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Industrial Knowledge Acquisition

= Topic: information extraction
= Discover and extract

= entities and their relations
= from natural text

= Possible sources: Issue tracking systems,
insurance claims, customer inquiries, . ..
= Our industrial reality:

= Unstructured text in abundance
= Scarce or no structured data
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= Constraints and tools
» Scarce graph data
» Noisy, inconcise text
+ Generic knowledge not tailored to domain
» Neural machine learning approaches

= Itis not possible to try and compare models
» Industry data needs to be labelled (expensive) E
 Even if labelled: usually confidential
= Research benchmarks unsuitable [1, 2, 3, 4] %

= Contribution:
» A benchmark which reflects our industry use-cases




Benchmark for Ranking and Linking
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= Introducing Inductive Reasoning with Text (IRT) benchmarks
= Goals to resemble industry situation:

» Study graph scarcity by varying sample size

« Scattered, inconcise text with incidental mentions

» Unknown entities are assumed to be volatile

= Using open data: Wikidata, Freebase, and Wikipedia
* Two versions IRT1 [5] & IRT2 [6]



STEP I: RANKING

...Dawn French and Stephen Fry.

Tolkien also based elements of his...

...together with Walter Moers...

...by Sir Arthur Conan Doyle in 1912...

? profession

Author

text collection (contexts)

<+

(1) query text for
relevant contexts

<

(2) query KG
for relevant facts

—

e,

knowledge graph
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STEP II: LINKING

Stephen Fry profession Author

Stephen Fry place of birth Hampstead ‘
Stephen Fry religion Atheism ‘

Stephen Fry profession Screenwriter

o

Stephen Fry ? ?
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KG:G=(V,R, T, M,C)
(h,r,t) eT CVXRXYV

* Getamention: M : V — P(M)
= Get contexts: C: M — P(C)

C(GcoLLuM) = { “In 2014, the Turkish
physician Bilgin Cift¢i shared an image
comparing Turkish President Recep Tayyip
Erdogan to GOLLUM.” ,...}
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Gollum

Node,
" Vertex,
Entity

Context
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Scattered & Inconcise Text
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C.S. Lewis
. J.R.R Tolkien
= Goal: Gather mentions and o
1 Oxford
associated text contexts «—
= We assume a weak link between ¥~ g vaxﬁgf
mentions and text + (folkdore)
l_ ’ .
1. Gather mentions using — | Lithien and
hyperlink descriptions [7] I_I | Beren

2. Sample sentences from . :
. Particularly affecting for
backlinked pages Tolkien was Ediths

N Tor1 > conversion to the Catholic
]. R. R. TOLKIEN rellglon ) Church (...) for his sake upon

their marriage”
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World Knowledge
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= Goal: Err%ulate world knowledge Relation Ratio Heads Tails
by selecting concept entities Language 0.006 9,816 62
= Selection criterium: Occupation 0.02 13,145 375
Disproportion of heads and tails Influenced by 0.8 514 590
Spouse 1 804 804

min (dom(r),rg(r))

ratio(r) = max(dom(r), rg(T))



Graph Scarcity
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= Goal: Study model performance for scarce graphs
* Four (limited) views on the same data
= Hand-selected subsets of upstream dataset

Tiny Small Medium  Large

Relations 5 12 45 45
Entities 1,174 2,887 3,592 9,952
Training Triples 2,928 7,527 26,335 102,289
Training Contexts 9m  15m 17m 18m



Inductive Knowledge Graph Completion
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unknown entities

= Given a KG with (h, r, t) triples

= Predict (¢q,7,7)

= Ranking by scoring all possible triples
= Transductive scenario: “classic” KGC
= Inductive scenario:

* Queryentityq ¢ £
« Auxiliary information is text: C(M(q))

| highscore |[ lowscore |
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= Goal: Predict missing links for unknown entities
= For modern neural approaches:

» Train graph embeddings v, r and text representations ¢
c,rveCd

» Combine a neural link prediction model ¢
s(h,r,t) = ¥(vy, 1, Vy)

« With a neural text encoder ¢
c=¢(c),ceC



IKGC: Text- and Graph-Alignment
@D\VIS *

g

= Key idea: Use text representation in the graph embedding space

RheinMain University
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s(g.r,t) =v( Wo(cg)as + b, 1, v¢), ¢g € C(M(q))

C
N| ¢ projection ¢
P | textencoder | -» text-based A v ¢
representation e —-» cross
BER—{ W, b N scorer entropy
arameters
text contexts i araph
embeddings

v, r




IKGC: Text- and Graph-Alignment
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= Key idea: Use text representation in the graph embedding space

+

text contexts

S(q> T, t) = @0(

W¢(Cq)c1,s +b|r, Vt) ,Cq € C(M(q))
N———

[
¢ ot c
rojection ,
text encoder | P -» text-based A v 17
representation kee + cross
BERT W, b scorer entropy
parameters ’
graph
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IKGC: Text- and Graph-Alignment
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= Key idea: Use text representation in the graph embedding space

+

text contexts

s(g,r,t) =

w(c7r7vt)

(4

text encoder || Provection -» text-based
BERT W. b
parameters ’
graph
embeddings

v, r

,¢q € C(M(q))

A v

kge
scorer

cross
entropy
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IKGC: JOINT Model
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= End-to-end training (JOINT)
* Train closed-world embedding using text
= Cross-entropy loss

+

text contexts
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v
kee
scorer

2

cross
entropy

') o c
textencoder || PrOIection -» text-based
BERT Wb
parameters
graph
embeddings
v,r

1. joint training
(JOINT)

2. separate training
(OWE)

representations (¢ = v)

(2a) train link prediction
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IKGC: OWE Model
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= Two-step training (OWE)
* Train reference embedding on known entities

= Mean squared error loss

+

text contexts

1. joint training
(JOINT)

2. separate training
(OWE)

text encoder

—»

projection

c
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BERT
parameters

W, b

P cbased A v 1
kge -» cross
scorer entropy
graph
embeddings
v, r

(2b) align text and graph
representations (€= v)

(2a) train link prediction
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IKGC: OWE Model
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= Two-step training (OWE)
* Train reference embedding on known entities
= Mean squared error loss

+

text contexts

1. joint training
(JOINT)

2. separate training
(OWE)

o c
text encoder | P [ BEISS0R -» text-based R v @
BERT kge -» cross
scorer entropy
parameters W.b P
graph
embeddings
v, r
end-to-end |gradient flow
(2b) align text and graph (2a) train link prediction
representations (€% v)
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IKGC: Linking Results on IRT2 ]
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Linking Results using both approaches (Scorer = ComplEx [10])
| HITS@10 MRR
Model Inst. | Tiny Small Med. Large | Tiny Small Med. Large
BOW 53.82 55.18 46.43 71.38 | 33.63 34.62 29.81 50.61

JOINT single | 72.06 70.20 47.14 65.75 | 50.61 4595 33.72 48.29
JOINT multi | 73.56 74.27 53.77 65.12 | 51.28 52.39 37.50 45.26
OWE  single | 74.09 74.33 61.98 64.27 | 50.25 50.57 40.60 42.69
OWE multi | 75.39 71.49 64.41 66.36 | 53.06 47.17 43.25 45.51
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IKGC: Ranking Results on IRT2
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= Idea: Use IKGC scores for ranking
= Pre-compute scores s(c,7,t) for all t, rand ¢
= When asked (7,7, t) order c by assigned score

\ HITS@100

| Tiny Small Med. Large

BOW 2.86 4.29 6.42 14.83
JOINT single 7.91 6.78 6.37 19.47
JOINT multi | 13.28 16.17 14.38 30.68
OWE  single 6.30 8.19 6.88 10.81
OWE  multi 9.98 13.00 6.36 31.40
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= We present IRT2, a more realistic inductive benchmark
= Linking works well using both neural approaches

= Ranking promising but not ready for tooling

* Benchmark and models for download
« https://github.com/lavis—-nlp/irt2

« https://github.com/lavis-nlp/irt2m


https://github.com/lavis-nlp/irt2
https://github.com/lavis-nlp/irt2m
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