
COMP9242
Advanced Operating Systems

S2/2012 Week 1:
Introduction to seL4

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

Monolithic Kernels vs Microkernels

•  Idea of microkernel:
–  Flexible, minimal platform
–  Mechanisms, not policies
–  Goes back to Nucleus [Brinch Hansen, CACM’70]

COMP9242 S2/2013 W01

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
Server Device

Driver

Syscall

IPC

Kernel
Mode

User
Mode

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Microkernel Evolution

First generation

•  Eg Mach [’87]

•  180 syscalls
•  100 kLOC
•  100 µs IPC

Third generation

•  seL4 [’09]

•  ~3 syscalls
•  9 kLOC
•  0.2–1 µs IPC

COMP9242 S2/2013 W01

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

Second generation

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

•  Eg L4 [’95]

•  ~7 syscalls
•  ~10 kLOC
•  ~ 1 µs IPC

IPC, MMU abstr.
Scheduling

Kernel memory

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

2nd-Generation Microkernels

•  1st-generation kernels (Mach, Chorus) were a failure
–  Complex, inflexible, slow

•  L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95]
–  Radical simplification & manual micro-optimisation
–  “A concept is tolerated inside the microkernel only if moving it outside

the kernel, i.e. permitting competing implementations, would prevent the
implementation of the system’s required functionality.”

–  High IPC performance
•  Family of L4 kernels:

–  Original GMD assembler kernel (‘95)
–  Fiasco (Dresden ‘98), Hazelnut (Karlsruhe ‘99), Pistachio (Karlsruhe/

UNSW ‘02), L4-embedded (NICTA ‘04)
•  L4-embedded commercialised as OKL4 by Open Kernel Labs
•  Deployed in > 2 billion phones

–  Commercial clones (PikeOS, P4, CodeZero, …)
–  Approach adopted e.g. in QNX (‘82) and Green Hills Integrity (‘90s)

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Issues of 2G L4 Kernels

•  L4 solved performance issue [Härtig et al, SOSP’97]
•  Left a number of security issues unsolved
•  Problem: ad-hoc approach to protection and resource management

–  Global thread name space ⇒ covert channels
–  Threads as IPC targets ⇒ insufficient encapsulation
–  Single kernel memory pool ⇒ DoS attacks
–  Insufficient delegation of authority ⇒ limited flexibility, performance

•  Addressed by seL4
–  Designed to support safety- and security-critical systems

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

seL4 Principles

•  Single protection mechanism: capabilities
–  Except for time

•  All resource-management policy at user level
–  Painful to use
–  Need to provide standard memory-management library

•  Results in L4-like programming model
•  Suitable for formal verification (proof of implementation correctness)

–  Attempted since ‘70s
–  Finally achieved by L4.verified project at NICTA [Klein et al, SOSP’09]

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

seL4 Concepts

•  Capabilities (Caps)
–  mediate access

•  Kernel objects:
–  Threads (thread-control blocks, TCBs)
–  Address spaces (page table objects, PDs, PTs)
–  IPC endpoints (EPs, AsyncEPs)
–  Capability spaces (CNodes)
–  Frames
–  Interrupt objects
–  Untyped memory

•  System calls
–  Send, Wait (and variants)
–  Yield

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Capabilities (Caps)

•  Token representing privileges [Dennis & Van Horn, ‘66]
–  Cap = “prima facie evidence of right to perform operation(s)”

•  Object-specific ⇒ fine-grained access control
–  Cap identifies object ⇒ is an (opaque) object name
–  Leads to object-oriented API:

 err = method(cap, args);

–  Privilege check at invocation time

•  Caps were used in microkernels before
–  KeyKOS (‘85), Mach (’87)
–  EROS (‘99): first well-performing cap system
–  OKL4 V2.1 (’08): first cap-based L4 kernel

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10

 seL4 Capabilities

•  Stored in cap space (CSpace)
–  Kernel object made up of CNodes
–  each an array of cap “slots”

•  Inaccessible to userland
–  But referred to by pointers into CSpace (slot addresses)
–  These CSpace addresses are called CPTRs

•  Caps convey specific privilege (access rights)
–  Read, Write, Grant (cap transfer) [Yes, there should be Execute!]

•  Main operations on caps:
–  Invoke: perform operation on object referred to by cap

•  Possible operations depend on object type
–  Copy/Mint/Grant: create copy of cap with same/lesser privilege
–  Move/Mutate: transfer to different address with same/lesser privilege
–  Delete: invalidate slot

•  Only affects object if last cap is deleted
–  Revoke: delete any derived (eg. copied or minted) caps

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11

Inter-Process Communication (IPC)

•  Fundamental microkernel operation
–  Kernel provides no services, only mechanisms
–  OS services provided by (protected) user-level server processes
–  invoked by IPC

•  seL4 IPC uses a handshake through endpoints:
–  Transfer points without storage capacity
–  Message must be transferred instantly

•  One partner may have to block
•  Single copy user ➞ user by kernel

•  Two endpoint types:
–  Synchronous (Endpoint) and asynchronous (AsyncEP)

COMP9242 S2/2013 W01

seL4

Client Server

IPC

send receive

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12

 Synchronous Endpoint

•  Threads must rendez-vous for message transfer
–  One side blocks until the other is ready
–  Implicit synchronisation

•  Message copied from sender’s to receiver’s message registers
–  Message is combination of caps and data words

•  presently max 121 words (484B, incl message “tag”)

COMP9242 S2/2013 W01

 …....

Thread1
Running Blocked

Thread2
Blocked Running

Send (ep1_cap, …)

….. Wait (ep1_cap, …)

 Send (ep2_cap, …)

 …....
Wait (ep2_cap, …)

 …....

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13

 Asynchronous Endpoint

•  Avoids blocking
–  send transmits 1-word message, OR-ed to receiver data word
–  no caps can be sent

•  Receiver can poll or wait
–  waiting returns and clears data word
–  polling just returns data word

•  Similar to interrupt (with small payload, like interrupt mask)
COMP9242 S2/2013 W01

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (ep_cap, …)

 …... w = Wait (ep_cap,…)
 ….... Send (ep_cap, …)

Send (ep_cap, …)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14

 Receiving from Sync and Async Endpoints

Server with synchronous and asynchronous interface
•  Example: file system

–  synchronous (RPC-style) client protocol
–  asynchronous notifications from driver

•  Could have separate threads waiting on endpoints
–  forces multi-threaded server, concurrency control

•  Alternative: allow single thread to wait on both EP types
–  Mechanism:

•  AsyncEP is bound to thread with BindAEP() syscall
•  thread waits on synchronous endpoint
•  async message delivered as if been waiting on AsyncEP

COMP9242 S2/2013 W01

Server
Client Driver

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Kernel

 Sync Endpoints are Message Queues

•  EP has no sense of direction
•  May queue senders or receivers

–  never both at the same time!
•  Communication needs 2 EPs!

COMP9242 S2/2013 W01

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2 EP

Further callers of
same direction
queue behind

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16

 Client-Server Communication

•  Asymmetric relationship:
–  Server widely accessible, clients not
–  How can server reply back to client (distinguish between them)?

•  Client can pass (session) reply cap in first request
–  server needs to maintain session state

•  seL4 solution: Kernel provides single-use reply cap
–  only for Call operation (Send+Wait)
–  allows server to reply to client
–  cannot be copied/minted/re-used but can be moved
–  one-shot (automatically destroyed after first use)

COMP9242 S2/2013 W01

Client1
Server Client2

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17

 Call RPC Semantics

Client

Call(ep,…)

process

Server
Wait(ep,&rep)

process
Send(rep,…)

process

COMP9242 S2/2013 W01

Client Server

Kernel

mint rep
deliver to server

deliver to client
destroy rep

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18

 Identifying Clients

Stateful server serving multiple clients
•  Must respond to

correct client
–  Ensured by reply cap

•  Must associate request
with correct state

•  Could use separate EP per client
–  endpoints are lightweight (16 B)
–  but requires mechanism to wait on a set of EPs (like select)

•  Instead, seL4 allows to individually mark (“badge”) caps to same EP
–  server provides individually badged caps to clients
–  server tags client state with badge
–  kernel delivers badge to receiver on invocation of badged caps

COMP9242 S2/2013 W01

Client1
Server

Client1
state

Client2 Client2
state

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19

 IPC Mechanics: Virtual Registers

•  Like physical registers, virtual registers are thread state
–  context-switched by kernel
–  implemented as physical registers or fixed memory location

•  Message registers
–  contain message transferred in IPC
–  architecture-dependent subset mapped to physical registers

•  5 on ARM, 3 on x86
–  library interface hides details
–  1st message register is special, contains message tag

•  Data word for asynchronous IPC
–  accumulates async messages (reset by Wait)
–  as with interrupts, information is lost if not collected timely

•  Reply cap
–  overwritten by next receive!
–  can move to CSpace with cspace_save_reply_cap()

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20

 IPC Message Format

Note: Don’t need to deal with this explicitly for project
COMP9242 S2/2013 W01

Msg
Length

Caps

Caps
unwrapped Label

CSpace reference for receiving
caps (Receive only)

Caps (on Send)
Badges (on Receive) Message Tag

Meaning defined
by IPC protocol
(Kernel or user)

Raw data

Bitmap indicating
caps which had

badges extracted
Caps sent
or received

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21

 Client-Server IPC Example

Server

Client

COMP9242 S2/2013 W01

seL4_MessageInfo_t tag = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_SetTag(tag);
seL4_SetMR(0,1);
seL4_Call(server_c, tag);

Load into
tag register

Set message
register #0

seL4_Word addr = ut_alloc(seL4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject,

 seL4_EndpointBits, cur_cspace, &ep_cap)
seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,
 seL4_CapData_MakeBadge_new));
…
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);
…
seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);
seL4_Reply(reply);

Allocate EP and retype

Cap is badged 0

Insert EP into
CSpace

Implicit use
of reply cap

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22

 Server Saving Reply Cap

Server

COMP9242 S2/2013 W01

seL4_Word addr = ut_alloc(seL4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject,

seL4_EndpointBits, cur_cspace, &ep_cap)
seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,
 seL4_CapData_MakeBadge(0));
 …
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);
seL4_CPtr slot = cspace_save_reply_cap(cur_cspace);
…
seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);
seL4_Send(slot, reply);
cspace_free_cslot(slot);

Save reply cap
in CSpace

Explicit use
of reply cap

Reply cap no
longer valid

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23

 IPC Operations Summary

•  Send (ep_cap, …), Wait (ep_cap, …), Wait (aep_cap, …)
–  blocking message passing
–  needs Write, Read permission, respectively

•  NBSend (ep_cap, …)
–  discard message if receiver isn’t ready

•  Call (ep_cap, …)
–  equivalent to Send (ep_cap,…) + reply-cap + Wait (ep_cap,…)

•  Reply (…)
–  equivalent to Send (rep_cap, …)

•  ReplyWait (ep_cap, …)
–  equivalent to Reply (…) + Wait (ep_cap, …)
–  purely for efficiency of server operation

•  Notify (aep_cap, …), Poll (aep_cap, …)
–  non-blocking send / check for message on AsyncEP

No failure notification where this reveals info on other entities!

COMP9242 S2/2013 W01

Need error
handling
protocol !

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24

 Derived Capabilities

•  Badging is an example of capability derivation
•  The Mint operation creates a new, less powerful cap

–  Can add a badge
• Mint (,) ➞

–  Can strip access rights
•  eg WR➞R/O

•  Granting transfers caps over an Endpoint
–  Delivers copy of sender’s cap(s) to receiver

•  reply caps are a special case of this
–  Sender needs Endpoint cap with Grant permission
–  Receiver needs Endpoint cap with Write permission

•  else Write permission is stripped from new cap
•  Retyping

–  Fundamental operation of seL4 memory management
–  Details later…

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

 seL4 System Calls

•  Notionally, seL4 has 6 syscalls:
–  Yield(): invokes scheduler

•  only syscall which doesn’t require a cap!
–  Send(), Receive() and 3 variants/combinations thereof

• Notify() is actually not a separate syscall but same as Send()
–  This is why I earlier said “approximately 3 syscalls”

•  All other kernel operations are invoked by “messaging”
–  Invoking Send()/Receive() on an object cap
–  Each object has a set of kernel protocols

•  operations encoded in message tag
•  parameters passed in message words

–  Mostly hidden behind “syscall” wrappers

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

 seL4 Memory Management Principles

•  Memory (and caps referring to it) is typed:
–  Untyped memory:

•  unused, free to Retype into something else
–  Frames:

•  (can be) mapped to address spaces, no kernel semantics
–  Rest: TCBs, address spaces, CNodes, EPs

•  used for specific kernel data structures
•  After startup, kernel never allocates memory!

–  All remaining memory made Untyped, handed to initial address space
•  Space for kernel objects must be explicitly provided to kernel

–  Ensures strong resource isolation
•  Extremely powerful tool for shooting oneself in the foot!

–  We hide much of this behind the cspace and ut allocation libraries

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

 Capability Derivation

•  Copy, Mint, Mutate, Revoke are invoked on CNodes

Mint(, dest, src, rights,)

–  CNode cap must provide appropriate rights
•  Copy takes a cap for destination

–  Allows copying of caps between CSpaces
–  Alternative to granting via IPC (if you have privilege to access Cspace!)

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

 Cspace Operations

COMP9242 S2/2013 W01

extern seL4_CPtr cspace_copy_cap(cspace_t *dest, cspace_t *src,
 seL4_CPtr src_cap, seL4_CapRights rights);

extern seL4_CPtr cspace_mint_cap(cspace_t *dest, cspace_t *src,
 seL4_CPtr src_cap, seL4_CapRights rights,
 seL4_CapData badge);

extern seL4_CPtr cspace_move_cap(cspace_t *dest, cspace_t *src,
 seL4_CPtr src_cap);

extern cspace_err_t cspace_delete_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_err_t cspace_revoke_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_t * cspace_create(int levels); /* either 1 or 2 level */
extern cspace_err_t cspace_destroy(cspace_t *c);

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

cspace and ut libraries

COMP9242 S2/2013 W01

ut_alloc()
ut_free()

…

cspace_create()
cspace_destroy()

…

seL4 OS
Personality

System Calls

Library Calls

User-level

Wraps messy
Cspace tree &

slot management

Manages slab
of Untyped Extend for

own needs!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

 seL4 Memory Management Approach

COMP9242 S2/2013 W01

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager

RM
Data

Resource Manager

RM
Data

Addr
Space

Addr
Space

Addr
Space

Addr
Space

RM

RM
Data

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

 Memory Management Mechanics: Retype

COMP9242 S2/2013 W01

UT0

Retype (Untyped, 21)

UT1 UT2 F0 F3 F2 F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

 … …

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

… …
r

Mint (r)

Revoke()

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

 seL4 Address Spaces (VSpaces)

•  Very thin wrapper around hardware page tables
–  Architecture-dependent
–  ARM and x86 are very similar

•  Page directories (PDs) map page tables,
page tables (PTs) map pages

•  A VSpace is represented
by a PD object:
–  Creating a PD (by Retype)

creates the VSpace
–  To use it must be associated

with “ASID pool”
•  We give example code

–  Deleting the PD deletes
the VSpace

COMP9242 S2/2013 W01

PageTable_Map(PD)

Page_Map(PT)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

 Address Space Operations

•  Each mapping has:
–  virtual_address, phys_address, address_space and frame_cap
–  address_space struct identifies the level 1 page_directory cap
–  you need to keep track of (frame_cap, PD_cap, v_adr, p_adr)!

COMP9242 S2/2013 W01

seL4_Word frame_addr = ut_alloc(seL4_PageBits);
err = cspace_ut_retype_addr(frame_addr, seL4_ARM_Page,

seL4_ARM_PageBits, cur_cspace, &frame_cap);

map_page(frame_cap, pd_cap, 0xA0000000, seL4_AllRights,
seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(frame_cap);
cspace_delete_cap(frame_cap)
ut_free(frame_addr, seL4_PageBits);

Sample code
we provide

cap to level 1
page table

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

 Mapping Same Frame Twice: Shared Memory

•  Each mapping requires its own frame cap even for the same frame

COMP9242 S2/2013 W01

seL4_CPtr new_frame_cap = cspace_copy_cap(cur_cspace, cur_cspace,
 existing_frame_cap,
 seL4_AllRights);

map_page(new_frame_cap, pd_cap, 0xA0000000, seL4_AllRights,
 seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(existing_frame_cap);
cspace_delete_cap(existing_frame_cap)
seL4_ARM_Page_Unmap(new_frame_cap);
cspace_delete_cap(new_frame_cap)
ut_free(frame_addr, seL4_PageBits);

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35

 Memory Management Caveats

•  The object manager handles allocation for you
•  However, it is very simplistic, you need to understand how it works
•  Simple rule (it’s buddy-based):

–  Freeing an object of size n: you can allocate new objects <= size n
–  Freeing 2 objects of size n does not mean that you can allocate an

object of size 2n.

•  All kernel objects must be size aligned!
COMP9242 S2/2013 W01

Object size (Bytes)

Frame 212
Page directory 214
Endpoint 24

Cslot 24

TCB 29
Page table 210

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36 COMP9242 S2/2013 W01

Untyped Memory 215 B

8 frames

 B

 Memory Management Caveats

But debugging
nightmare if

you try!!

•  Be careful with allocations!
•  Don’t try to allocate all of physical

memory as frames, as you need
more memory for TCBs, endpoints
etc.

•  Your frametable will eventually
integrate with ut_alloc to manage
the 4K untyped size.

•  Objects are allocated by Retype() of Untyped memory by seL4 kernel
–  The kernel will not allow you to overlap objects

•  ut_alloc and ut_free() manage user-level’s view of
Untyped allocation.
–  Major pain if kernel and user’s view diverge
–  TIP: Keep objects address and CPtr together.

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37

 Threads

•  Theads are represented by TCB objects
•  They have a number of attributes (recorded in TCB):

–  VSpace: a virtual address space
•  page directory reference
•  multiple threads can belong to the same VSpace

–  CSpace: capability storage
•  CNode reference (CSpace root) plus a few other bits

–  Fault endpoint
•  Kernel sends message to this EP if the thread throws an exception

–  IPC buffer (backing storage for virtual registers)
–  stack pointer (SP), instruction pointer (IP), user-level registers
–  Scheduling priority
–  Time slice length (presently a system-wide constant)

•  Yes, this is broken! (Will be fixed soon…)
•  These must be explicitly managed

–  … we provide an example you can modify
COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 38

 Threads

Creating a thread
•  Obtain a TCB object
•  Set attributes: Configure()

–  associate with VSpace, CSpace, fault EP, prio, define IPC buffer
•  Set SP, IP (and optionally other registers): WriteRegisters()

–  this results in a completely initialised thread
–  will be able to run if resume_target is set in call, else still inactive

•  Activated (made schedulable): Resume()

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 39

 Creating a Thread in Own AS and cspace_t

COMP9242 S2/2013 W01

static char stack[100];
int thread_fct() {

while(1);
return 0;

}
/* Allocate and map new frame for IPC buffer as before */
seL4_Word tcb_addr = ut_alloc(seL4_TCBBits);

err = cspace_ut_retype_addr(tcb_addr, seL4_TCBObject, seL4_TCBBits,
 cur_cspace, &tcb_cap)
err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
 curspace->root_cnode, seL4NilData,
 seL4_CapInitThreadPD, seL4_NilData,

 PROCESS_IPC_BUFFER, ipc_buffer_cap);
seL4_UserContext context = { .pc = &thread, .sp = &stack};
seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);

If you use threads, write a library to create and destroy them.

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 40

 Threads and Stacks

•  Stacks are completely user-managed, kernel doesn’t care!
–  Kernel only preserves SP, IP on context switch

•  Stack location, allocation, size must be managed by userland
•  Beware of stack overflow!

–  Easy to grow stack into other data
•  Pain to debug!

–  Take special care with automatic arrays!

COMP9242 S2/2013 W01

Stack 1 Stack 2

f () {
 int buf[10000];
 . . .
}

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 41

 Creating a Thread in New AS and cspace_t

COMP9242 S2/2013 W01

/* Allocate, retype and map new frame for IPC buffer as before
 * Allocate and map stack???
 * Allocate and retype a TCB as before
 * Allocate and retype a seL4_ARM_PageDirectoryObject of size seL4_PageDirBits
 * Mint a new badged cap to the syscall endpoint
 */
cspace_t * new_cpace = ut_alloc(seL4_TCBBits);

char *elf_base = cpio_get_file(_cpio_archive, “test”)->p_base;
err = elf_load(new_pagedirectory_cap, elf_base);
unsigned int entry = elf_getEntryPoint(elf_base);

err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
 new_cspace->root_cnode, seL4NilData,
 new_pagedirectory_cap, seL4_NilData,

 PROCESS_IPC_BUFFER, ipc_buffer_cap);
seL4_UserContext context = {.pc = entry, .sp = &stack};
seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 42

 seL4 Scheduling

•  seL4 uses 256 hard priorities (0–255)
–  Priorities are strictly observed
–  The scheduler will always pick the highest-prio runnable thread
–  Round-robin scheduling within prio level

•  Aim is real-time performance, not fairness
–  Kernel itself will never change the prio of a thread
–  Achieving fairness (if desired) is the job of user-level servers

COMP9242 S2/2013 W01

prio 0 255

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 43

 Exception Handling

•  A thread can trigger different kinds of exceptions:
–  invalid syscall

•  may require instruction emulation or result from virtualization
–  capability fault

•  cap lookup failed or operation is invalid on cap
–  page fault

•  attempt to access unmapped memory
•  may have to grow stack, grow heap, load dynamic library, …

–  architecture-defined exception
•  divide by zero, unaligned access, …

•  Results in kernel sending message to fault endpoint
–  exception protocol defines state info that is sent in message

•  Replying to this message restarts the thread

COMP9242 S2/2013 W01

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 44

 Exception Handling

COMP9242 S2/2013 W01

TCB

Exception
Handler

Exception triggered.
Kernel fakes message
from thread to handler

Handler performs
appropriate action
(e.g. map page).

Handler replies
to restart thread Kernel intercepts

message and
restarts thread

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 45

 Interrupt Management

•  seL4 models IRQs as messages sent to an AsyncEP
–  Interrupt handler has Receive cap on that EP

•  2 special objects used for managing and acknowledging interrupts:
–  Single IRQControl object

•  single IRQControl cap provided by kernel to initial VSpace
•  only purpose is to create IRQHandler caps

–  Per-IRQ-source IRQHandler object
•  interrupt association and dissociation
•  interrupt acknowledgment

COMP9242 S2/2013 W01

IRQControl
Get(usb)

IRQHandler

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 46

 Interrupt Handling

•  IRQHandler cap allows driver to bind AsyncEP to interrupt
•  Afterwards:

–  AsyncEP is used to receive interrupt
–  IRQHandler is used to acknowledge interrupt

COMP9242 S2/2013 W01

SetEndpoint(aep)
IRQHandler

Wait(aep)

Ack(handler)

seL4_IRQHandler interrupt = cspace_irq_control_get_cap(cur_cspace,
 seL4_CapIRQControl, irq_number);
seL4_IRQHandler_SetEndpoint(interrupt, async_ep_cap);
seL4_IRQHander_ack(interrupt);

Ack first to
unmask IRQ

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 47

 Device Drivers

•  Drivers do three things:
–  Handle interrupts (already explained)
–  Communicate with rest of OS (IPC + shared memory)
–  Access device registers

•  Device register access
–  Devices are memory-mapped on ARM
–  Have to find frame cap from bootinfo structure
–  Map the appropriate page in the driver’s VSpace

COMP9242 S2/2013 W01

device_vaddr = map_device(0xA0000000, (1 << seL4_PageBits));
…
*((void *) device_vaddr= …;

Magic device
register access

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 48

Project Platform: i.MX6 Sabre Lite

COMP9242 S2/2013 W01

ARMv7
Cortex A9

CPU

1 GiB
Memory

Serial Port

Ethernet

seL4_DebugPutChar()

M0 – serial over LAN
for userlevel apps

M6 – Network File
System (NFS)

Timer &
other

devices

