

Open-World Knowledge Graph Completion Benchmarks for Knowledge Discovery

Felix Hamann, Adrian Ulges, Dirk Krechel, Ralph Bergmann

July 28, 2021

- KGs are an important part of industrial knowledge management
- Usually knowledge engineers hand-craft these KGs
- A common task: identify and link a new domain entity

- Expensive: Domain experts are required
- Tedious: Uncomfortable KG maintenance
- Unguided: Disregards accumulated (unstructured) knowledge
- Proposal: Use textual information to predict entity relations
 e.g. from an issue tracker

- Open-World Knowledge Graph Completion (OW-KGC)
- Predict links of unseen (i.e. open-world) entities
- Use text data for inference

- Several benchmarks exist [1, 2, 3]
 - Open-world entities are randomly drawn
 - Concise single-sentence descriptions
- Unrealistic?
 - 1. There is fixed **world knowledge**
 - e.g. all mechanical parts suffer wear and tear
 - 2. The unstructured text corpora only offer **incidental mentions** (but there may be many of those + noise)

Outline

1. Benchmark construction

- Formulate split criteria for open-world/closed-world splits
- Sample textual information for these datasets
- Try it on current KGC benchmark datasets

2. Model approach

- A neural, multi-context approach to OW-KGC
- Studies and experiments

Benchmark Construction (IRT)

- Reference implementations:
 - IRT-FB based on FB15k-237 [4]
 - IRT-CDE based on CoDEx [5]
- Graph: G = (E, R, T)
- Triple-set $(h, r, t) \in T \subset E \times R \times E$

Ε Ο Ο F٥ 0 0 Ec Ο Ο 00 Ο

- Graph: G = (E, R, T)
- Triple-set $(h, r, t) \in T \subset E \times R \times E$
- Split entities:
 - closed-world: E^c
 - open-world: $E^o = E \setminus E^c$

open-world triple

F F₀ Fc С closed-world triple

- Graph: G = (E, R, T)
- Triple-set $(h, r, t) \in T \subset E \times R \times E$
- Entity-partition: E^c, E^o
- Split triples:
 - closed-world: T^c (model training)
 - open-world: T^o (validation/test)

- Graphs:
 - $G^c = (E^c, R, T^c)$ (closed-world)
 - $G^o = (E, R, T^o)$ (open-world)
- Constraints:
 - $T^{c} \cap T^{o} = \emptyset$ (no test leakage)
 - $E^c \cap E^o = \emptyset$ (zero-shot)

- Goal: Emulate world knowledge by selecting **concept entities**
- Selection criterium: Disproportion of heads and tails

$$ratio(r) := \frac{\min(|\text{dom}(r)|, |\text{rg}(r)|)}{\max(|\text{dom}(r)|, |\text{rg}(r)|)}$$

- For example:
 - 353 states on 7 continents: $\frac{7}{353} \simeq 0.0198$
 - 157 head quarters located in 66 cities: $\frac{66}{157}\simeq 0.4203$

LAVIS Applie

- concept entities: add to E^c and T^c
- open-world entities: while |T^o| too small
 - Select randomly from remaining $E \setminus (E^c \cup E^o)$ and add to E^o and T^o
- remaining entities: add to E^c and T^c

- Models infer links for open-world entities using text
- Required:
 - Incidental mentions of the entities
 - Multiple **contexts** of these mentions

SLAVIS

RheinMain Universit of Applied Sciences

Mentions:
From Wikipodia link

From Wikipedia link-graph

Contexts:

Use only back-linking pages

Samples:

Select sentences randomly we take up to 30

Datasets

Reference dataset statistics

	IRT-FB	IRT-CDE
entities	14541	17050
triples	310116	206205
concept entitities	2389	2548
open-world entities	2377	4959

Model Approach

Model:

$$\phi:(E\cup C)\times R\times (E\cup C)\mapsto \mathbb{R}$$

Tail-prediction:

 $t^* = \operatorname*{argmax}_{t' \in E \cup C} \phi(h, r, t')$

For example:

 ϕ ({"north american actor"}, *profession*,?)

RheinMain University of Applied Sciences

- We employ the pipeline approach of [3]:
 - 1. Train a KGC model on *T*^c (we use DistMult [6])

- We employ the pipeline approach of [3]:
 - Train a KGC model on T^c (we use DistMult [6])
 - 2. Obtain text embeddings (we use BERT [7])

- We employ the pipeline approach of [3]:
 - Train a KGC model on T^c (we use DistMult [6])
 - 2. Obtain text embeddings (we use BERT [7])
 - 3. Learn a **projection** of the text embedding space to the KGC embedding space

For a single entity:

- Single-context:
 - A: Take CLS- or max-pooled -token(s)
 - **P:** Project *n* embeddings independently
 - Average projections for inference

For a single entity:

- Single-context:
 - A: Take CLS- or max-pooled -token(s)
 - **P:** Project *n* embeddings independently
 - Average projections for inference

Multi-context:

- A: Max-pool all CLS-token
- **P:** Project single embedding
- Select single embedding for inference

- Marked: Guide the model to better recorgnise what to look for
 - "[CLS] The quick brown [BEG] fox [END] jumps over the lazy dog . [SEP]"
- Masked: Focus on the context and not the mention identity
 - "[CLS] The quick brown [MASK] jumps over the lazy dog . [SEP]"
- Clean: Neither withhold any information nor guide the model
 - "[CLS] The quick brown fox jumps over the lazy dog . [SEP]"

IDT ED | IDT CDE

Impact of aggregation

			INI-FD	INI-CDE
le	Inst.	Agg.	H@10	H@10
]	baseline		17.08	16.11
ced	single	max†	19.75	26.22
ced	single	max	19.47	19.50
ced	single	cls	22.75	32.15
ced	multi	cls	26.86	36.18
n	single	max†	20.29	25.88
n	single	max	25.34	21.76
n	single	cls	25.45	31.65
n	multi	cls	29.60	31.39
ced	single	max†	18.61	25.00
ced	single	max	23.69	19.71
ced	single	cls	27.62	33.77
ced	multi	cls	34.18	40.67
	le sed sed sed sed in in in sed sed sed sed	Image: det singlesin	Inst.Agg.baselinebaselinetedsinglemax†tedsingleclstedsingleclstedsinglemax†tedsingleclstedsingleclstedsingleclstedsingletelstedsingletelstedsinglemax†tedsinglemaxtedsingletelstedsingletelstedsingletelstedsingletelstedsingletelstedsingletels	Inst.Agg.H@10baseline17.08kedsinglemax†singlemax19.75kedsingleclssinglecls22.75kedmulticlskedsinglemax†singlemax†20.29kedsingleclskedsingleclskedsingleclskedsinglekedked

IDT ODT

TOT TO

RheinMain University of Applied Sciences

Different text modes

		IKI-FD	IKI-UDE
Inst.	Agg.	H@10	H@10
baseline		17.08	16.11
single	max†	19.75	26.22
single	max	19.47	19.50
single	cls	22.75	32.15
multi	cls	26.86	36.18
single	max†	20.29	25.88
single	max	25.34	21.76
single	cls	25.45	31.65
multi	cls	29.60	31.39
single	max†	18.61	25.00
single	max	23.69	19.71
single	cls	27.62	33.77
multi	cls	34.18	40.67
	Inst. Daseline single single multi single single single single single single single single single single	Inst.Agg.baselinemax1singlemaxsingleclsmulticlssinglemax1singleclsmulticlssingleclsmulticlssingleclssingleclssingleclssingleclssingleclssingleclssingleclssingleclssingleclsmulticlsmulticls	Inst. Agg. H@10 baseline 17.08 single max† 19.75 single max 19.47 single cls 22.75 multi cls 26.86 single max† 20.29 single max† 20.29 single cls 25.34 single cls 25.45 multi cls 29.60 single max† 18.61 single max 23.69 single cls 27.62 multi cls 34.18

IDT_FR | IDT_CDF

RheinMain University of Applied Sciences

Single- vs. multi-context

				IKI-FD	INI-CDE
	Mode	Inst.	Agg.	H@10	H@10
I	1	baseline		17.08	16.11
	marked	single	max†	19.75	26.22
	marked	single	max	19.47	19.50
	marked	single	cls	22.75	32.15
	marked	multi	cls	26.86	36.18
	clean	single	max†	20.29	25.88
	clean	single	max	25.34	21.76
	clean	single	cls	25.45	31.65
	clean	multi	cls	29.60	31.39
	masked	single	max†	18.61	25.00
	masked	single	max	23.69	19.71
	masked	single	cls	27.62	33.77
	masked	multi	cls	34.18	40.67

RheinMain University of Applied Sciences

Concise vs. noisy text samples:

			IRT-FB	IRT-CDE
			H@10	H@10
hacalina	our text	1	7.22	8.09
Dasenne	their text	1	14.51	15.14
ale agg	our text	1	19.77	32.03
cis agg.	their text	1	30.25	45.73
multi-ctx	our text	30	34.18	40.67

- theirs/IRT-FB: Wikidata descriptions assigned in FB15k-237-OWE [3]
- theirs/IRT-CDE: First sentence of associated Wikipedia page provided in CoDEx [5]

Thank you!

- Get the dataset: https://github.com/lavis-nlp/irt
- Get the models: https://github.com/lavis-nlp/irtm

- Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representation learning of knowledge graphs with entity descriptions. In 30th AAAI, 2016.
- [2] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. arXiv preprint arXiv:1711.03438, 2017.
- [3] Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich Schwanecke, and Faisal Shafait. An open-world extension to knowledge graph completion models. In 33rd AAAI, 2019.
- [4] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text inference. In Proceedings of the 3rd Workshop for IJCNLP, pages 57–66. ACL, July 2015.
- [5] Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. In Proceedings of the 2020 EMNLP, 2020.
- [6] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.
- [7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.