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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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Monolithic Kernels vs Microkernels 

•  Idea of microkernel: 
–  Flexible, minimal platform 
–  Mechanisms, not policies 
–  Goes back to Nucleus [Brinch Hansen, CACM’70] 
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Microkernel Evolution 

First generation 

•  Eg Mach [’87] 

•  180 syscalls 
•  100 kLOC 
•  100 µs IPC 

Third generation 

•  seL4 [’09] 

•  ~3 syscalls 
•  9 kLOC 
•  0.2–1 µs IPC 
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2nd-Generation Microkernels 

•  1st-generation kernels (Mach, Chorus) were a failure 
–  Complex, inflexible, slow 

•  L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95] 
–  Radical simplification & manual micro-optimisation 
–  “A concept is tolerated inside the microkernel only if moving it outside 

the kernel, i.e. permitting competing implementations, would prevent the 
implementation of the system’s required functionality.” 

–  High IPC performance 
•  Family of L4 kernels: 

–  Original GMD assembler kernel (‘95) 
–  Fiasco (Dresden ‘98), Hazelnut (Karlsruhe ‘99), Pistachio (Karlsruhe/

UNSW ‘02), L4-embedded (NICTA ‘04) 
•  L4-embedded commercialised as OKL4 by Open Kernel Labs 
•  Deployed in > 2 billion phones 

–  Commercial clones (PikeOS, P4, CodeZero, …) 
–  Approach adopted e.g. in QNX (‘82) and Green Hills Integrity (‘90s) 

COMP9242 S2/2013 W01 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6 

Issues of 2G L4 Kernels 

•  L4 solved performance issue [Härtig et al, SOSP’97] 
•  Left a number of security issues unsolved 
•  Problem: ad-hoc approach to protection and resource management 

–  Global thread name space ⇒ covert channels 
–  Threads as IPC targets ⇒ insufficient encapsulation 
–  Single kernel memory pool ⇒ DoS attacks 
–  Insufficient delegation of authority ⇒ limited flexibility, performance 

•  Addressed by seL4 
–  Designed to support safety- and security-critical systems 
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seL4 Principles 

•  Single protection mechanism: capabilities 
–  Except for time  

•  All resource-management policy at user level 
–  Painful to use 
–  Need to provide standard memory-management library 

•  Results in L4-like programming model 
•  Suitable for formal verification (proof of implementation correctness) 

–  Attempted since ‘70s 
–  Finally achieved by L4.verified project at NICTA [Klein et al, SOSP’09] 
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seL4 Concepts 

•  Capabilities (Caps) 
–  mediate access 

•  Kernel objects: 
–  Threads (thread-control blocks, TCBs) 
–  Address spaces (page table objects, PDs, PTs) 
–  IPC endpoints (EPs, AsyncEPs) 
–  Capability spaces (CNodes) 
–  Frames 
–  Interrupt objects 
–  Untyped memory 

•  System calls 
–  Send, Wait (and variants) 
–  Yield 
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Capabilities (Caps) 

•  Token representing privileges [Dennis & Van Horn, ‘66] 
–  Cap = “prima facie evidence of right to perform operation(s)” 

•  Object-specific ⇒ fine-grained access control 
–  Cap identifies object ⇒ is an (opaque) object name 
–  Leads to object-oriented API: 

  err = method( cap, args );

–  Privilege check at invocation time   

•  Caps were used in microkernels before 
–  KeyKOS (‘85), Mach (’87) 
–  EROS (‘99): first well-performing cap system 
–  OKL4 V2.1 (’08): first cap-based L4 kernel 
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             seL4 Capabilities  

•  Stored in cap space (CSpace) 
–  Kernel object made up of CNodes 
–  each an array of cap “slots” 

•  Inaccessible to userland 
–  But referred to by pointers into CSpace (slot addresses) 
–  These CSpace addresses are called CPTRs 

•  Caps convey specific privilege (access rights) 
–  Read, Write, Grant (cap transfer) [Yes, there should be Execute!] 

•  Main operations on caps: 
–  Invoke: perform operation on object referred to by cap 

•  Possible operations depend on object type 
–  Copy/Mint/Grant: create copy of cap with same/lesser privilege 
–  Move/Mutate: transfer to different address with same/lesser privilege 
–  Delete: invalidate slot 

•  Only affects object if last cap is deleted 
–  Revoke: delete any derived (eg. copied or minted) caps 
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Inter-Process Communication (IPC) 

•  Fundamental microkernel operation 
–  Kernel provides no services, only mechanisms 
–  OS services provided by (protected) user-level server processes 
–  invoked by IPC 

•  seL4 IPC uses a handshake through endpoints: 
–  Transfer points without storage capacity 
–  Message must be transferred instantly 

•  One partner may have to block 
•  Single copy user ➞ user by kernel 

•  Two endpoint types: 
–  Synchronous (Endpoint) and asynchronous (AsyncEP) 
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            Synchronous Endpoint 

•  Threads must rendez-vous for message transfer 
–  One side blocks until the other is ready 
–  Implicit synchronisation 

•  Message copied from sender’s to receiver’s message registers 
–  Message is combination of caps and data words  

•  presently max 121 words (484B, incl message “tag”) 
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            Asynchronous Endpoint 

•  Avoids blocking 
–  send transmits 1-word message, OR-ed to receiver data word 
–  no caps can be sent 

•  Receiver can poll or wait 
–  waiting returns and clears data word 
–  polling just returns data word 

•  Similar to interrupt (with small payload, like interrupt mask) 
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            Receiving from Sync and Async Endpoints 

Server with synchronous and asynchronous interface 
•  Example: file system 

–  synchronous (RPC-style) client protocol 
–  asynchronous notifications from driver 

•  Could have separate threads waiting on endpoints 
–  forces multi-threaded server, concurrency control 

•  Alternative: allow single thread to wait on both EP types 
–  Mechanism:  

•  AsyncEP is bound to thread with BindAEP() syscall 
•  thread waits on synchronous endpoint 
•  async message delivered as if been waiting on AsyncEP 
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Kernel 

            Sync Endpoints are Message Queues 

•  EP has no sense of direction 
•  May queue senders or receivers 

–  never both at the same time! 
•  Communication needs 2 EPs! 
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            Client-Server Communication 

•  Asymmetric relationship:  
–  Server widely accessible, clients not 
–  How can server reply back to client (distinguish between them)? 

•  Client can pass (session) reply cap in first request 
–  server needs to maintain session state 

•  seL4 solution: Kernel provides single-use reply cap 
–  only for Call operation (Send+Wait) 
–  allows server to reply to client 
–  cannot be copied/minted/re-used but can be moved 
–  one-shot (automatically destroyed after first use) 
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            Call RPC Semantics 

Client 

Call(ep,…) 

process 

Server 
Wait(ep,&rep) 

process 
Send(rep,…) 

process 
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            Identifying Clients 

Stateful server serving multiple clients 
•  Must respond to  

correct client 
–  Ensured by reply cap 

•  Must associate request 
with correct state 

•  Could use separate EP per client 
–  endpoints are lightweight (16 B) 
–  but requires mechanism to wait on a set of EPs (like select) 

•  Instead, seL4 allows to individually mark (“badge”) caps to same EP 
–  server provides individually badged caps to clients 
–  server tags client state with badge 
–  kernel delivers badge to receiver on invocation of badged caps 
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            IPC Mechanics: Virtual Registers 

•  Like physical registers, virtual registers are thread state 
–  context-switched by kernel 
–  implemented as physical registers or fixed memory location 

•  Message registers 
–  contain message transferred in IPC 
–  architecture-dependent subset mapped to physical registers 

•  5 on ARM, 3 on x86 
–   library interface hides details 
–  1st message register is special, contains message tag 

•  Data word for asynchronous IPC 
–  accumulates async messages (reset by Wait) 
–  as with interrupts, information is lost if not collected timely 

•  Reply cap 
–  overwritten by next receive! 
–  can move to CSpace with cspace_save_reply_cap() 
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            IPC Message Format 

Note: Don’t need to deal with this explicitly for project 
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            Client-Server IPC Example 

Server 

Client 
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seL4_MessageInfo_t tag = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_SetTag(tag);
seL4_SetMR(0,1);
seL4_Call(server_c, tag);

Load into 
tag register 

Set message 
register #0 

seL4_Word addr = ut_alloc(seL4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject,  

    seL4_EndpointBits, cur_cspace, &ep_cap)
seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,
                                        seL4_CapData_MakeBadge_new));
…
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);
…
seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);
seL4_Reply(reply);

Allocate EP and retype 

Cap is badged 0 

Insert EP into 
CSpace 

Implicit use 
of reply cap 
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            Server Saving Reply Cap 

Server 
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seL4_Word addr = ut_alloc(seL4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject, 

seL4_EndpointBits, cur_cspace, &ep_cap)
seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,
                                      seL4_CapData_MakeBadge(0));
 …
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);
seL4_CPtr slot = cspace_save_reply_cap(cur_cspace);
…
seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);
seL4_Send(slot, reply);
cspace_free_cslot(slot);

Save reply cap 
in CSpace 

Explicit use 
of reply cap 

Reply cap no 
longer valid 
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            IPC Operations Summary 

•  Send (ep_cap, …), Wait (ep_cap, …), Wait (aep_cap, …) 
–  blocking message passing 
–  needs Write, Read permission, respectively 

•  NBSend (ep_cap, …) 
–  discard message if receiver isn’t ready 

•  Call (ep_cap, …) 
–  equivalent to Send (ep_cap,…) + reply-cap + Wait (ep_cap,…) 

•  Reply (…) 
–  equivalent to Send (rep_cap, …) 

•  ReplyWait (ep_cap, …) 
–  equivalent to Reply (…) + Wait (ep_cap, …) 
–  purely for efficiency of server operation 

•  Notify (aep_cap, …), Poll (aep_cap, …) 
–  non-blocking send / check for message on AsyncEP 

No failure notification where this reveals info on other entities! 
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            Derived Capabilities 

•  Badging is an example of capability derivation 
•  The Mint operation creates a new, less powerful cap  

–  Can add a badge 
• Mint (        ,    ) ➞ 

–  Can strip access rights 
•  eg WR➞R/O 

•  Granting transfers caps over an Endpoint 
–  Delivers copy of sender’s cap(s) to receiver 

•  reply caps are a special case of this 
–  Sender needs Endpoint cap with Grant permission 
–  Receiver needs Endpoint cap with Write permission 

•  else Write permission is stripped from new cap 
•  Retyping 

–  Fundamental operation of seL4 memory management 
–  Details later… 
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            seL4 System Calls 

•  Notionally, seL4 has 6 syscalls: 
–  Yield(): invokes scheduler 

•  only syscall which doesn’t require a cap! 
–  Send(), Receive() and 3 variants/combinations thereof 

• Notify() is actually not a separate syscall but same as Send() 
–  This is why I earlier said “approximately 3 syscalls”  

•  All other kernel operations are invoked by “messaging” 
–  Invoking Send()/Receive() on an object cap 
–  Each object has a set of kernel protocols 

•  operations encoded in message tag 
•  parameters passed in message words 

–  Mostly hidden behind “syscall” wrappers 
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            seL4 Memory Management Principles 

•  Memory (and caps referring to it) is typed: 
–  Untyped memory: 

•  unused, free to Retype into something else 
–  Frames:  

•  (can be) mapped to address spaces, no kernel semantics 
–  Rest: TCBs, address spaces, CNodes, EPs 

•  used for specific kernel data structures 
•  After startup, kernel never allocates memory! 

–  All remaining memory made Untyped, handed to initial address space 
•  Space for kernel objects must be explicitly provided to kernel 

–  Ensures strong resource isolation 
•  Extremely powerful tool for shooting oneself in the foot! 

–  We hide much of this behind the cspace and ut allocation libraries 
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             Capability Derivation 

•  Copy, Mint, Mutate, Revoke are invoked on CNodes 

Mint(        , dest, src, rights,    ) 

–  CNode cap must provide appropriate rights 
•  Copy takes a cap for destination  

–  Allows copying of caps between CSpaces 
–  Alternative to granting via IPC (if you have privilege to access Cspace!) 
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             Cspace Operations 
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extern seL4_CPtr cspace_copy_cap(cspace_t *dest, cspace_t *src,                                 
  seL4_CPtr src_cap, seL4_CapRights rights); 

extern seL4_CPtr cspace_mint_cap(cspace_t *dest, cspace_t *src,                                 
  seL4_CPtr src_cap,  seL4_CapRights rights,  
  seL4_CapData badge); 

extern seL4_CPtr cspace_move_cap(cspace_t *dest, cspace_t *src,                                 
  seL4_CPtr src_cap); 

extern cspace_err_t cspace_delete_cap(cspace_t *c, seL4_CPtr cap); 

extern cspace_err_t cspace_revoke_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_t * cspace_create(int levels); /* either 1 or 2 level */ 
extern cspace_err_t cspace_destroy(cspace_t *c);
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cspace and ut libraries 
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            seL4 Memory Management Approach 
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            Memory Management Mechanics: Retype

COMP9242 S2/2013 W01 

UT0 

Retype (Untyped, 21) 

UT1 UT2 F0 F3 F2 F1 

Retype (Untyped, 21) 

UT3 UT4 

Retype (TCB, 2n) 

                 … … 

Retype (CNode, 2m, 2n) 

r,w r,w r,w r,w 

Retype (Frame, 22) 
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Mint (r) 

Revoke() 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32 

           seL4 Address Spaces (VSpaces)

•  Very thin wrapper around hardware page tables 
–  Architecture-dependent 
–  ARM and x86 are very similar 

•  Page directories (PDs) map page tables, 
page tables (PTs) map pages 

•  A VSpace is represented 
by a PD object: 
–  Creating a PD (by Retype) 

creates the VSpace 
–  To use it must be associated 

with “ASID pool” 
•  We give example code 

–  Deleting the PD deletes 
the VSpace 
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PageTable_Map(PD) 

Page_Map(PT) 
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           Address Space Operations

•  Each mapping has:  
–  virtual_address, phys_address, address_space and frame_cap 
–  address_space struct identifies the level 1 page_directory cap 
–  you need to keep track of (frame_cap, PD_cap, v_adr, p_adr)! 
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seL4_Word frame_addr  = ut_alloc(seL4_PageBits);
err = cspace_ut_retype_addr(frame_addr, seL4_ARM_Page, 

seL4_ARM_PageBits, cur_cspace, &frame_cap);

map_page(frame_cap, pd_cap,  0xA0000000, seL4_AllRights, 
seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(frame_cap);
cspace_delete_cap(frame_cap)
ut_free(frame_addr, seL4_PageBits);

Sample code 
we provide 

cap to level 1 
page table 
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         Mapping Same Frame Twice: Shared Memory

•  Each mapping requires its own frame cap even for the same frame 
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seL4_CPtr new_frame_cap =  cspace_copy_cap(cur_cspace, cur_cspace, 
    existing_frame_cap, 
    seL4_AllRights);

map_page(new_frame_cap, pd_cap,  0xA0000000, seL4_AllRights, 
   seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(existing_frame_cap);
cspace_delete_cap(existing_frame_cap) 
seL4_ARM_Page_Unmap(new_frame_cap);
cspace_delete_cap(new_frame_cap)
ut_free(frame_addr, seL4_PageBits);
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          Memory Management Caveats 

•  The object manager handles allocation for you 
•  However, it is very simplistic, you need to understand how it works  
•  Simple rule (it’s buddy-based): 

–  Freeing an object of size n: you can allocate new objects <= size n 
–  Freeing 2 objects of size n does not mean that you can allocate an 

object of size 2n.  

•  All kernel objects must be size aligned! 
COMP9242 S2/2013 W01 

Object size (Bytes) 

Frame 212 
Page directory 214 
Endpoint 24 

Cslot 24 

TCB 29 
Page table 210 
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Untyped Memory 215 B 

8 frames 

 B 

          Memory Management Caveats 

But debugging 
nightmare if 

you try!! 

•  Be careful with allocations! 
•  Don’t try to allocate all of physical 

memory as frames, as you need 
more memory for TCBs, endpoints 
etc. 

•  Your frametable will eventually 
integrate with ut_alloc to manage 
the 4K untyped size. 

•  Objects are allocated by Retype() of Untyped memory by seL4 kernel 
–  The kernel will not allow you to overlap objects 

•  ut_alloc and ut_free() manage user-level’s  view of  
Untyped allocation. 
–  Major pain if kernel and user’s view diverge 
–  TIP: Keep objects address and CPtr together.  
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           Threads

•  Theads are represented by TCB objects 
•  They have a number of attributes (recorded in TCB): 

–  VSpace: a virtual address space 
•  page directory reference 
•  multiple threads can belong to the same VSpace 

–  CSpace: capability storage 
•  CNode reference (CSpace root) plus a few other bits 

–  Fault endpoint 
•  Kernel sends message to this EP if the thread throws an exception 

–  IPC buffer (backing storage for virtual registers) 
–  stack pointer (SP), instruction pointer (IP), user-level registers 
–  Scheduling priority 
–  Time slice length (presently a system-wide constant) 

•  Yes, this is broken! (Will be fixed soon…) 
•  These must be explicitly managed 

–  … we provide an example you can modify 
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           Threads

Creating a thread 
•  Obtain a TCB object 
•  Set attributes: Configure() 

–  associate with VSpace, CSpace, fault EP, prio, define IPC buffer 
•  Set SP, IP (and optionally other registers): WriteRegisters() 

–  this results in a completely initialised thread 
–  will be able to run if resume_target is set in call, else still inactive 

•  Activated (made schedulable): Resume() 
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          Creating a Thread in Own AS and cspace_t
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static char stack[100];
int thread_fct() {

while(1);
return 0;

}
/* Allocate and map new frame for IPC buffer as before */
seL4_Word tcb_addr = ut_alloc(seL4_TCBBits);

err = cspace_ut_retype_addr(tcb_addr, seL4_TCBObject, seL4_TCBBits,
                                    cur_cspace, &tcb_cap)
err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
                                            curspace->root_cnode, seL4NilData,
                                            seL4_CapInitThreadPD, seL4_NilData, 

                PROCESS_IPC_BUFFER, ipc_buffer_cap);
seL4_UserContext context = { .pc = &thread, .sp = &stack};
seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);

If you use threads, write a library to create and destroy them. 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 40 

           Threads and Stacks

•  Stacks are completely user-managed, kernel doesn’t care! 
–  Kernel only preserves SP, IP on context switch 

•  Stack location, allocation, size must be managed by userland 
•  Beware of stack overflow! 

–  Easy to grow stack into other data 
•  Pain to debug! 

–  Take special care with automatic arrays! 
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Stack 1 Stack 2 

f () { 
   int buf[10000];
   . . .
}
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          Creating a Thread in New AS and cspace_t
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/* Allocate, retype and map new frame for IPC buffer as before
 * Allocate and map stack???
 * Allocate and retype a TCB  as before 
 * Allocate and retype a  seL4_ARM_PageDirectoryObject of size seL4_PageDirBits
 * Mint a new badged cap to the syscall endpoint
 */
cspace_t * new_cpace = ut_alloc(seL4_TCBBits);

char *elf_base = cpio_get_file(_cpio_archive, “test”)->p_base;
err = elf_load(new_pagedirectory_cap, elf_base);
unsigned int entry = elf_getEntryPoint(elf_base);

err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
                                            new_cspace->root_cnode, seL4NilData,
                                            new_pagedirectory_cap, seL4_NilData,  

                PROCESS_IPC_BUFFER, ipc_buffer_cap);
seL4_UserContext context = {.pc = entry, .sp = &stack};
seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);
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           seL4 Scheduling

•  seL4 uses 256 hard priorities (0–255) 
–  Priorities are strictly observed 
–  The scheduler will always pick the highest-prio runnable thread 
–  Round-robin scheduling within prio level 

•  Aim is real-time performance, not fairness 
–  Kernel itself will never change the prio of a thread 
–  Achieving fairness (if desired) is the job of user-level servers 
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prio 0 255 
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           Exception Handling

•  A thread can trigger different kinds of exceptions: 
–  invalid syscall 

•  may require instruction emulation or result from virtualization 
–  capability fault 

•  cap lookup failed or operation is invalid on cap 
–  page fault  

•  attempt to access unmapped memory 
•  may have to grow stack, grow heap, load dynamic library, … 

–  architecture-defined exception 
•  divide by zero, unaligned access, … 

•  Results in kernel sending message to fault endpoint 
–  exception protocol defines state info that is sent in message 

•  Replying to this message restarts the thread 
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           Exception Handling
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TCB 

Exception 
Handler 

Exception triggered. 
Kernel fakes message 
from thread to handler 

Handler performs 
appropriate action 
(e.g. map page). 

Handler replies 
to restart thread Kernel intercepts 

message and 
restarts thread 
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            Interrupt Management 

•  seL4 models IRQs as messages sent to an AsyncEP 
–  Interrupt handler has Receive cap on that EP 

•  2 special objects used for managing and acknowledging interrupts: 
–  Single IRQControl object 

•  single IRQControl cap provided by kernel to initial VSpace 
•  only purpose is to create IRQHandler caps 

–  Per-IRQ-source IRQHandler object 
•  interrupt association and dissociation 
•  interrupt acknowledgment 
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IRQControl 
Get(usb) 

IRQHandler 
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            Interrupt Handling 

•  IRQHandler cap allows driver to bind AsyncEP to interrupt 
•  Afterwards: 

–  AsyncEP is used to receive interrupt 
–  IRQHandler is used to acknowledge interrupt  
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SetEndpoint(aep) 
IRQHandler 

Wait(aep) 

Ack(handler) 

seL4_IRQHandler interrupt = cspace_irq_control_get_cap(cur_cspace,
                                             seL4_CapIRQControl, irq_number);
seL4_IRQHandler_SetEndpoint(interrupt, async_ep_cap);
seL4_IRQHander_ack(interrupt);

Ack first to 
unmask IRQ 
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           Device Drivers

•  Drivers do three things: 
–  Handle interrupts (already explained) 
–  Communicate with rest of OS (IPC + shared memory) 
–  Access device registers 

•  Device register access 
–  Devices are memory-mapped on ARM 
–  Have to find frame cap from bootinfo structure 
–  Map the appropriate page in the driver’s VSpace 
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device_vaddr = map_device(0xA0000000, (1 << seL4_PageBits));
…
*((void *) device_vaddr= …;

Magic device 
register access 
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Project Platform: i.MX6 Sabre Lite 
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ARMv7 
Cortex A9 

CPU 

1 GiB 
Memory 

Serial Port 

Ethernet 

seL4_DebugPutChar() 

M0 – serial over LAN 
for userlevel apps 

M6 – Network File 
System (NFS) 

Timer & 
other 

devices 


