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Knowledge Discovery
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KGs are an important part of industrial knowledge management
Usually knowledge engineers hand‑craft these KGs
A common task: identify and link a new domain entity
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Knowledge Discovery: Challenges
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Expensive: Domain experts are required
Tedious: Uncomfortable KG maintenance
Unguided: Disregards accumulated
(unstructured) knowledge

Proposal: Use textual information to predict
entity relations
e.g. from an issue tracker

?



State of the Art
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Open‑World Knowledge Graph Completion (OW‑KGC)
Predict links of unseen (i.e. open‑world) entities
Use text data for inference

Text(s) 
describing
cylinder-a12

otto engine

knocking

P((is_part, “otto engine”)|Texts)

P((has_symptom, knocking)|Texts)



Closing the Gap
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Several benchmarks exist [1, 2, 3]
Open‑world entities are randomly drawn
Concise single‑sentence descriptions

Unrealistic?
1. There is fixedworld knowledge

e.g. all mechanical parts suffer wear and tear
2. The unstructured text corpora only offer incidental mentions

(but there may be many of those + noise)



Outline
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1. Benchmark construction
Formulate split criteria for open‑world/closed‑world splits
Sample textual information for these datasets
Try it on current KGC benchmark datasets

2. Model approach
A neural, multi‑context approach to OW‑KGC
Studies and experiments
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Benchmark Construction (IRT)



Open‑World/Closed‑World ‑Split
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Reference implementations:
IRT‑FB based on FB15k‑237 [4]
IRT‑CDE based on CoDEx [5]

Graph: G = (E,R,T)
Triple‑set (h, r, t) ∈ T ⊂ E× R× E
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Open‑World/Closed‑World ‑Split
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Graph: G = (E,R,T)
Triple‑set (h, r, t) ∈ T ⊂ E×R×E
Split entities:

closed‑world: Ec

open‑world: Eo = E\Ec

E
Eo

Ec



Open‑World/Closed‑World ‑Split
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Graph: G = (E,R,T)
Triple‑set (h, r, t) ∈ T ⊂ E× R× E
Entity‑partition: Ec,Eo

Split triples:
closed‑world: Tc

(model training)
open‑world: To

(validation/test)

E
Eo

Ec

open-world triple

closed-world triple



Open‑World/Closed‑World ‑Split
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Graphs:
Gc = (Ec,R,Tc) (closed‑world)
Go = (E,R,To) (open‑world)

Constraints:
Tc ∩ To = ∅ (no test leakage)
Ec ∩ Eo = ∅ (zero‑shot)

E
Eo

Ec



Concept Entities
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Goal: Emulate world knowledge by selecting concept entities
Selection criterium: Disproportion of heads and tails

ratio(r) :=
min(|dom(r)|, |rg(r)|)
max(|dom(r)|, |rg(r)|)

For example:
353 states on 7 continents: 7

353 ' 0.0198
157 headquarters located in 66 cities: 66

157 ' 0.4203



Creating the split
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concept entities: add to Ec and Tc

open‑world entities: while |To| too small
Select randomly from remaining
E\(Ec ∪ Eo) and add to Eo and To

remaining entities: add to Ec and Tc

E
Eo

Ec



Associate Text
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Models infer links for open‑world entities using text
Required:

Incidentalmentions of the entities
Multiple contexts of these mentions



Wikipedia Link Graph
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Mentions:
FromWikipedia link‑graph
Contexts:
Use only back‑linking pages
Samples:
Select sentences randomly
we take up to 30

Bielefeld 
Conspiracy

“In 2009, film students at 
Bielefeld University started 
a project to develop a 
feature film based on the 
Bielefeld conspiracy.”

Siegen

Bielefeld

Otto III of
Ravensberg

Westphalia



Datasets
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Reference dataset statistics

IRT‑FB IRT‑CDE
entities 14541 17050
triples 310116 206205
concept entitities 2389 2548
open‑world entities 2377 4959



Model Approach July 28, 2021 Felix Hamann 14/23

Model Approach



OW‑KGC Problem Formulation
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Model:

ϕ : (E ∪ C)× R× (E ∪ C) 7→ R

Tail‑prediction:

t∗ = argmax
t′∈ E∪C

ϕ(h, r, t′)

For example:

ϕ({“north american actor”}, profession, ?)

E
Eo

Ec

high score low score



Pipeline Approach: Overview
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We employ the pipeline approach of [3]:
1. Train a KGC model on Tc

(we use DistMult [6])

KGC 
embeddings
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We employ the pipeline approach of [3]:
1. Train a KGC model on Tc

(we use DistMult [6])
2. Obtain text embeddings

(we use BERT [7])
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We employ the pipeline approach of [3]:
1. Train a KGC model on Tc

(we use DistMult [6])
2. Obtain text embeddings

(we use BERT [7])
3. Learn a projection of the text

embedding space to the KGC
embedding space

KGC 
embeddings

Text 
embeddings



Two‑Step Approach: Different Modes for the Model
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For a single entity:
Single‑context:

A: Take CLS‑ or max‑pooled ‑token(s)
P: Project n embeddings independently
Average projections for inference

BE
RT
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RT
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RT

A A A A
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For a single entity:
Single‑context:

A: Take CLS‑ or max‑pooled ‑token(s)
P: Project n embeddings independently
Average projections for inference

Multi‑context:
A:Max‑pool all CLS‑token
P: Project single embedding
Select single embedding for inference BE

RT

BE
RT

BE
RT

BE
RT

A A A A

P



Two‑Step Approach: Different Modes for the Data
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Marked: Guide the model to better recocgnise what to look for
“[CLS] The quick brown [BEG] fox [END] jumps over the lazy dog . [SEP]”

Masked: Focus on the context and not the mention identity
“[CLS] The quick brown [MASK] jumps over the lazy dog . [SEP]”

Clean: Neither withhold any information nor guide the model
“[CLS] The quick brown fox jumps over the lazy dog . [SEP]”



Experiment Results: Modes
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Impact of aggregation

IRT‑FB IRT‑CDE
Mode Inst. Agg. H@10 H@10

baseline 17.08 16.11
marked single max† 19.75 26.22
marked single max 19.47 19.50
marked single cls 22.75 32.15
marked multi cls 26.86 36.18
clean single max† 20.29 25.88
clean single max 25.34 21.76
clean single cls 25.45 31.65
clean multi cls 29.60 31.39

masked single max† 18.61 25.00
masked single max 23.69 19.71
masked single cls 27.62 33.77
masked multi cls 34.18 40.67
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Different text modes

IRT‑FB IRT‑CDE
Mode Inst. Agg. H@10 H@10

baseline 17.08 16.11
marked single max† 19.75 26.22
marked single max 19.47 19.50
marked single cls 22.75 32.15
marked multi cls 26.86 36.18
clean single max† 20.29 25.88
clean single max 25.34 21.76
clean single cls 25.45 31.65
clean multi cls 29.60 31.39

masked single max† 18.61 25.00
masked single max 23.69 19.71
masked single cls 27.62 33.77
masked multi cls 34.18 40.67



Experiment Results: Modes
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Single‑ vs. multi‑context

IRT‑FB IRT‑CDE
Mode Inst. Agg. H@10 H@10

baseline 17.08 16.11
marked single max† 19.75 26.22
marked single max 19.47 19.50
marked single cls 22.75 32.15
marked multi cls 26.86 36.18
clean single max† 20.29 25.88
clean single max 25.34 21.76
clean single cls 25.45 31.65
clean multi cls 29.60 31.39

masked single max† 18.61 25.00
masked single max 23.69 19.71
masked single cls 27.62 33.77
masked multi cls 34.18 40.67



Experiment Results: Context Sizes
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Experiment Results: Other Text Data
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Concise vs. noisy text samples:

IRT‑FB IRT‑CDE
H@10 H@10

baseline our text 1 7.22 8.09
their text 1 14.51 15.14

cls agg. our text 1 19.77 32.03
their text 1 30.25 45.73

multi‑ctx our text 30 34.18 40.67

theirs/IRT‑FB:Wikidata descriptions assigned in FB15k‑237‑OWE [3]
theirs/IRT‑CDE: First sentence of associated Wikipedia page provided in CoDEx [5]



Thank you
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Thank you!
Get the dataset: https://github.com/lavis‑nlp/irt
Get the models: https://github.com/lavis‑nlp/irtm
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