lengths of 256 and 512 in combinationwith high entropy values can be
observed. Based on this, the produced hash codes withM = 256 are used throughout
the following chapters.
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Cosine -C Hamming -H

idx word distC idxH distH word distH idxC distC

1 compressors 0.694 2 60 turbine 60 2 0.693

2 turbine 0.693 1 60 compressors 60 1 0.694

3 supercharger 0.541 11 78 valve 72 25 0.440

4 high-pressure 0.541 8 75 engine 73 40 0.415

5 nozzle 0.524 19 82 combustion 74 8 0.503

6 turbocharger 0.513 16 80 cylinder 75 14 0.483

7 turbines 0.504 7 75 turbines 75 7 0.504

8 combustion 0.503 5 74 high-pressure 75 4 0.541

9 conditioner 0.501 54 89 engines 77 56 0.384

10 piston 0.495 23 85 cylinders 78 27 0.438

Table 3.4: Nearest neighbours of the word compressor for GloVe embeddings. The
columns named dist contain the respective value for the cosine or hamming distance.
The columns called idx denote where the word can be found using the other distance
space. The red colour marks words which are not shared between both metrics.

explored howmany neighbours are shared between the two spaces. All analysis
is conductedon the 10, 100, 1000 and4000nearest neighbours of any givenword
sampled from the vocabulary.

The reference distancemetric is the cosine distance of any given pair of input
vectors. Figure 3.5 displays the average distance of the first k neighbours. It can
be observed, that the peak distance does not vary much between the different
classes of k. However, this does not necessarily impair the ability to find high
quality nearest neighbours but is an example for the impact of sparsity in high
dimensional spaces: i.e. the curse of dimensionality.

Figure 3.7 shows how many nearest neighbours are shared between the k
nearest neighbours in the linear and hamming spaces. Although a great amount
of embeddings and codes only share a small amount of neighbours, examples
show that the neighbours in hamming space are different but not less intuitive.
Some examples are given in Table 3.4. The underlying codes are produced by
theM = 256,K = 2model.
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Figure 3.5: Distance distribution of nearest neighbours for GloVe and fasttext.de embed-
dings. It can be observed that the absolute difference between the ten and 100 nearest
neighbours is very small.

Figure 3.6: Distance distribution for nearest neighbours based on the produced codes
for fasttext.de embeddings with 256 bit codes. The distribution matches the observed
properties of the spatial distance distribution shown in Figure 3.5. Here, too, is the range
of distance very small and the difference of the peak between the 10 and 4000 nearest
neighbours reflects this.
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Figure 3.7: This plot shows howmany nearest neighbours each word shares in the con-
tinuous space and the Hamming space. The x-axis denotes the k-th nearest neighbour
and the y-axis the probability that a word shares k neighbours. Thus, nearly all words
have at least one nearest neighbour in common but only two share a maximum of 96
neighbours (the words “boraginaceae” and “mardinspor”). For the whole vocabulary
6542 words have no common nearest neighbour. These plots show that the probabil-
ity for finding common nearest neighbours between the two spaces is slightly higher for
the more frequent words (i.e. words encountered more often when training the word
embeddings).
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Chapter 4

Information Retrieval

This chapter outlines how the formerly producedhash codes are used for the im-
plementation of fast document similarity calculations. This similarity measure
can be used for clustering or for ranking documents. The implementation of a
search for a Information Retrieval (IR) task is the focus here. Since IR systems are
aimed at being operated by humans, the response time is an important factor to
take into considerationandwill be studied indepth. The followingSection4.1 in-
troduces the Relaxed HammingWordMovers Distance (RHWMD). This algorithm
is basedon theRelaxedWordMovingDistance (RWMD) as theoretical foundation
anduses the trainedbinary embedding codes for a computationally inexpensive
similarity score calculation. The chapter concludes with the experiments’ quan-
titative results and examples revealingwhere the approach succeeds andwhere
it fails.

4.1 RHWMD Relevance Scoring

This section describes how — inspired by the RWMD — the binary embedding
codes are used to devise and implement a scoring function. This scoring func-
tion uses a fast exact nearest neighbour search to choose the most related to-
kens from a document pair, chooses their distance as measure for relatedness,
weights themby the TermFrequency-Inverse Document Frequency (TF-IDF) and
calculates a relevancy score. This scoring function,which is further referred to as
RHWMD, is then compared to Okapi Best-Match 25 (BM25) and the Word Movers
Distance (WMD) in Section 4.4. This section describes both how the relevancy
score is calculated and how a simple index is modelled for enabling a fast cal-
culation of the score. Also, some modifications to the function are specified to
obtain some insight into which component contributes to which amount to the
final score qualitatively.
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Figure4.1: This chapteruses the formerlydescribedcodes to implementa search system.
The system is evaluated using a German information retrieval data set.

4.1.1 The RHWMD Relevance Score Function

To calculate the RHWMD for a document d and a candidate document d′, each
word token t of the documents is mapped to a hash code ht ∈ {0, 1}M . As dis-
cussed in Section 3.2.5, similar words tend to have similar codes and the more
similar the words of two documents are to one another, the smaller is the aver-
age distance between the documents. The Hamming distance (further denoted
as η) is used to quantify the difference between two hashes ht, ht′ :

η : {0, 1}M × {0, 1}M 7→ [0, 1]

η(ht, ht′) :=
1

M

∣∣∣∣{i | xi ̸= x′
i

}∣∣∣∣ (4.1)

Here xi is the i-th bit of hash ht. The formula computes the percentage of
unequal bits between the two hashes. Inspired by the RWMD, the RHWMD tries
to associate each tokenwith their respective nearest neighbour in the compared
document. Finding the corresponding t′ for every given t requires calculating
the hamming distance η(ht, ht′) between all possible word combinations of the
two documents and selecting the smallest value respectively. This leads to two
sets of (t, t′) relations, one of the size of the first document and one of the size
of the second document. Formally, given any t in document d and a compared
document d′, the most similar token t′ has the lowest Hamming distance to t:
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t′ = arg min
t′′∈d′

η(ht, ht′′) (4.2)

Now, based on these nearest neighbours, a score can be calculated: Given
two documents d, d′ each t ∈ d is assigned a corresponding t′ ∈ d′ which is the
closest nearest neighbour as described in Equation (4.2). This distance is flipped
to obtain a measure of similarity and combined with an altered version of the
Inverse Document Frequency (IDF) as defined in Section 2.1.3. The score s for
the similarity of two documents is then:

s : D ×D 7→ [0, 1]

s(d, d′) :=
∑
t∈d

n-idf(t) ·
(
1− η(ht, ht′)

) (4.3)

The functionn-idfwas found toworkbetteron theevaluationdata thanusing
the raw IDF value. Given a vocabulary V and a token t of a document d, then the
n-idf value for that token is defined as:

n-idf : V 7→ R

n-idf(t) :=
idf(t)∑

t′∈d idf(t′)
(4.4)

The score s is not symmetric. The final similarity measure applies a fusion
strategy f to the two scores obtained when calculating both directions (d, d′)
and (d′, d):

rrhwmd : D ×D 7→ R
rrhwmd(d, d

′) := f
(
s(d, d′), s(d′, d)

) (4.5)

Introducing such a fusion f is motivated by the observation that for doc-
uments with very different size, large documents tend to produce smaller ab-
solute score values. This is due to the constraint that for every word a corre-
sponding neighbour must be found. Hence if two documents differ greatly in
size, the large document selects from very few candidate tokens. This does not
offer much information. Thus the average similarity is lower and the resulting
sum decreases.
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Thisphenomenon is very commonas searchqueries tend tobemuchsmaller
than the candidate documents. It is examined in the experiments section for the
following strategies selecting from s1 = s(d, d′) and s2 = s(d′, d) which fusion
works best:

fmin(s1, s2) := min(s1, s2)

fmax(s1, s2) := max(s1, s2)

fsmall :=

{
s1 if |d| < |d′|
s2 otherwise

fbig :=

{
s2 if |d| < |d′|
s1 otherwise

fsum := s1 + s2

(4.6)

4.1.2 Example Application of the RHWMD

To furthermotivate theproposed formula, consider theexampledocumentsgiven
in Table 4.1. Table 4.2 breaks the respective scores down to the atomic values.
The sumof the elements in theweight column form the final score and the prod-
uct of the sim and idf(token) divided by the sum of all IDF values. The score
for comparing wanze to teppich is 0.642874 and teppich to wanze is 0.674287;
therefore lower than the scores for themore relateddocuments. This is anexam-
ple where the strengths of the RHWMD are revealed: Procedures such as BM25
and TF-IDF are not able to assign meaningful scores because none of the docu-
ments share words with high IDF values.

4.2 Implementation

This sectiondescribes the implementationof theRHWMDas runtimeperformance
is an important requirement. The implementations for two critical challenges
are discussed here: First the implementation of η for finding the hamming dis-
tancebetween termsandsecondly theconstructionofadistancematrixbetween
all possible term combinations and selection of closest nearest neighbours in
bothdirections. For both challenges, three implementations are compared. One
of the implementations is called naïve and is used as a baseline to obtain an in-
tuition for the degree of improvement of the other candidates.
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word TC 1-NN 10-NN 100-NN 1000-NN 4000-NN

Document 1: Auf der Mauer, auf der Lauer sitzt ’ne kleine Wanze. (id=wanze)

auf 2 0.219 0.230 0.262 0.289 0.309

der 2 0.168 0.211 0.246 0.281 0.305

mauer 1 0.180 0.223 0.262 0.316 0.336

lauer 1 0.266 0.285 0.309 0.332 0.348

sitzt 1 0.211 0.262 0.281 0.312 0.332

ne 1 0.227 0.262 0.293 0.324 0.344

kleine 1 0.137 0.246 0.277 0.305 0.320

wanze 1 0.188 0.242 0.293 0.340 0.359

Document 2: Ein Marienkäfer schläft auf dem Zaun. (id=marienkaefer)

ein 1 0.148 0.203 0.230 0.277 0.309

marienkäfer 1 0.156 0.188 0.266 0.320 0.348

schläft 1 0.188 0.230 0.266 0.309 0.336

auf 1 0.219 0.230 0.262 0.289 0.309

dem 1 0.176 0.219 0.250 0.285 0.309

zaun 1 0.199 0.246 0.297 0.328 0.344

Document 3: Ich möchte diesen Teppich nicht kaufen. (id=teppich)

ich 1 0.141 0.184 0.223 0.270 0.301

möchte 1 0.180 0.207 0.238 0.273 0.301

diesen 1 0.145 0.207 0.242 0.273 0.297

teppich 1 0.141 0.246 0.301 0.328 0.344

nicht 1 0.137 0.180 0.215 0.262 0.293

kaufen 1 0.133 0.188 0.258 0.305 0.332

Table 4.1: This table displays three example documents for later comparison. Apart from
the TermCount (TC) column several distances of the k-th nearest neighbour for the spe-
cific tokens are shown. This is to call attention to a challenge: The first nearest neigh-
bour for some terms is as far away as the 100th for other terms (e.g. lauer’s first nearest
neighbour: 0.266 and kleine’s 100th nearest neighbour: 0.277). Further discussion can
be found in Section 5.3.
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token nn sim tf(token) idf(token) idf(nn) weight

comparingwanze tomarienkaefer - score: 0.711667

wanze marienkäfer 0.742 0.100 9.335 9.649 0.200

lauer schläft 0.668 0.100 7.134 7.138 0.137

ne auf 0.664 0.100 5.561 0.305 0.106

mauer zaun 0.758 0.100 4.674 5.974 0.102

sitzt schläft 0.727 0.100 4.361 7.138 0.091

kleine auf 0.688 0.100 3.290 0.305 0.065

auf auf 1.000 0.200 0.305 0.305 0.009

der dem 0.785 0.200 0.033 0.370 0.001

comparingmarienkaefer towanze - score: 0.745616

marienkäfer wanze 0.742 0.167 9.649 9.335 0.301

schläft sitzt 0.727 0.167 7.138 4.361 0.218

zaun mauer 0.758 0.167 5.974 4.674 0.191

auf auf 1.000 0.167 0.305 0.305 0.013

dem der 0.785 0.167 0.370 0.033 0.012

ein der 0.758 0.167 0.325 0.033 0.010

Table 4.2: In this table it is shown how the score is calculated. The column denoted
weight lists the similarity value weighted by the normalised IDF. The sum of the weights
form the score.
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4.2.1 Hamming Distance

The hash codes are encoded as arrays of one-byte values and thus for the used
256 bit encoding consist of 32 bytes. This implies that a single code can not
be loaded into memory as a primitive type on a regular 32 or 64 bit OS archi-
tecture which enforces the implementation to use arrays. In the following, B
denotes the number of bytes of a code which is 1

8M . The three considered ap-
proaches for calculating the hamming distance are described below and the ex-
ecution speed is listed in Table 4.3. Given are two codes ht = (b1, . . . , bB) and
ht′ = (b′1, . . . , b

′
B) as byte-vectors:

1) hamming-naïve: Using two loops and a bit-mask, shifting the exclusive or
(⊕) of the two bytes bit-wise eight times:

η(ht, ht′) :=
1

M

B∑
i=1

7∑
j=0

(
(bi ⊕ b′i

)
>> j) ∧ 1 (4.7)

2) hamming-bin: This implementation uses the builtin Python routine bin() for
obtainingastring representationof thebinarynumberandcounting thechar-
acter ’1’ and using count() for obtaining the number of ones in the string. This
number is then divided byB.

3) hamming-lookup: There are only 256 possible outcomes of b ⊕ b′ ∀ b, b′.
Therefore a lookup table is constructed as a vector Ξ := (x0, . . . x255) =

(0, 1, 1, 2, 1, . . . ) is constructed with each xi saving the number of ones of i
for any byte. Consider for example 100112 ⊕ 1102 = 102 = 210. The num-
ber 210 has a bit count of 1 and to obtain this value, the vector Ξ2 = 1. The
inner loop of the naïve implementation becomes obsolete and the hamming
distance is:

η(ht, ht′) :=
1

M

B∑
i=1

Ξbi⊕b′i
(4.8)

Intriguingly thehamming-naïve implementation isamagnitudeslower than
hamming-bin. Even the overhead of allocatingmemory for the string represen-
tation is not slowing the use of the builtin functions so heavily. The lookup table
solution — unsurprisingly — outperforms the other two implementations and
adds a magnitude of execution speed.
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1) hamming-naïve 140µs

2) hamming-bin 10µs

3) hamming-lookup 4µs

Table 4.3: Execution speed for the hamming distance calculations.

4.2.2 Distance Matrix

For implementing the RHWMD it is necessary to select the nearest neighbour
pairs of words between two documents. Therefore every token combination
amongst the two documents needs to be computed to select the nearest neigh-
bours. This inherently requires O(|t| · |t′|) computations. The time complex-
ity of the hamming-lookup variant of η is O(3B) (for the xor, memory lookup
and summation). Hence the minimum, maximum and average time complex-
ity for all implementations is O(|t| · |t′| · B). Nonetheless by using the power
of native routines implemented for numpy’s vectorized operations much run-
time performance is gained. The goal of the computation is to obtain a matrix
T ∈ [0, 1]|d|×|d′| containing the normalized hamming distances.

Three implementations are compared with each other: The t-naïve imple-
mentationuses thehamming-lookupversionof theµ functionand t-vectorized
applies hamming-bin for a comparison to the t-lookup variant.

1. t-naïve: Two nested loops iterating over each possible combination, ap-
plying the hamming function per pair:

Tij := η(ht, ht′) (4.9)

2. t-vectorized: This approach tries to facilitate numpy’s vectorized opera-
tions for a faster native execution. This consists of constructing twomatri-
cesH,H ′ ∈ {0, . . . , 255}|d|×|d′|×B with:

H :=


h1 . . . h1
...

. . .
...

h|d| . . . h|d|

 H ′ :=


h′1 . . . h′|d′|
...

. . .
...

h′1 . . . h′|d′|

 (4.10)

NowZ := H⊕vH ′ creates a three dimensional tensor of byte-wise xor’ed
code values. The operations labelled with the super-scripted v (⊕v, µv)
accept whole matrices and apply the operation element-wise on the last
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dimension. Numpy’s vectorize() function is used to create ηv which ac-
cepts whole matrices of codes. The final matrix is created by calculating
the Hamming distance per byte value and summing all the calculated bit
counts:

Tij :=

B∑
k=1

ηv(Z)ijk (4.11)

3. t-lookup: This method uses the matrix Z := H ⊕v H ′ to retrieve the bit-
count values from the lookup tableΞ:

Tij :=

B∑
k=1

ΞZijk
(4.12)

Abenchmarkwith severalmatrices reveals thegreatperformancedifference.
The lookup-version (again unsurprisingly) outperforms the other approaches.
Given that the documents used in this work usually have a mean token count
of around 200, this speedup is essential for a sane retrieval time. Figure 4.2 dis-
plays the speed for different token counts. It is important to highlight that the
speed increase stems from the ability to use lookup tables which is not possible
when using spatial distance metrics of the original euclidean embedding space
for obtaining exact matches.

The proof-of-concept is written in Python1 which — as an interpreted lan-
guage — inherently executes slower than a Ahead-of-Time (Compilation) (AOT)
or Just-in-Time (Compilation) (JIT) compiled code. Also control structures such
as loops or binary operations behave differently performance-wise in compari-
son to code compiled tomachine code. This is an important fact to keep inmind
for the observations as they would be much different in a language such as C.
The execution time value is based on the minimum of 2 · 105 runs.

It is imaginable to also build a lookup table for all possible word combina-
tions in the offline phase and combine that with an intelligent in-memory cache
to reduce I/O time but this would require space for (|N |2 · (8 + 4) bytes (8 bytes
for a 64bit address and 4 Bytes for the 32 bit float value). Even when selecting
only the 40k most frequent words, this would lead to an additional footprint of
around 20 gigabytes with rarely or never used information. Building a clever
caching infrastructure or devising approaches for horizontal scaling are not in
the scope of this work.

1TheUbuntu pre-compiled packagedPython 3.6 using numpy executed by the CPython inter-
preter without any local modifications. All benchmarks are run on a single core of an Intel i7-6700
with 3.4GHz.
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Figure 4.2: Benchmark for calculating the distance matrices for documents using the
three different implementations. On the x-axis the total number of token comparisons
is given. The y-axis denotes the time in milliseconds needed for the computation. For
two documents with a combined token count of 400, 40000 distances are computed
which takes around 8ms using the lookup table but 440ms using the naïve and 390ms
using the vectorized implementation.

4.2.3 The Index Structure

To calculate the necessary metrics for the RHWMD, the following information
must beprovided: Eachdocument is assigned the respective hash codes and the
IDF values for each token. Additionally, for future work and for experimentation
the count of each term per document is saved (both normalised and absolute).
Such document-local information does not change when new documents are
added to the index. Other metrics such as the amount of documents containing
a specific termmust be updated when new documents are added to the index.

All this data needed for computation should be stored as space efficient as
possible. Additionally, for allowing the use of multiple cores of the CPU when
calculating the score, the whole databasemust be accessible frommultiple pro-
cesses concurrently. To do so, the data model for the persistence is designed
and presented in this section and further referred to as the Ungol Index.

Data Model

AnUngol Index instancecontainsbotha reference toametaobject calledDocRef-
erences and a mapping of unique document id’s to Doc instances. Each doc-
ument of the corpus is transformed to a Doc such that the most important in-
formation — its tokens and associated term counts — are readily available. To
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Database (Ungol Index)

+ avg_doclen: float

+ docref: DocReferences

+ mapping: Dict[str, Doc]

DocReferences

+ vocabulary: Dict[str, int]

+ lookup: Dict[int, str]

+ codemap: numpy bytearray [NxM]

+ termfreqs: Dict[int, int]

+ docfreqs: Dict[int, int]

+ unknown: Dict[str, int]

Doc

+ name: str

+ ref: DocReferences

+ idx: numpy int [n]

+ cnt: numpy int [n]

+ freq: numpy float [n]

+ unknown: Dict[str, int]

+ tokens(): List[str]

Figure 4.3: The Ungol Index consists of a data structure which collects Doc instances.
Each Doc has an idx property for looking up its tokens in the codemap of DocReferences.
The cnt property holds the TC for i-th token (enumerated over idx). The property freq
holds the normalised TC.
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token index TC TF DF IDF code

ribbeck 62043 2 0.286 40 8.905 0x01 0xa6 0x21 0x51...

herr 1568 1 0.143 6016 3.891 0xa4 0xae 0x34 0x41...

von 10 1 0.143 236283 0.221 0xa8 0xa6 0x34 0x11...

auf 21 1 0.143 217148 0.305 0xa8 0x24 0x74 0x5b...

im 13 1 0.143 225024 0.270 0x60 0xec 0x10 0x5a...

havelland 42441 1 0.143 15 9.886 0x00 0x1c 0x46 0xc0...

Table 4.4: Data readily available in the combination of a document instance and a refer-
ence instance. Thedocumentonly saves the index, TermCount (TC)andTermFrequency
(TF). The tokens are obtained by selecting from the lookupmapping, the DF stems from
the document frequencymapping and the IDF is calculated based on the DF vector and
the size of the index. The original text is: “Herr von Ribbeck auf Ribbeck im Havelland”.
The global metrics stem from a index fully populated by documents from the corpus
introduced in Section 4.3.1

reduce the footprint as much as possible, only unique information about a doc-
ument is saved to the Doc instance. Thus, all possibly redundant data is saved
toDocReferences. This includes the {0, 1}N×M shaped codemap containing the
hash codes for the vocabulary and the IDF information, which is a mapping of a
token index to an absolute count of documents containing this token.

Thismapping allows for the following datamodel: Every document contains
an index vector where each element of the vector denotes the position of the re-
spective hash code for that token in the code map. A detailed view of the data
model is given in Figure 4.3. The count and frequency vectors also held by the
Doc object contain the absolute and normalised count of the token’s appear-
ance in the document. The DocReference object additionally contains twomap-
pings that resolve tokens to indexes (the vocabulary attribute) and vice versa
(the lookup attribute). Table 4.4 illustrates the available data.

Indexing

Indexing a document is presented in this subsection. Figure 4.4 shows how the
text is processed by the system. The document collection is read from disk and
the raw text content is offered to a pool of worker processes. Every worker pro-
cess awaits a raw text string per document to be processed. Each string blob is
split by a Germanword tokenizer [75]. Each token is then sanitised by removing
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reader

reader

[ o o o ]
reader queue

readerreaderworker

[ o o o ]
writer queue

Document Collection Ungol Index

● splitting
● lower casing
● compound splitting
● sanitizing

writer ● tokens to Doc

Figure 4.4: Text processing in the indexing phase. A pool of workers handle all heavy lift-
ingwhile a reader continuously provides newdata fromdisk. Thewriter processmerges
documents in the index as soon as they have been pre-processed.

most non-alphanumeric characters, lower-casing it and recursively splitting it
into its compounds2 if possible. The resulting token vector is then offered to the
writer process. This process converts the token vectors into Doc instances and
adds them to the index mapping. The index mapping uses a unique identifier
for the document. Every update to the index mapping also updates the metrics
inside the meta block: Most notably, the document frequencies which are used
for the IDF calculation. This pipeline can be used to add new documents to the
index at any time.

2The current implementation uses the char_split compound-splitter by dtuggener [71] based
on the work of Tuggener [67].
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Concurrency

The formerly explained implementation also allows for one important optimisa-
tion: distributing the work over the cores of the now establishedmulti-core pro-
cessors. The score calculations are independent from one another and thus can
be computed independently. This leads to a system — given that the index can
be made accessible read only from multiple processes — which has a minimal
memory footprint for inter-process communication (namely two strings go in,
one float comes out) and aminimal overall footprint (only one index in memory
at a time). The implementation works reasonably well and was found to scale
linearly with the number of cores used for processing.

4.2.4 Out of Vocabulary Words

There are words where no embeddings exist in the Ungol Index. These words —
further referred to as Out of Vocabulary (OOV) words — can contain important
information and should not be ignored. The current implementation follows
a simple approach: If the two documents for which the RHWMD is calculated
share OOV words, than naturally they have a similarity value of one assigned.
The IDF value canbe computedas formerly described, because thedocfreqmap-
pingkeeps trackof all encountered tokens regardlesswhether theyappear in the
codemap or not.

4.3 Evaluation Setup

Formeasuring the quality and comparing the different scoring algorithms a Ger-
man information retrieval data set is used. This data set’s content, ground truth
labelling and themetrics used for measuring the ranking quality are introduced
below in Section 4.3.2. The scoring functions are evaluated on a German news
corpus introduced in the following section Section 4.3.1.

4.3.1 The Corpus

A corpus of sufficient size must be employed to adequately evaluate the scor-
ing function performance. Only if there are enough negative samples at choice
the quality of the scorer to decide which documents are relevant or not can be
judged with confidence. For this task the corpus consists of around 300k news
articles in German. The length of the documents varies and ranges from very
short press releases to multi-page articles. The articles stem from “Frankfurter
Rundschau”, a German newspaper, “Der Spiegel”, a German newsmagazine and
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Figure 4.5: This plot shows the size distribution of the corpus described in Section 4.3.1.
Most documents have up to 400 tokens and around 200 on average.

“SchweizerischeDepeschenagentur (SDA)”3 theSwissnationalpressagency. Fig-
ure 4.5 shows the distribution of unique tokens per document and Figure 4.6
displays the global distribution of term and document frequencies. Table 4.5
numerates some statistics after transforming the corpus as formerly described
in Section 4.2.3.

4.3.2 CLEF 2003 GermanMonolingual

For evaluation the 2003 ad-hoc German monolingual information retrieval task
of theConferenceandLabsof theEvaluationForum(CLEF) is selected. Theground
truth data consists of 56 Topics. These topics form an information retrieval task
– a question to be answered by a set of documents. Below a sample topic de-
scription is given:

Topic 174: Finde Berichte über den Kruzifixstreit
in bayerischen Schulen.

The ground truth offers in this case 36 positives to be retrieved from the cor-
pus. Additionally 432 samples are enumerated which are labelled incorrect. All
documents not appearing in the numeration are also irrelevant. The amount of
positives varies greatly. For some topics only one article is correct, other topics
are assigned up to 226 articles. The following article is one of the 36 positives
(truncated) for Topic 174:

3Since 2018 “Keystone-SDA”
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(a) The whole corpus.
(b) The section of the 10th most frequent to the
100th most frequent token.

Figure 4.6: These two plots show the distribution of the TF and DF of each known token
of the corpus. Note that the frequencies are sorted by total count independently. This
means that the i-th DF might belong to a different token than the i-th TF. Also mind the
logarithmic scale in Figure 4.6a.

Index 180921_ungol.db.pickle

Documents 294659

Vocabulary 400000

Code SizeM 256

Unique Tokens 258391

Average Document Length 197

Skipped 8

Memory Footprint ∼ 3 Gigabytes

Table 4.5: Ungol Index statistics after processing all documents and topics. This is
the version of the index all evaluation runs were conducted on. Skipped documents
are those which did not contain any usable tokens. The average document length is
rounded and measured in tokens. Note that the size of the codemap is only around
100MB in size in contrast to the original real-valued embeddingmatrix which consumes
around 1GB. The overall memory footprint is augmented by Python’s internal memory
maintenance.
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München, 22. Sept. (sda/Reuter) Erstmals seit dem Kruzifix-Urteil des
deutschenBundesverfassungsgerichts sind in zwei bayerischen Schu-
len Kreuze abgehängt worden. Dies erklärte am Freitag in München
der Sprecher des bayerischen Kultusministeriums. (...)

4.3.3 Evaluation Metrics

For determining the score quality a common approach is to measure the mean
average precision µAP. Here recall and precision of a ranking system are com-
bined such that the higher a system ranks the correct samples the higher the
mean average precision becomes. Usually precision decreases while recall in-
creases the more candidates are considered.

Formally, given a ranking system forQ classes returning k results the mean
average precision is computed for every class by using two vectors:

p = (p1, . . . , pk), r = (r1, . . . , rk)

Each element pi describes the precision value of the systemwhen returning i el-
ements. The vector r describes the change in recall which for the discrete case is
simply the difference of the i-th valuewith the previous one: ri = ri−ri−1, ro =

0. Every ri is greater or equal to zero because the recall ismonotonously increas-
ing. The mean average precision simply takes the mean over all obtained aver-
age precision values4:

µAP : [0, 1]q×k × [0, 1]q×k 7→ [0, 1]q

µAP(P,R) :=
1

Q

Q∑
q

k∑
i

rqipqi

(4.13)

4.4 Experiments

Two experiments are conducted and analysed here. The first one assesses the
ranking performance by comparing different corpus sizes. It is explored how the
average precision behaves both regarding the addition of negative candidates
to the pool of possible candidates and in comparison of the different ranking al-
gorithms. This experiment is further denoted as the Baseline Comparison. Sec-
ondly a set of documents is pre-selected by using an inverted index and BM25
and it is assessed whether RHWMD is able to increase the search result quality

4The resulting values are multiplied by 100 in the following.
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Algorithm 250 500 1k 5k 10k 50k 100k

wmd 69.62 63.85 56.84 41.09 35.05 20.94 15.06

rhwmd.big 76.76 67.80 59.46 40.47 32.91 18.00 12.45

tfidf 77.75 68.96 60.44 42.17 35.07 19.98 13.91

rhwmd.min 84.12 76.41 70.02 50.40 41.16 22.88 16.33

rhwmd.max 94.10 90.54 86.45 73.22 66.41 50.59 42.87

rhwmd.small 94.10 90.54 86.45 73.22 66.41 50.62 42.90

bm25 93.07 89.99 86.69 76.36 70.64 56.94 51.02

rhwmd.sum 96.03 93.44 90.27 78.91 72.80 57.49 49.82

Table 4.6: µAP values for various retrieval configurations. Each column contains the per-
formance of the employed retrieval algorithm for a specific data set size. With increas-
ing set size, only the amount of negative samples increases. The smallest configuration
of k = 250 already contains all positives for all topics because the largest amount of
positives for a single topic is 226. The rows are ordered by their average. The standard
deviation is below 1 for all experiment configurations.

by re-ranking the retrieveddocuments. This approach is targeted towards a real-
world use case scenario where short retrieval times are usually a requirement.
The experiment is referred to as the Re-Ranking Experiment.

4.4.1 The Baseline Comparison

To develop an intuition for the theoretical capacity of the RHWMD scoring and
to gather data about the execution speed, subsets of the whole CLEF corpus are
considered for retrieval. Each experiment is using a document collection of size
k ≤ |D| per topic. Each subset is constructed by combining all relevant docu-
ments for the respective topicwith randomly samplednon-relevant articles. The
evaluation is run on three independent subsets per k and averaged for the final
result. The total size of each data set is thus k · 56 (the number of topics) but
every topic only selects from k documents. This in principle emulates a perfect
pre-selection algorithmwith a recall of 100%.
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The evaluatedmethods are:

1) WMD:Solving the transportproblemonreal-valuedembeddingwords to trans-
form one document into the other. Measure the transformation cost.
(see Section 2.4 on page 23)

2) TF-IDF: Calculating the Term Frequency-Inverse Document Frequency.
(see Section 2.1.3 on page 14)

3) BM25: Retrieve with the Okapi Best-Match 25 relevancy score.
(see Section 2.1.4 on page 14)

4) RHWMD: The approach developed in this work. (see Section 4.1 on page 47)

• sum: Combine both scores by summation.

• big: Selecting only the score from the larger document.

• small: Selecting only the score from the smaller document.

• min: Always selecting the smaller score.

• max: Always selecting the bigger score.

• sum: Combine both scores by summation.

Results

Table 4.6 summarises the promising findings. Always selecting the bigger docu-
ment as the direction for score calculation or always selecting the smaller score
of the two considered directions is not working well. Combining the directional
scores by summation consistently albeit not grandly outperforms BM25. Taking
the maximum or always the score of the smaller document is working reason-
ably well but their performance decreases with increasing candidate amount by
a larger rate thanBM25. Figure 4.7 shows a plotwith the best and theworst rank-
ing RHWMD implementations, BM25 and TF-IDF. Using TF-IDF as one of the em-
ployed algorithms serves as the baseline for the degree of information the sim-
ilarity measures contribute. As prior defined, RHWMD uses TF-IDF as an impor-
tant factorof the score calculationbutweights it bynearest-neighbour similarity.
The difference between TF-IDF and RHWMD is thus an indicator for the impact
of the similarity measure. However, given the great difference in performance
between the different RHWMD fusion strategies, this weighted similarity must
be combined with some sensitivity. Overall, the decrease in difference between
RHWMD and BM25 is noticeable and leads to BM25 outperforming RHWMD for k
larger than 50k. BM25’s hyper-parameters: k1 = 1.56 and b = 0.45 are chosen
based on a grid-search (see Table 4.7).
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Figure 4.7: MeanAverage Precision of the best and theworst ranking RHWMD implemen-
tations, BM25 and TF-IDF for a result list of k = 250

Problematic however, as formerly described in Section 2.1.2 is the retrieval
time. This is primarily a result of searching data linearly which leads to unac-
ceptable retrieval times for large data sets as shown in Figure 4.8. However,
the RHWMD implementation outperforms theWMD runtime performance signif-
icantly (although the WMD implementation already uses all the optimisations
such as using the Word Centroid Distance (WCD) and RWMD for candidate pre-
selection).

4.4.2 The Re-Ranking Experiment

The formerexperiment showed that theRHWMDscoringhas thepotential toout-
perform BM25 for candidate sets of manageable size. In this section an experi-
ment is conducted which uses an inverted index and BM25 for a fast ranking of
document candidates. It is determined how well this ranking performs qualita-
tively using the µAP. A rank k is chosen on which the candidates are confined.
This now smaller candidate set is given to RHWMD for re-ranking and the µAP
is calculated again to examine whether the ranking was improved. The goal of
the experiment is to determine whether BM25 is suitable for a candidate pre-
selection and if RHWMD is able to improve the BM25 ranking.

Elasticsearch [70] is used for the fast retrieval of candidates. The inverted
index is based on Apache Lucene [72]. Elasticsearch offers a production ready
data store with a language agnostic interface, its own Okapi BM25 implementa-
tion (among others) and its own pre-processing pipeline for indexing.
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Figure 4.8: Average time needed to compute the score for a query and k candidate docu-
ments ona single coreusingBM25andRHWMD linearly (i.e. not using an inverted index).
The run-timeofmp-rhwmd is using themultiprocessing version and eight cores. The im-
plementation of WMD also uses all eight cores and the optimised pre-selection with the
RWMD andWCD.

k1 \b 0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.00

1.20 26.68 35.18 38.15 39.12 38.88 38.08 35.12 33.88

1.32 28.69 35.42 38.39 39.21 38.95 38.22 35.01 33.55

1.44 28.59 35.54 38.29 39.14 39.00 38.10 34.96 33.48

1.56 28.55 35.47 38.37 39.23 39.02 38.05 34.93 33.30

1.68 28.67 35.25 38.30 39.14 38.99 37.99 34.79 33.13

1.80 28.65 35.13 38.25 39.10 38.94 37.25 34.68 32.95

1.92 28.64 35.19 38.23 39.15 39.05 36.90 34.59 32.77

2.00 28.62 35.19 38.18 39.10 39.00 36.86 34.50 32.69

Table 4.7: Mean Average Precision (µAP) values of a 8 × 8 grid-search with k = 2000. It
is noticeable that k1 —which controls the weight of term frequencies — does not have
much impact. Only the choice of b has a considerable effect on the scores which hints
that the normalisation regarding document length is an important factor whenworking
with this corpus.
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Figure 4.9: Evolution of Recall, Precision and Average Precision averaged over all topics
when increasing the number of search results. The increase in µAP becomes negligible
as soon as the Precision approaches zero. The dashed line marks the threshold chosen
for pre-selection.

Results

The baseline experiment using only BM25 reached a µAP of around 39 with k =

2000. As displayed in Figure 4.9, this value is not changing much from 250 re-
sults on. Thus this is chosen as the pre-selection threshold. Table 4.8 shows the
outcome. The BM25 (Ungol) implementation is the one also used in the formerly
described pre-selection experiment and is used to ensure that it does not differ
from the score calculated by Elasticsearch. The results show that the RHWMD
is not able to re-rank the results such that they improve the final Mean Average
Precision.

There aremultiple reasons why the RHWMD is not able to improve the BM25
ranking: First there is a fundamental problem regarding the approach if word
identity is the most important indicator for similarity. Consider the following
sample query from the evaluation data and the corresponding relevant article:

Topic 161: Finde Berichte, die Ernährungsprobleme von Sprue- bzw.
Zöliakie-Erkrankten diskutieren.

SDA.950912.0104 Rom, 12. Sept. (sda/apa) Seminaristen, die unter
Alkoholismus oder an Zöliakie (einer Mehl-Allergie) leiden und da-
mit nicht die Eucharistie in der vorgegebenen Form mit Brot und
Wein feiern könnten, dürfen nicht zur Priesterweihe zugelassenwer-
den. (...)

68



Algorithm µAP

rhwmd.big 20.49

rhwmd.min 20.49

rhwmd.max 35.05

rhwmd.small 35.08

rhwmd.sum 38.30

bm25 (Elasticsearch) 38.40

bm25 (Ungol) 38.65

Table 4.8: Mean Average Precision for the different scoring algorithms when re-ranking
250 documents pre-selected by Elasticsearch’s BM25 implementation.

Figure 4.10: This plot displays the Recall and Average Precision per topic. Only some of
the topics are promising candidates for re-ranking: Those with high or maximum Aver-
age Precision can hardly be improved. The topics with low or zero Recall do not offer
any or many true positives to be ranked better.
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token nn sim tf(token) idf(token) idf(nn) weight

comparing Topic 161 to FR940501-000387 - score: 1.510110

zöliakie erkrankungen 0.738 0.100 11.900 5.614 0.187

erkrankten erkrankten 1.000 0.100 6.363 6.363 0.135

diskutieren diskutieren 1.000 0.100 4.760 4.760 0.101

finde habe 0.758 0.100 5.330 1.469 0.086

ernährungs gesundheit 0.754 0.100 5.999 4.569 0.096

bzw und 0.770 0.100 5.027 0.095 0.082

berichte berichtete 0.809 0.100 4.304 3.187 0.074

probleme probleme 1.000 0.100 3.020 3.020 0.064

von von 1.000 0.100 0.221 0.221 0.005

die die 1.000 0.100 0.050 0.050 0.001

Table 4.9: This table shows the detailed score calculation for the highest ranked false-
positive RHWMD search result for Topic 161. For brevity only theQuery-to-Document cal-
culation is shown. Thecorresponding candidatedocumenthas326unique tokens. Thus
the probability of finding an exact match or a nearest neighbour with a great similarity
value is high.

This topic only has one relevant document. As the evaluation reveals, this is
ranked as the top result by BM25 but re-ranked by RHWMD such that some other
results are ranked higher and the µAP drops to 33%. Table 4.9 displays the de-
tails for the incorrectly top-ranked RHWMD choice. This document covers the
problems concerning the sarcophagus built to reduce the impact of the Tscher-
nobyl nuclear accident and the ramifications for humans and wildlife. The high-
est contribution to the score of a single value stems from themapping of zöliakie
to erkrankungen. This is perfectly reasonable and actually an indicator that the
algorithm works as intended. It impairs the evaluation however as the formerly
well matched BM25 results are diluted by these more fuzzy results.

Doing a pre-selectionwith BM25 leads to a candidate setwhich heavily relies
on word identity. If the candidates which would be ranked highly with RHWMD
areeliminatedapriori than theapproach is impairedby thepre-selection in such
away that the re-ranking by RHWMD is only able to approach the BM25 baseline.
To explore this reasoning further Figure 4.11 shows the difference between the
MeanAveragePrecisionof theBM25andRHWMDranking. Thereall negativebars
show where the RHWMD ranked worse than BM25 and hence are candidates for
a further analysis to improve the RHWMD performance on this data set.
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Figure 4.11: This plot shows the difference between the µAP of BM25 and RHWMD. The
total difference evens out as they both achieve the same evaluation score. If the differ-
ence is negative, than BM25 ranked better and for positive bars RHWMD ranked better.
This shows that the same evaluation performance is achieved although the algorithms
largely score differently.

The findings reveal that the two algorithms rank the documents quite dif-
ferently while exhibiting the same performance on the data set. If the two ap-
proaches would have ranked the same documents to the same places than this
would have been an indicator that the similarity measure and fuzzy search for
neighbours is not contributing to the score and the IDF dominates the search
results.

Basedon thisobservation, anexample is selectedwhichhighlights thestrength
of RHWMD in Table 4.10 in contrast to BM25. The task in Topic 161 is to find ar-
ticles discussing a specific soccer game between England and Ireland. It was
stopped throughout and the articles to be returned must explain why that hap-
pened. Here, the articles ranked high with BM25 also discuss the political rela-
tions of England and Ireland regarding the Irish Republican Army and the still
ongoing national conflict at this time. This is reasonable as Irland, England and
Ausschreitungen are often recurring terms in these documents.
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token nn sim tf(token) idf(token) idf(nn) weight

comparing Topic 161 to FR940501-000387 - score: 1.510110

irisches irland 0.742 0.008 9.226 5.042 0.022

dublin dublin 1.000 0.024 6.225 6.225 0.020

freundschaftsspiel fußball 0.738 0.008 7.884 3.715 0.019

ausschreitungen ausschreitungen 1.000 0.008 5.782 5.782 0.019

krawallen ausschreitungen 0.781 0.008 7.295 5.782 0.018

row finde 0.688 0.008 8.211 5.330 0.018

randalierer ausschreitungen 0.777 0.008 7.247 5.782 0.018

rowdies ausschreitungen 0.660 0.008 8.450 5.782 0.018

landfriedensbruchs ausschreitungen 0.699 0.008 7.757 5.782 0.018

birmingham england 0.738 0.008 6.924 4.701 0.017

Table 4.10: The ten highest contributors to the score from the Document-to-Query per-
spective for Topic 161. The strengths of the RHWMD procedure are visible here: many
words such as rowdies, randalierer or krawallen contribute highly to the score as they
are all related to the query term ausschreitungen.
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Chapter 5

Discussion

This work introduced the Relaxed Hamming Word Movers Distance (RHWMD)
as an approach reduce the computational costs of the Word Movers Distance
(WMD). This cost reduction is mainly owed to the transformation of real-valued
word embeddings to binary hash codes using a neural auto-encodermodel. It is
shown that the neuralmodel produces hash codeswhich preserve the spatial in-
formation of the original embedding space well. The RHWMD proof-of-concept
implementationproduces competitive results onaGerman information retrieval
task. All in all it is demonstrated that this approach is worth exploring further as
its’ full potential is not yet uncovered: The introduction of free parameters to
tune the scoring function, domain specific embedding vectors and a fitting ap-
proach for candidate pre-selection are themost promising directions for further
research. Also only one Information Retrieval (IR) data set is used for evaluation.
Itmight be interesting howwell the RHWMDworks on other IR data sets, for doc-
ument clustering or classification using k-nearest neighbours (K-NN). However
there is room for improvement and some possible extensions to themethod are
discussed in this chapter. Additionally, some of the experimental results are re-
viewed in more detail here to find explanations for the observed behaviour.

5.1 Online Code Generation

The Ungol Index can be updated by adding new documents at every time1. A
challengearises forwords forwhichnohashcodeexistsasoutlined inSection4.2.4.
Not implemented in this work but theoretically possible is the ad-hoc creation
of new hash codes for unknown words and a full replacement of the Out of Vo-
cabulary (OOV) -Strategy currently applied. One requirement must be fulfilled:

1Multiprocessing concerns aside.
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An embeddingmodel must be used which can produce new codes (such as fast-
Text as introduced in Section 2.3.3 on page 19). Then the procedure regarding
OOV words looks as follows (prior to adding the document to the Ungol Index
mapping):

1. Createanembeddinget for theunknownword tusinganembeddingmodel
such as fastText.

2. Transform the embedding to a hash code by using compressΘ(tw) as de-
scribed in Section 3.1 on page 31.

3. Update the Ungol Index by adding the new code to the codemap and up-
date the Inverse Document Frequency (IDF) and vocabularymapping.

5.2 Further Speed Optimisation

The current implementation of the Ungol Index is a proof-of-concept to show
that the system works in principle. The achieved speed optimisations are hard
to optimise further in plain Python. Also, the whole implementation currently
works only with document pairs. This increases the total amount of redundant
operations if token pairs appear in multiple query-document combinations for
a single query. The following approach is suggested as the next step for speed
optimisation:

First the critical parts of computation are transferred to cython [76]. The
memory view offered by numpy is directly addressed to access the codemap of
the Ungol Index. Now a whole batch of candidate documents can be processed
at once: this works by selecting the union of all tokens of the documents and
saving them to a vector. This vector is then used in combination with the query
documents’ vector to construct the distance matrix. After selecting the minima
along each axis, for each document the relevant distances are selected.

The following example illustrates the algorithm: Consider a query document
Q with a mapping q = (q1, q2, q3) and two candidate documents D,D′ who
have some tokens in common: d = (t3, t1, t2) and d′ = (t4, t2, t1). First a vec-
tor u := (di | D ∪ D′) = (t1, t2, t3, t4) and two mappings πd = (2, 0, 1) and
πd′ = (3, 1, 0) are constructed to associate the values of the distance matrix
with the respective document. Given the function η computes theHammingdis-
tance between two hash codes and the codemap offers the respective hash code
hti for token ti, a matrixH ∈ R|q|×|u| is constructed whereHij = η(hqi , huj ).
Now, for every column the minimum distance is selected which defines the vec-
tor ũ ∈ N|u| with the nearest neighbours of all candidate document tokens to all
query document tokens:
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ũ := (u1, . . . , u|u|) with ui := min
i
Hij (5.1)

Now for each candidate document a vector q̃d ∈ N|q| is constructedwith the
nearest neighbours of the query token to the respective documents tokens. This
is done by selecting from the matrixH those columns that are relevant for the
document using the mapping π:

q̃d = (q1, . . . , q|q|) with qj := min
j
H[πd]ij (5.2)

Everything is laidoutnowtoobtain thedocument specific nearestneighbour
distances to calculate the score. The following equation defines the lookup pro-
cedure for the distance of the relevant tokens to their respective neighbours for
a document d. The distance of each query token to the respective nearest neigh-
bour is found in the respective vector dist(qi) = q̃di. The distance of each doc-
ument token to the nearest neighbour of the query document is selected from
the vector ũ:

dist(ti) := ũj with j = πd(ti) (5.3)

Regarding the implementation of η itself it has to be evaluated whether a
lookup-table based approach is still faster than using bit-operations. To further
speed up recurring computations, a cache that maps common token pairs to
their distances can be used to avoid calculating the same Hamming distances
redundantly.

5.3 Nearest Neighbour Distances

In Chapter 3, Figure 3.7 it is shown that, for at least themost frequent words, the
Euclidean and the Hamming embeddings share many nearest neighbours. This
is an indicator that the spatial properties are transferred well from one space to
the other. However, no analysis is conducted regarding the distance of the k-th
neighbour perword in comparison to the k-th neighbour of all otherwords. Con-
sider Table 2.1 given in Chapter 2 on page 17 again. It can be observed that the
20th nearest neighbour ofGott is as far away as the 5th nearest neighbour for Sa-
tan. In combinationwith the observationmade in Figures 3.5 and 3.6 on page 45
that the range of discriminatory distance is very small, the question arises how
this affects the score calculation.
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5.3.1 Rank Based Similarity Measure

Theabsolute differenceof nearest neighbour distances affects the importanceof
different words regarding their relative contribution of the final score. Consider
two documentsD = {a1, a2, . . . , b1, b2, . . . } andD′ = {a′1, a′2, . . . , b′1, b′2, . . . }.
The tokens ai, a′i are concerned with one topic, bi, b′i with another. a′i are close
nearest neighbours of ai and b′i are the first nearest neighbours of bi. Now as-
sume that the function sim calculates their similarity; sim(ai, a

′
i) 7→ [0.6, 0.9]

and sim(bi, b
′
i) 7→ [0.4, 0.7]. Hence the topic covering b is deemed less impor-

tant than topic a for the score.
The WMD and consequently RHWMD fundamentally rely on the assumption

that the embeddings express the semantic relationship through their absolute
spatial distance. The experiments conducted by the authors of theWMD and the
experiments in this work showed that this is working competitively in principle.
However, itmight bepossible to construct amore reliable scoringmechanismby
aligning these distances. Table 5.1 and Figure 5.1motivate this further. It can be
seen that there is no qualitative difference between the two neighbour groups
but distance-wise they are very far apart. Thedistances of the first nearest neigh-
bour spread over a large range. Figure 5.2 is provided to determine whether the
nearest neighbour distances relate to on the term frequency encountered while
training the embeddings. However, the plot shows that this distribution does
not correlate with the word frequency. A different distance distribution for near-
est neighbourswould be desirable: The probability of the first ten nearest neigh-
bours to be relevant is much higher than for the 100th nearest neighbour. The
lower the rank of the neighbour, the higher should the influence of the effective
distance be.

5.3.2 Similarity Normalisation

Another aspect of absolute similarity values is their distance to a perfect match.
As shown in Figure 5.1most of the first nearest neighbours (which are very good
matches) have a similarity of around 0.75 to 0.87. This sets good matches far
apart from words shared by both documents for whom a similarity of 1.0 is as-
sumed. This is especially significant given that very badmatches (1000-NN+) ex-
hibit a similarity of around 0.65 (see Figure 3.6 on page 45). So a normalisation
for the similarity values might improve the scoring. Using Equation (4.3) for cal-
culating the score given on page 49, a function f : [0, 1] 7→ [0, 1] needs to be
found and plugged into the equation.
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High Absolute Similarity Low Absolute Similarity

Position Word 1-NN Distance Word 1-NN Distance

1 größeren kleineren 0.0976562 steht stehen 0.203125

2 französisch spanisch 0.0976562 reihe vielzahl 0.207031

3 metal metalcore 0.0976562 liebe mutterliebe 0.203125

4 heimatstadt geburtsstadt 0.0976562 halten hält 0.203125

5 schlechter schlechterer 0.0976562 dienst diensten 0.207031

6 güterverkehr personenverkehr 0.0976562 wenigen einigen 0.207031

7 eurovision contest 0.0976562 kiel kieler 0.203125

8 rowohlt reinbek 0.0976562 lauf läufe 0.207031

9 övp spö 0.0976562 werner heinz 0.203125

10 völlig vollkommen 0.0976562 dieses weiteres 0.207031

Table 5.1: Randomly sampled examples from two different distance ranges. The accom-
panying Figure 5.1 displays the distribution of these 1-NN among others for the most
frequent words in Hamming space.

Figure 5.1: The distance distribution of some selected k-NN for the 40k words most fre-
quently encounteredwhile training the embeddings. The distance values are calculated
in Hamming space based on the binary hash representations.
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Figure 5.2: Noobvious correlation recognisable: Frequencies of the 40kmost frequent k-
NN in Hamming space (see Figure 5.1 for colour reference) plotted with their respective
distance to the output word. There are four data points per frequency value and the
point at 1.0 is the most frequent word of the vocabulary.

s : D ×D 7→ [0, 1]

s(d, d′) :=
∑
t∈d

n-idf(t) · f
(
1− η(ht, ht′)

) (5.4)

This similarity transformation does not need to necessarily move the high
similarities further towards 1 - it has to be examined howmuchmore important
word identity is in regards to scoring. This might as well be a property specific
to the respective purpose or domain the RHWMD is applied to. All the more, in-
troducing such a function f as a free parameter might allow for increasing the
performance specific to the respective needs.

5.3.3 Nearest Neighbour IDF

An observation was made for documents of unequal size: Calculating the score
from the direction of the larger document requires finding a nearest neighbour
in the smaller document for everyword. This results—especially for documents
which do not have much in common — to a situation where many words are
mapped to the most generic words of the smaller documents. The training ob-
jective of the embedding trainers presented in Section 2.3 force very common
words, such as pronouns and prepositions which occur in nearly every context,
to be as close to every other word as possible. For unrelated documents, rare
words contribute veryhighly to the scorebecause the similarity between thebad
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mapping is boosted greatly by the high IDF value. Combining both IDF values
might be a promising approach. Another method is proposed by Huang et al.
[25]. They extend the WMD with a supervised metric learning step and call their
approach Supervised Word Movers Distance (S-WMD). The basic idea is to re-
weight the words such that they influence the distance the WMD computes.

5.4 Pre-Selection using an Inverted Index

One of the main reasons Lucene and consequently Elasticsearch are so fast is
the inverted index. As discussed briefly in Section 2.1.1 on page 12 this index
uses token identities to assemble the set of candidate documents. The succes-
sive scoring mechanisms such as Best-Match 25 (BM25) or Vector Based Scoring
(VBS) can work reliably on the candidate set because they too fundamentally
work with token identity. To increase the set of candidate documents, synonym
lists or paraphrase databases can be consulted. As the re-ranking experiment in
Section 4.4.2 on page 66 et seqq. revealed this is not readily possible for the
RHWMD. It is not even desirable as the strength of the RHWMD in contrast to
methods such as BM25 should be the ability to score semantically close docu-
ments regardless of word identity.

A different approach may be promising: As discussed in Section 2.4.3 on
page26, theapproachofKusneretal. [35]uses theWordCentroidDistance (WCD)
to effectively pre-select candidates because it forms a lower bound to the Earth
Movers Distance (EMD) (Rubner et al. [56]). It may be possible to construct a set
of clusters using theWCD and the inverted index returns documents assigned to
these clusters. However, the authors of the WMD hint that the WCD is not a very
tight bound and as such too many documents may fall into one cluster. Also, it
is not explored howwell the WCD is actually apt for clustering.

Instead of consulting the real-valued embeddings, some clustering directly
in Hamming spacemay also be suitable for building the inverted index. The fun-
damental idea is to work out efficiently which code of the to be indexed doc-
ument belongs to which cluster. Norouzi et al. [46] implement a fast nearest
neighbour search algorithm relying on k-means clustering. A different approach
is to implement a k-medoid clustering [31] using the Hamming distance as the
similarity measure. The greatest challenge for this approach are the incremen-
tal updates to the indexwhennewdocuments are inserted. This includes adding
new clusters if necessary and the recalculation of the cluster centres.

Finally, instead of clustering, a fast K-NN searchmight better include promis-
ingcandidates for re-ranking. The resultsof Section4.4.2 showed that re-ranking
a pre-selection using an inverted index and BM25 did not work well. To include
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promisingdocuments thatarediscardedbecause theirwordoverlap is toosmall,
a fast K-NN search for related words may augment the candidate set such that
relevant documents are rankedhighby theRHWMD. An implementation for such
a fast exact K-NN search is proposed by Norouzi et al. [47].

5.5 Quality of Word Embeddings

All retrieval evaluation took place using German fastText embeddings. From ex-
emplary evaluation there is noise. Consider for example Table 2.1 on page 17.
There „gott is one of the first nearest neighbours of gott. It is completely un-
necessary to have such a word in the vocabulary; especially given that some
preprocessing takes place before documents are added to the Ungol Index (Sec-
tion 4.2.3 on page 58). Reducing the vocabulary while training the embedding
model may lead to better embeddings as there are automatically more distinct
samples. This leads to the second point: Given that embeddings are also the
product of a training procedure one of the greater strength of this whole ap-
proach is the possibility to train domain specific embeddings. It is both possible
to fine-tune a pre-trained embedding model or train a model from scratch. It is
not explored in this work whether this improves the retrieval performance but it
is a promising direction to explore.
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Chapter 6

Appendix

6.1 Observations Regarding Codebooks

In this section the basis vectors saved in the codebooks are analysed to obtain
a deeper understanding of the model. The main points of interest focus on the
basis vectors norms anddistances to eachother. Figure 6.1 shows a t-SNE [39] vi-
sualisation of the codebook vectors reduced to twodimensions. Here—without
any deeper exploration — distinct clusters emerge which motivates an analysis
of the vector’s norm distributions. Figure 6.2 shows how the vector norms are
distributed. The different bars are calculated as follows:

1. The embedding vector norm describes the mean p2-norm of each em-
bedding vector. Given a vocabulary E = (e1, . . . , eN ) of sizeN is simply
obtained by calculating:

1

N

N∑
i=1

|| ew ||2 (6.1)

2. The codebookvector norm, uses the same calculation rule as the embed-
ding vector norm. The vocabulary consists of theM ·K basis vectors.

3. The cluster distance norm describes the mean distance of each cluster
to all other cluster. The cluster centre αc is calculated given each cluster
c ∈ {1, . . . ,M} containing K basis vectors {vc

1, . . .vc
K}. For obtaining

themean distance of all clusters to each other, the distance of all possible
cluster combinations πM2 is calculated:

1

M !

∑
i,j∈πM

2

||αi − αj ||2 with αc :=
1

K

K∑
i=1

vc
i (6.2)
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(a) Distribution after 200 epochs. (b) Distribution after 800 epochs.

Figure 6.1: Two t-SNE plots of two different training states of aM = 16,K = 32model.
Each data point represents a single basis vector selected from the codebooks. It can be
observed how 16 distinct clusters are formed while training. The colours are assigned
codebook-wise, indicating that vectors belonging to the same codebook also exhibit
some relation in the latent vector space.

4. The cluster radius is simply the average distance of the vectors belonging
to a cluster to it’s cluster centre. As all cluster vectors are equidistant to the
cluster centre simply selecting any of them and computing the distance
suffices:

1

M

M∑
c=1

||αc − vc
i ||2 for any i ∈ {1, . . .K} (6.3)

The findingswere found to be consistent over all differentmodel configurations.

6.2 Implementation Lookup

To quickly find the implementation in the provided code base, a mapping of
equation to the respective position is given in the following list:

Chapter 2: Essentials

• Okapi BM25: Equation (2.3) page 15

– ungol-wmd / ungol.wmd.sim.bm25

• TF-IDF: Equation (2.2) page 14

– ungol-wmd / ungol.wmd.sim.tfidf
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Figure 6.2: This plot displays the size of the different norms. It can be observed that the
average norm of codebook vectors corresponds approximately to the average embed-
ding vectors’ norm. The cluster radius shows that the vectors forming a cluster are very
dense while the cluster centres are very far apart.

Chapter 3: Compressor

• Compressor: Equation (3.2) page 32

– ungol-models / ungol.models.embcompr.Compressor

• Encoder: Equation (3.3) page 34

– ungol-models / ungol.models.models.Encoder

• Gumbel Softmax: Equation (3.6) page 35

– ungol-models / ungol.models.models.Gumbel

• Decoder: Equation (3.8) page 36

– ungol-models / ungol.models.models.Decoder

Chapter 4: chapter

• RH-WMD: Section 4.1.1 Equation (4.5)

– ungol-wmd / ungol.wmd.sim.rhwmd

• Hamming Distance: Section 4.1.1 Equation (4.5)

– ungol-wmd / ungol.wmd.rhwmd.hamming_bincount
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– ungol-wmd / ungol.wmd.rhwmd.hamming_bitmask

– ungol-wmd / ungol.wmd.rhwmd.hamming_lookup

• Distance Matrix Computation: Section 4.1.1 Equation (4.5)

– ungol-wmd / ungol.wmd.rhwmd.distance_matrix_loop

– ungol-wmd / ungol.wmd.rhwmd.distance_matrix_vectorized

– ungol-wmd / ungol.wmd.rhwmd.distance_matrix_lookup

• Database Population: Section 4.2.3

– ungol-es / ungol.experiments.setup.do_ungol_setup_articles

– ungol-es / ungol.experiments.setup.do_ungol_setup_topics

• Mean Average Precision: Section 4.3.3 Equation (4.13)

– ungol-es / ungol.experiments.stats.TopicStats
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Glossary

µAP Mean Average Precision. 66–71

AOT Ahead-of-Time (Compilation). 55

AP Average Precision. 69

B Number of bytes per code; 18M . 53, 54

b One of two BM25 hyper-parameters. 14, 65

BM25 Best-Match 25. 8, 11, 14, 23, 47, 50, 65–71, 79, 85, 86

BOW Bag of Words. 11–13, 23

CBOW Continuous Bag of Words. 18, 19, 23, 29

CLEF Conference and Labs of the Evaluation Forum. 61, 64

D A corpus; collection of text documents. 13–15, 26, 27

DF Document Frequency. 14, 58, 62

E Word embedding dimensionality. 19, 26, 31, 32, 36

EMD Earth Movers Distance. 23, 24, 79

ES Elasticsearch. 12

fastText WordEmbeddingModel using Subword Information. 11, 16, 17, 20, 31,
38, 41, 74, 80

GloVe Global Vectors for Word Representation. 11, 18, 22, 23, 29–31

IDF Inverse Document Frequency. 14, 49, 50, 52, 56, 58–60, 71, 74, 79
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IR Information Retrieval. 6–8, 12, 28, 47, 73

JIT Just-in-Time (Compilation). 55

K Code component domain. 32, 34–37, 39, 41, 42, 44

k1 One of two BM25 hyper-parameters. 14, 65, 67

K-NN k-nearest neighbours. 27, 73, 79, 80

LDA Latent Dirichlet Allocation. 17

LDI Latent Dirichlet Indexing. 17

LSA Latent Semantic Analysis. 16

LSH Locality Sensitive Hashing. 27, 28

LSI Latent Semantic Indexing. 16

M Number of codebooks; the codes’ length. 32, 36, 37, 41, 43, 44, 48, 53, 62, 85

N Vocabulary size; i.e. number of unique words. 13, 18–22, 24–27, 31, 55

NBOW Normalised Bag of Words. 13, 24, 26, 28

NLP Natural Language Processing. 6, 11, 18

OOV Out of Vocabulary. 60, 73, 74

PCA Principle Component Analysis. 28

pLSA Probabilistic Latent Semantic Analysis. 17

pLSI Probabilistic Latent Semantic Indexing. 17

PPMI Positive Pointwise Mutual Information. 18, 20–22

R Recall. 69

RBM Restricted Boltzman Machine. 28

RHWMD Relaxed Hamming Word Movers Distance. 1, 8, 9, 11, 27, 47, 48, 50, 54,
56, 60, 63–68, 70–73, 76, 78–80, 87

RWMD Relaxed Word Moving Distance. 1, 25–27, 30, 47, 48, 66, 67
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Skip-Gram Part of Word2Vec. 18, 19, 30

SVD Singular Value Decomposition. 16, 17

S-WMD Supervised Word Movers Distance. 79

TC Term Count. 14, 51, 57, 58

TF Term Frequency. 14, 16, 26, 58, 62

TF-IDF Term Frequency-Inverse Document Frequency. 1, 8, 11, 14, 16, 47, 50,
65, 66

Ungol Project name for this works’ implementation. Sindarin for “Spider”.. 68,
69

Ungol Index Data structure holding all necessary data to compute the RHWMD.
8–10, 56, 57, 60, 62, 73, 74, 80

V Collection of all tokens of the vocabulary. 18, 49

VBS Vector Based Scoring. 79

WCD Word Centroid Distance. 26, 27, 66, 67, 79

WMD Word Movers Distance. 1, 8, 11, 23, 24, 26, 27, 47, 65–67, 73, 76, 79

Word2Vec Predictive Word Embedding Model Family. 18–20, 29

X Word embedding space. 19, 20, 22, 26, 27, 31
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