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Topic: information extraction
Discover and extract

entities and their relations
from natural text

Possible sources: Issue tracking systems,
insurance claims, customer inquiries, . . .
Our industrial reality:

Unstructured text in abundance
Scarce or no structured data
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An Industrial Benchmark
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Constraints and tools
Scarce graph data
Noisy, inconcise text
Generic knowledge not tailored to domain
Neuralmachine learning approaches

It is not possible to try and compare models
Industry data needs to be labelled (expensive)
Even if labelled: usually confidential
Research benchmarks unsuitable [1, 2, 3, 4]

Contribution:
A benchmark which reflects our industry use‑cases

?



Benchmark for Ranking and Linking
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Introducing Inductive Reasoning with Text (IRT) benchmarks
Goals to resemble industry situation:

Study graph scarcity by varying sample size
Scattered, inconcise text with incidental mentions
Unknown entities are assumed to be volatile

Using open data: Wikidata, Freebase, and Wikipedia
Two versions IRT1 [5] & IRT2 [6]



The Challenge
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text collection (contexts)

knowledge graph

STEP I: RANKING STEP II: LINKING

? profession 
Author !

Stephen Fry ? ?

(1) query text for 
relevant contexts

...Dawn French and Stephen Fry.

Tolkien also based elements of his...

…together with Walter Moers...

...by Sir Arthur Conan Doyle in 1912...

1

2

3

4
(2) query KG
for relevant facts

Stephen Fry profession Author1

Stephen Fry place of birth Hampstead2

Stephen Fry religion Atheism3

Stephen Fry profession Screenwriter4



Datamodel
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KG: G = (V ,R, T ,M, C)
(h, r, t) ∈ T ⊆ V ×R× V
Get a mention: M : V 7→ P(M)

Get contexts: C : M 7→ P(C)

C(GOLLUM) = { “In 2014, the Turkish
physician Bilgin Çiftçi shared an image
comparing Turkish President Recep Tayyip
Erdoğan to GOLLUM.” , . . . }

h tr

Q15007:Gollum
Triple

Mention

Sméagol Gollum

Context

Node, 
Vertex,
Entity



Scattered & Inconcise Text
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Goal: Gather mentions and
associated text contexts
We assume aweak link between
mentions and text
1. Gather mentions using

hyperlink descriptions [7]
2. Sample sentences from

backlinked pages
J. R. R. TOLĸıEN religion ?

Lúthien and 
Beren

“Particularly affecting for 
Tolkien was Edith’s 
conversion to the Catholic 
Church (…) for his sake upon 
their marriage”

Oxford

J.R.R Tolkien

Dwarf 
(folklore)

C. S. Lewis



World Knowledge
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Goal: Emulate world knowledge
by selecting concept entities
Selection criterium:
Disproportion of heads and tails

ratio(r) =
min

(
dom(r), rg(r)

)
max

(
dom(r), rg(r)

)

Relation Ratio Heads Tails
Language 0.006 9,816 62
Occupation 0.02 13,145 375
Influenced by 0.8 514 590
Spouse 1 804 804

Relation sub‑selection taken from the CodEx‑M
benchmark [8] to construct IRT1‑CDE and IRT2



Graph Scarcity
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Goal: Study model performance for scarce graphs
Four (limited) views on the same data
Hand‑selected subsets of upstream dataset

Tiny Small Medium Large
Relations 5 12 45 45
Entities 1,174 2,887 3,592 9,952
Training Triples 2,928 7,527 26,335 102,289
Training Contexts 9m 15m 17m 18m



Inductive Knowledge Graph Completion

September 19, 2022 Felix Hamann 10/20

Given a KG with (h, r, t) triples
Predict (q, r, ?) and (?, r, q)
Ranking by scoring all possible triples
Transductive scenario: “classic” KGC
Inductive scenario:

Query entity q /∈ E
Auxiliary information is text: C(M(q))

𝓔

high score low score

unknown entities



Approach
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Goal: Predictmissing links for unknown entities
For modern neural approaches:

Train graph embeddings v, r and text representations c
c, r, v ∈ Cd

Combine a neural link prediction model ψ
s(h, r, t) = ψ(vh, r, vt)
SOTA: triple scorer or GNNs [9, 10, 11]
With a neural text encoder ϕ
c = ϕ(c), c ∈ C
SOTA: large, pre‑trained attention models [12, 13, 14]



IKGC: Text‑ and Graph‑Alignment
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Key idea: Use text representation in the graph embedding space

s(q, r, t) = ψ
(

Wϕ(cq)CLS + b︸ ︷︷ ︸
c

, r, vt
)
, cq ∈ C

(
M(q)

)

ψ
kgc 

scorer

ɸ
text encoder

BERT
parameters

graph
embeddings

v, r

ℒ
cross

entropy

projection

W, b
text contexts

c
text-based

representation

end-to-end gradient flow
1. joint training
    (JOINT)

2. separate training
    (OWE) (2a) train link prediction(2b) align text and graph

representations ( c ≈ v )

ψ
(
ϕ(cq)CLS, r, ϕ(ct)CLS

)
also possible [1], but not studied here
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IKGC: JOINT Model
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End‑to‑end training (JOINT)
Train closed‑world embedding using text
Cross‑entropy loss

ψ
kgc 

scorer

ɸ
text encoder

BERT
parameters

graph
embeddings

v, r

ℒ
cross

entropy

projection

W, b
text contexts

c
text-based

representation

end-to-end gradient flow
1. joint training
    (JOINT)

2. separate training
    (OWE) (2a) train link prediction(2b) align text and graph

representations ( c ≈ v )



IKGC: OWE Model
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Two‑step training (OWE)
Train reference embedding on known entities
Mean squared error loss

ψ
kgc 

scorer

ɸ
text encoder

BERT
parameters

graph
embeddings

v, r

ℒ
cross
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projection

W, b
text contexts

c
text-based

representation

end-to-end gradient flow
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IKGC: Linking Results on IRT2
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Linking Results using both approaches (Scorer = ComplEx [10])
Given text, predict relations and target entities

HITS@10 MRR

Model Inst. Tiny Small Med. Large Tiny Small Med. Large

BOW 53.82 55.18 46.43 71.38 33.63 34.62 29.81 50.61
JOINT single 72.06 70.20 47.14 65.75 50.61 45.95 33.72 48.29
JOINT multi 73.56 74.27 53.77 65.12 51.28 52.39 37.50 45.26
OWE single 74.09 74.33 61.98 64.27 50.25 50.57 40.60 42.69
OWE multi 75.39 71.49 64.41 66.36 53.06 47.17 43.25 45.51
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IKGC: Ranking Results on IRT2
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Idea: Use IKGC scores for ranking
Pre‑compute scores s(c, r, t) for all t, r and c
When asked (?, r, t) order c by assigned score

HITS@100

Tiny Small Med. Large

BOW 2.86 4.29 6.42 14.83
JOINT single 7.91 6.78 6.37 19.47
JOINT multi 13.28 16.17 14.38 30.68
OWE single 6.30 8.19 6.88 10.81
OWE multi 9.98 13.00 6.36 31.40



Conclusions
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We present IRT2, a more realistic inductive benchmark
Linking works well using both neural approaches

We recommend OWE as its much less costly
Ranking promising but not ready for tooling

Future work: Learning to rank
Benchmark and models for download

https://github.com/lavis-nlp/irt2
(Benchmark and evaluation)
https://github.com/lavis-nlp/irt2m
(Models and training)

https://github.com/lavis-nlp/irt2
https://github.com/lavis-nlp/irt2m
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Thank you!
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