

Inductive Linking and Ranking in Knowledge Graphs of Varying Scale

Workshop on Text Mining and Generation September 19, 2022

Industrial Knowledge Acquisition

- Topic: information extraction
- Discover and extract
 - entities and their relations
 - from natural text
- Possible sources: Issue tracking systems, insurance claims, customer inquiries,
- Our *industrial* reality:
 - Unstructured text in abundance
 - Scarce or no structured data

- Constraints and tools
 - Scarce graph data
 - Noisy, inconcise text
 - Generic knowledge not tailored to domain
 - Neural machine learning approaches
- It is not possible to try and compare models
 - Industry data needs to be labelled (expensive)
 - Even if labelled: usually confidential
 - Research benchmarks unsuitable [1, 2, 3, 4]
- Contribution:
 - A benchmark which reflects our industry use-cases

- Introducing Inductive Reasoning with Text (IRT) benchmarks
- Goals to resemble industry situation:
 - Study graph scarcity by varying sample size
 - Scattered, inconcise text with incidental mentions
 - Unknown entities are assumed to be volatile
- Using open data: Wikidata, Freebase, and Wikipedia
- Two versions IRT1 [5] & IRT2 [6]

Datamodel

- KG: $\mathcal{G} = (\mathcal{V}, \mathcal{R}, \mathcal{T}, \mathcal{M}, \mathcal{C})$
- $(h, r, t) \in \mathcal{T} \subseteq \mathcal{V} \times \mathcal{R} \times \mathcal{V}$
- Get a mention: $M : \mathcal{V} \mapsto \mathcal{P}(\mathcal{M})$
- Get contexts: $C : \mathcal{M} \mapsto \mathcal{P}(\mathcal{C})$

C(GOLLUM) = { "In 2014, the Turkish physician Bilgin Çiftçi shared an image comparing Turkish President Recep Tayyip Erdoğan to GOLLUM.",...}

- Goal: Gather mentions and associated text contexts
- We assume a **weak link** between mentions and text
 - 1. Gather mentions using hyperlink descriptions [7]
 - 2. Sample sentences from backlinked pages
- J. R. R. TOLKIEN religion ?

- Goal: Emulate world knowledge by selecting concept entities
- Selection criterium: Disproportion of heads and tails

$$ratio(r) = \frac{\min(\operatorname{dom}(r), \operatorname{rg}(r))}{\max(\operatorname{dom}(r), \operatorname{rg}(r))}$$

Relation	Ratio	Heads	Tails
Language	0.006	9,816	62
Occupation	0.02	13,145	375
Influenced by	0.8	514	590
Spouse	1	804	804

Relation sub-selection taken from the CodEx-M benchmark [8] to construct IRT1-CDE and IRT2

- Goal: Study model performance for scarce graphs
- Four (limited) views on the same data
- Hand-selected subsets of upstream dataset

	Tiny	Small	Medium	Large
Relations	5	12	45	45
Entities	1,174	2,887	3,592	9,952
Training Triples	2,928	7,527	26,335	102,289
Training Contexts	9m	15m	17m	18m

- Given a KG with (h, r, t) triples
- Predict (q, r, ?) and (?, r, q)
- Ranking by scoring all possible triples
- Transductive scenario: "classic" KGC
- Inductive scenario:
 - Query entity $q \notin \mathcal{E}$
 - Auxiliary information is text: *C*(*M*(*q*))

unknown entities

- Goal: Predict missing links for unknown entities
- For modern neural approaches:
 - Train graph embeddings \mathbf{v},\mathbf{r} and text representations \mathbf{c} , $\mathbf{r},\mathbf{v}\in\mathbb{C}^d$
 - Combine a neural link prediction model ψ $s(h, r, t) = \psi(\mathbf{v}_h, \mathbf{r}, \mathbf{v}_t)$ SOTA: triple scorer or GNNs [9, 10, 11]
 - With a neural text encoder ϕ

 $\mathbf{c} = \phi(\mathbf{c}), \mathbf{c} \in \mathcal{C}$

SOTA: large, pre-trained attention models [12, 13, 14]

Key idea: Use text representation in the graph embedding space

 $\psi(\phi(c_q)_{\text{CLS}}, \mathbf{r}, \phi(c_t)_{\text{CLS}})$ also possible [1], but not studied here

Key idea: Use text representation in the graph embedding space

 $\psi(\phi(c_q)_{\text{CLS}}, \mathbf{r}, \phi(c_t)_{\text{CLS}})$ also possible [1], but not studied here

Key idea: Use text representation in the graph embedding space

$$s(q,r,t) = \psi(\mathbf{c},\mathbf{r},\mathbf{v}_t), c_q \in C(M(q))$$

 $\psi(\phi(c_q)_{\text{CLS}}, \mathbf{r}, \phi(c_t)_{\text{CLS}})$ also possible [1], but not studied here

SLAVIS

RheinMain University

RheinMain University of Applied Sciences

- End-to-end training (JOINT)
- Train closed-world embedding using text
- Cross-entropy loss

CLAVIS

- Two-step training (OWE)
- Train reference embedding on known entities
- Mean squared error loss

CLAVIS

- Two-step training (OWE)
- Train reference embedding on known entities
- Mean squared error loss

		HITS@10				MRR			
Model	Inst.	Tiny	Small	Med.	Large	Tiny	Small	Med.	Large
BOW		53.82	55.18	46.43	71.38	33.63	34.62	29.81	50.61
JOINT	single	72.06	70.20	47.14	65.75	50.61	45.95	33.72	48.29
JOINT	multi	73.56	74.27	53.77	65.12	51.28	52.39	37.50	45.26
OWE	single	74.09	74.33	61.98	64.27	50.25	50.57	40.60	42.69
OWE	multi	75.39	71.49	64.41	66.36	53.06	47.17	43.25	45.51

		HITS@10					M	RR	
Model	Inst.	Tiny	Small	Med.	Large	Tiny	Small	Med.	Large
BOW		53.82	55.18	46.43	71.38	33.63	34.62	29.81	50.61
JOINT	single	72.06	70.20	47.14	65.75	50.61	45.95	33.72	48.29
JOINT	multi	73.56	74.27	53.77	65.12	51.28	52.39	37.50	45.26
OWE	single	74.09	74.33	61.98	64.27	50.25	50.57	40.60	42.69
OWE	multi	75.39	71.49	64.41	66.36	53.06	47.17	43.25	45.51

		HITS@10				MRR			
Model	Inst.	Tiny	Small	Med.	Large	Tiny	Small	Med.	Large
BOW		53.82	55.18	46.43	71.38	33.63	34.62	29.81	50.61
JOINT	single	72.06	70.20	47.14	65.75	50.61	45.95	33.72	48.29
JOINT	multi	73.56	74.27	53.77	65.12	51.28	52.39	37.50	45.26
OWE	single	74.09	74.33	61.98	64.27	50.25	50.57	40.60	42.69
OWE	multi	75.39	71.49	64.41	66.36	53.06	47.17	43.25	45.51

			HITS	5@10			M	RR	
Model	Inst.	Tiny	Small	Med.	Large	Tiny	Small	Med.	Large
BOW		53.82	55.18	46.43	71.38	33.63	34.62	29.81	50.61
JOINT	single	72.06	70.20	47.14	65.75	50.61	45.95	33.72	48.29
JOINT	multi	73.56	74.27	53.77	65.12	51.28	52.39	37.50	45.26
OWE	single	74.09	74.33	61.98	64.27	50.25	50.57	40.60	42.69
OWE	multi	75.39	71.49	64.41	66.36	53.06	47.17	43.25	45.51

- Idea: Use IKGC scores for ranking
- Pre-compute scores s(c, r, t) for all t, r and c
- When asked (?, r, t) order *c* by assigned score

		HITS@100							
		Tiny	Small	Med.	Large				
BOW		2.86	4.29	6.42	14.83				
JOINT	single	7.91	6.78	6.37	19.47				
JOINT	multi	13.28	16.17	14.38	30.68				
OWE	single	6.30	8.19	6.88	10.81				
OWE	multi	9.98	13.00	6.36	31.40				

Conclusions

- CAVIS
- We present IRT2, a more realistic inductive benchmark
- Linking works well using both neural approaches
 - We recommend OWE as its much less costly
- Ranking promising but not ready for tooling
 - Future work: Learning to rank
- Benchmark and models for download
 - https://github.com/lavis-nlp/irt2 (Benchmark and evaluation)
 - https://github.com/lavis-nlp/irt2m (Models and training)

Thank you!

Bibliography I

References

- Daniel Daza, Michael Cochez, and Paul Groth. Inductive entity representations from text via link prediction. In Proceedings of the Web Conference 2021, pages 798–808, 2021.
- [2] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation. *Transactions of the Association for Computational Linguistics*, 9:176–194, 2021.
- [3] Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich Schwanecke, and Faisal Shafait. An open-world extension to knowledge graph completion models. In Thirty-Third AAAI Conference on Artificial Intelligence, 2019.
- [4] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. arXiv preprint arXiv:1711.03438, 2017.
- [5] Felix Hamann, Adrian Ulges, Dirk Krechel, and Ralph Bergmann. Open-world knowledge graph completion benchmarks for knowledge discovery. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pages 252–264. Springer, 2021.
- [6] Felix Hamann, Maurice Falk, and Adrian Ulges. Inductive linking and ranking in knowledge graphs of varying scale. 2022.
- [7] David Milne and Ian H Witten. Learning to link with wikipedia. In Proceedings of the 17th ACM conference on Information and knowledge management, pages 509–518, 2008.
- [8] Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion Benchmark. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8328–8350, 2020.
- [9] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in neural information processing systems, pages 2787–2795, 2013.
- [10] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. In International Conference on Machine Learning, pages 2071–2080, 2016.
- [11] Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based embeddings for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195, 2019.

- [12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.
- [13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [14] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.