
LINUX, LOCKING AND LOTS OF

PROCESSORS

Peter Chubb

peter.chubb@nicta.com.au

A LITTLE BIT OF HISTORY

• Multix in the ’60s

• Ken Thompson and Dennis Ritchie in 1967–70

• USG and BSD

• John Lions 1976–95

• Andrew Tanenbaum 1987

• Linux Torvalds 1991

NICTA Copyright c© 2013 From Imagination to Impact 2

The history of UNIX-like operating systems is a history of people
being dissatisfied with what they have and wanting to do some-
thing better. It started when Ken Thompson got bored with MUL-
TICS and wanted to write a computer game (Space Travel). He
found a disused PDP-7, and wrote an interactive operating sys-
tem to run his game. The main contribution at this point was the
simple file-system abstraction.
Other people found it interesting enough to want to port it to other
systems, which led to the first major rewrite — from assembly to
C. In some ways UNIX was the first successfully portable OS.
After Ritchie & Thompson (1974) was published, AT&T became
aware of a growing market for UNIX. They wanted to discourage
it: it was common for AT&T salesmen to say, ‘Here’s what you
get: A whole lot of tapes, and an invoice for $10 000’. Fortunately
educational licences were (almost) free, and universities around
the world took up UNIX as the basis for teaching and research.
The University of California at Berkeley was one of those univer-

NICTA Copyright c© 2013 From Imagination to Impact 2-1

sities. In 1977, Bill Joy (a postgrad) put together and released
the first Berkeley Software Distribution — in this instance, the
main additions were a pascal compiler and Bill Joy’s ex editor.
Later BSDs contained contributed code from other universities,
including UNSW. The BSD tapes were freely shared between
source licensees of AT&T’s UNIX.
John Lions and Ken Robinson read Ritchie & Thompson (1974),
and decided to try to use UNIX as a teaching tool here. Ken sent
off for the tapes, the department put them on a PDP-11, and
started exploring. The license that came with the tapes allowed
disclosure of the source code for ‘Education and Research’ —
so John started his famous OS course, which involved reading
and commenting on the Edition 6 source code.
In 1979, AT&T changed their source licence (it’s conjectured, in
response to the popularity of the Lions book), and future AT&T

NICTA Copyright c© 2013 From Imagination to Impact 2-2

licensees were not able to use the book legally any more. UNSW
obtained an exemption of some sort; but the upshot was that the
Lions book was copied and copied and studied around the world.
However, the licence change also meant that an alternative was
needed for OS courses.
Many universities stopped teaching OS at any depth. One stand-
out was Andy Tanenbaum’s group in the Netherlands. He and
his students wrote an OS called ‘Minix’ which was (almost) sys-
tem call compatible with Edition 7 UNIX, and ran on readily avail-
able PC hardware. Minix gained popularity not only as a teach-
ing tool but as a hobbyist almost ‘open source’ OS.
In 1991, Linus Torvalds decided to write his own OS — after all,
how hard could it be? — to fix what he saw as some of the
shortcomings of Minix. The rest is history.

NICTA Copyright c© 2013 From Imagination to Impact 2-3

NICTA Copyright c© 2013 From Imagination to Impact 2-4

A LITTLE BIT OF HISTORY

• Basic concepts well established

– Process model

– File system model

– IPC

• Additions:

– Paged virtual memory (3BSD, 1979)

– TCP/IP Networking (BSD 4.1, 1983)

– Multiprocessing (Vendor Unices such as

Sequent’s ‘Balance’, 1984)

NICTA Copyright c© 2013 From Imagination to Impact 3

The UNIX core concepts have remained more-or-less the same
since Ritchie and Thompson published their CACM paper. The
process model and the file system model have remained the
same. The IPC model (inherited from MERT, a different real-time
OS being developed in Bell Labs in the 70s) also is the same.
However there have been some significant additions.
The most important of these were Paged Virtual Memory (intro-
duced when UNIX was ported to the VAX), which also introduced
the idea of Memory-mapped files; TCP/IP networking, Graphi-
cal terminals, and multiprocessing, in all variants, master-slave,
SMP and NUMA. Most of these improvements were from outside
Bell Labs, and fed into AT&T’s product via an open-source like
patch-sharing.
In the late 80s the core interfaces were standardised by the
IEEE, in the so-called POSIX standards.

NICTA Copyright c© 2013 From Imagination to Impact 3-1

ABSTRACTIONS

Linux Kernel

F
ile

s

T
h

re
ad

 o
f

C
o

n
tr

o
l

M
em

o
ry

 S
p

ac
e

NICTA Copyright c© 2013 From Imagination to Impact 4

As in any POSIX operating system, the basic idea is to abstract
away physical memory, processors and I/O devices (which can
be arranged in arbitrarily complex topologies in a modern sys-
tem), and provide threads, which are gathered into processes (a
process is a group of threads sharing an address space and a
few other resources), that access files (a file is something that
can be read from or written to. Thus the file abstraction incor-
porates most devices). There are some other features provided:
the OS tries to allocate resources according to some system-
defined policies. It enforces security (processes in general can-
not see each others’ address spaces, and files have owners).

NICTA Copyright c© 2013 From Imagination to Impact 4-1

PROCESS MODEL

• Root process (init)

• fork() creates (almost) exact copy

– Much is shared with parent — Copy-On-Write

avoids overmuch copying

• exec() overwrites memory image from a file

• Allows a process to control what is shared

NICTA Copyright c© 2013 From Imagination to Impact 5

The POSIX process model works by inheritance. At boot time,
an initial process (process 1) is hand-crafted and set running. It
then sets up the rest of the system in userspace.

NICTA Copyright c© 2013 From Imagination to Impact 5-1

FORK() AND EXEC()

➜ A process can clone itself by calling fork().

➜ Most attributes copied :

➜ Address space (actually shared, marked copy-on-write)

➜ current directory, current root

➜ File descriptors

➜ permissions, etc.

➜ Some attributes shared :

➜ Memory segments marked MAP SHARED

➜ Open files

NICTA Copyright c© 2013 From Imagination to Impact 6

First I want to review the UNIX process model. Processes clone
themselves by calling fork(). The only difference between the
child and parent process after a fork() is the return value from
fork() — it is zero in the child, and the value of the child’s
process ID in the parent. Most properties of the child are log-
ical copies of the parent’s; but open files and shared memory
segments are shared between the child and the parent.
In particular, seek operations by either parent or child will affect
and be seen by the other process.

NICTA Copyright c© 2013 From Imagination to Impact 6-1

FORK() AND EXEC()

Files and Processes:

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process B

fork()

dup()

Open file descriptor

Offset

In−kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

NICTA Copyright c© 2013 From Imagination to Impact 7

Each process has a file descriptor table. Logically this is an array
indexed by a small integer. Each entry in the array contains a flag
(the close-on-exec flag and a pointer to an entry in an open
file table. (The actual data structures used are more complex
than this, for performance and SMP locking).
When a process calls open(), the file descriptor table is scanned
from 0, and the index of the next available entry is returned. The
pointer is instantiated to point to an open file descriptor which in
turn points to an in-kernel representation of an index node — an
inode — which describes where on disc the bits of the file can
be found, and where in the buffer cache can in memory bits be
found. (Remember, this is only a logical view; the implementa-
tion is a lot more complex.)
A process can duplicate a file descriptor by calling dup() or
dup2(). All dup does is find the lowest-numbered empty slot in

NICTA Copyright c© 2013 From Imagination to Impact 7-1

the file descriptor table, and copy its target into it. All file descrip-
tors that are dups share the open file table entry, and so share
the current position in the file for read and write.
When a process fork()s, its file descriptor table is copied.
Thus it too shares its open file table entry with its parent.

NICTA Copyright c© 2013 From Imagination to Impact 7-2

NICTA Copyright c© 2013 From Imagination to Impact 7-3

FORK() AND EXEC()

switch (kidpid = fork()) {

case 0: /* child */

close(0); close(1); close(2);

dup(infd); dup(outfd); dup(outfd);

execve("path/to/prog", argv, envp);

_exit(EXIT_FAILURE);

case -1:

/* handle error */

default:

waitpid(kidpid, &status, 0);

}
NICTA Copyright c© 2013 From Imagination to Impact 8

So a typical chunk of code to start a process looks something
like this. fork() returns 0 in the child, and the process id of the
child in the parent. The child process closes the three lowest-
numbered file descriptors, then calls dup() to populate them
again from the file descriptors for input and output. It then in-
vokes execve(), one of a family of exec functions, to run prog.
One could alternatively use dup2(), which says which target
file descriptor to use, and closes it if it’s in use. Be careful of the
calls to close and dup as order is significant!
Some of the exec family functions do not pass the environment
explicitly (envp); these cause the child to inherit a copy of the
parent’s environment.
Any file descriptors marked close on exec will be closed in the
child after the exec; any others will be shared.

NICTA Copyright c© 2013 From Imagination to Impact 8-1

STANDARD FILE DESCRIPTORS

0 Standard Input

1 Standard Output

2 Standard Error

➜ Inherited from parent

➜ On login, all are set to controlling tty

NICTA Copyright c© 2013 From Imagination to Impact 9

There are three file descriptors with conventional meanings. File
descriptor 0 is the standard input file descriptor. Many command
line utilities expect their input on file descriptor 0.
File descriptor 1 is the standard output. Almost all command line
utilities output to file descriptor 1.
File descriptor 2 is the standard error output. Error messages
are output on this descriptor so that they don’t get mixed into
the output stream. Almost all command line utilities, and many
graphical utilities, write error messages to file descriptor 2.
As with all other file descriptors, these are inherited from the
parent.
When you first log in, or when you start an X terminal, all three
are set to point to the controlling terminal for the login shell.

NICTA Copyright c© 2013 From Imagination to Impact 9-1

FILE MODEL

• Separation of names from content.

• ‘regular’ files ‘just bytes’ → structure/meaning

supplied by userspace

• Devices represented by files.

• Directories map names to index node indices

(inums)

• Simple permissions model

NICTA Copyright c© 2013 From Imagination to Impact 10

The file model is very simple. In operating systems before UNIX,
the OS was expected to understand the structure of all kinds of
files: typically files were organised as fixed (or variable) length
records with one or more indices into them. By contrast, UNIX

regular files are just a stream of bytes.
Originally in UNIX directories were also just files, albeit with a
structure understood by the kernel. To give more flexibility, they
are now opaque to userspace, and managed by each individual
filesystem.

NICTA Copyright c© 2013 From Imagination to Impact 10-1

FILE MODEL

.

..

bash

sh
ls

which
rnano

busybox

setserial

bzcmp

367

368

402
401

265

/ bin / ls

.

..

boot

sbin

bin

dev

var

vmlinux

etc

usr

inode 324

2
300
300

301

324
3
4

5

7
6

2

2
324

8

125

NICTA Copyright c© 2013 From Imagination to Impact 11

The diagram shows how the kernel finds a file.
If it gets a file name that starts with a slash (/), it starts at the
root of the directory hierarchy (otherwise it starts at the current
process’s current directory). The first link in the pathname is
extracted ("bin") by calling into the filesystem, and searched
for in the root directory.
That yields an inode number, that can be used to find the con-
tents of the directory. The next pathname component is then
extracted from the name and looked up. In this case, that’s the
end, and inode 301 contains the metadata for "/bin/ls".

NICTA Copyright c© 2013 From Imagination to Impact 11-1

NAMEI

➜ translate name → inode

➜ abstracted per filesystem in VFS layer

➜ Can be slow: extensive use of caches to speed it up

dentry cache — becomes SMP bottleneck

➜ hide filesystem and device boundaries

➜ walks pathname, translating symbolic links

NICTA Copyright c© 2013 From Imagination to Impact 12

Linux has many different filesystem types. Each has its own
directory layout. Pathname lookup is abstracted in the Virtual
FileSystem (VFS) layer. Traditionally, looking up the name to
inode (namei) mapping has been slow; Linux currently uses a
cache to speed up lookup.
At any point in the hierarchy a new filesystem can be grafted in
using mount; namei() hides these boundaries from the rest of
the system.
Symbolic links haven’t been mentioned yet. A symbolic link is a
special file that holds the name of another file. When the kernel
encounters one in a search, it replaces the name it’s parsing with
the contents of the symbolic link.
Also, because of changes in the way that pathname lookups
happen, there is no longer a function called namei(); however
the files containing the path lookup are still called namei.[ch].

NICTA Copyright c© 2013 From Imagination to Impact 12-1

EVOLUTION

KISS:

➜ Simplest possible algorithm used at first

➜ Easy to show correctness

➜ Fast to implement

➜ As drawbacks and bottlenecks are found, replace with

faster/more scalable alternatives

NICTA Copyright c© 2013 From Imagination to Impact 13

This leads to a general principle: start with KISS

NICTA Copyright c© 2013 From Imagination to Impact 13-1

C DIALECT

• Extra keywords:

– Section IDs: init, exit, percpu etc

– Info Taint annotation user, rcu, kernel,

iomem

– Locking annotations acquires(X),

releases(x)

– extra typechecking (endian portability) bitwise

NICTA Copyright c© 2013 From Imagination to Impact 14

C DIALECT

• Extra iterators

– type name foreach()

• Extra accessors

– container of()

NICTA Copyright c© 2013 From Imagination to Impact 15

The kernel is written in C, but with a few extras. Code and data
marked init is used only during initialisation, either at boot
time, or at module insertion time. After it has finished, it can be
(and is) freed.
Code and data marked exit is used only at module removal
time. If it’s for a built-in section, it can be discarded at link time.
The build system checks for cross-section pointers and warns
about them.
percpu data is either unique to each processor, or replicated.

The kernel build systenm can do some fairly rudimentary static
analysis to ensure that pointers passed from userspace are al-
ways checked before use, and that pointers into kernel space
are not passed to user space. This relies on such pointers being
declared with user or kernel. It can also check that vari-
ables that are intended as fixed shape bitwise entities are always

NICTA Copyright c© 2013 From Imagination to Impact 15-1

used that way—useful for bi-endian architectures like ARM.
Almost every agregate data structure, from lists through trees to
page tables has a defined type-safe iterator.
And there’s a new built-in, container of that, given a type and
a member, returns a typed pointer to its enclosing object.

NICTA Copyright c© 2013 From Imagination to Impact 15-2

C DIALECT

• Massive use of inline functions

• Some use of CPP macros

• Little #ifdef use in code: rely on optimizer to elide

dead code.

NICTA Copyright c© 2013 From Imagination to Impact 16

The kernel is written in a style that does not use #ifdef in C
files. Instead, feature test constants are defined that evaluate
to zero if the feature is not desired; the GCC optimiser will then
eliminate any resulting dead code.

NICTA Copyright c© 2013 From Imagination to Impact 16-1

SCHEDULING

Goals:

• O(1) in number of runnable processes, number of

processors

– good uniprocessor performance

• ‘fair’

• Good interactive response

• topology-aware

NICTA Copyright c© 2013 From Imagination to Impact 17

Because Linux runs on machines with up to 4096 processors,
any scheduler must be scalable, and preferably O(1) in the num-
ber of runnable processes. It should also be ‘fair’ — by which
I mean that processes with similar priority should get similar
amounts of time, and no process should be starved. In addition,
it should not load excessively a low-powered system with only a
single processor (for example, in your wireless access point)
Because Linux is used by many for desktop/laptop use, it should
give good interactivity, and respond ‘snappily’ to mouse/keyboard
even if that compromises absolute throughput.
And finally, the scheduler should be aware of the caching. pack-
aging and memory topology of the system, so it when it migrates
tasks, it can keep them close to the memory they use, and also
attempt to save power by keeping whole packages idle where
possible.

NICTA Copyright c© 2013 From Imagination to Impact 17-1

SCHEDULING

Implementation:

• Changes from time to time.

• Currently ‘CFS’ by Ingo Molnar.

NICTA Copyright c© 2013 From Imagination to Impact 18

Linux has had several different schedulers since it was first re-
leased. The first was a very simple scheduler similar to the
MINIX scheduler. As Linux was deployed to larger, shared, sys-
tems it was found to have poor fairness, so a very simple dual-
entitlement scheduler was created.

NICTA Copyright c© 2013 From Imagination to Impact 18-1

SCHEDULING

Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

NICTA Copyright c© 2013 From Imagination to Impact 19

The idea here was that there were two queues: a deserving
queue, and an undeserving queue. New and freshly woken pro-
cesses were given a timeslice based on their ‘nice’ value. When
a process’s timeslice was all used up, it was moved to the ‘unde-
serving’ queue. When the ‘deserving’ queue was empty, a new
timeslice was given to each runnable process, and the queues
were swapped. (A very similar scheduler, but using a weight tree
to disribute time slice, was used in Irix 6)
The main problem with this approach was that it was O(n) in the
number of runnable and running processes—and on the big iron
with 1024 processors, that was too slow. So it was replaced in
the early 2.6 kernels with an O(1) scheduler, that was replaced
in turn (when it gave poor interactive performance on small ma-
chines) with the current ‘Completely Fair Scheduler’

NICTA Copyright c© 2013 From Imagination to Impact 19-1

SCHEDULING

1. Keep tasks ordered by effective CPU runtime

weighted by nice in red-black tree

2. Always run left-most task.

Devil’s in the details:

• Avoiding overflow

• Keeping recent history

• multiprocessor locality

• handling too-many threads

• Sleeping tasks

• Group hierarchyNICTA Copyright c© 2013 From Imagination to Impact 20

The scheduler works by keeping track of run time for each task.
Assuming all tasks are cpu bound and have equal priority, then
all should run at the same rate. On a sufficiently parallel ma-
chine, they would always have equal runtime.
The scheduler keeps a period during which all runnable tasks
should get a go on the processor — this period is by default 6ms
scaled by the log of the number of available processors. Within
a period, each task gets a time quantum weighted by its nice.
However there is a minimum quantum; if the machine is over-
loaded, the period is stretched so that the minimum quantum is
0.75ms.
To avoid overflow, the scheduler tracks ‘virtual runtime’ instead
of actual; virtual runtime is normalised to the number of running
tasks. It is also adjusted regularly to avoid overflow.
Tasks are kept in vruntime order in a red-black tree. The leftmost

NICTA Copyright c© 2013 From Imagination to Impact 20-1

node then has the least vruntime so far; newly activated entities
also go towards the left — short sleeps (less than one period)
don’t affect vruntime; but after awaking from a long sleep, the
vruntime is set to the current minimum vruntime if that is greater
than the task’s current vruntime. Depending on how the sched-
uler has been configured, the new task will be scheduled either
very soon, or at the end of the current period.

NICTA Copyright c© 2013 From Imagination to Impact 20-2

NICTA Copyright c© 2013 From Imagination to Impact 20-3

SCHEDULING

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

NICTA Copyright c© 2013 From Imagination to Impact 21

Your typical system has hardware threads as its bottom layer.
These share functional units, and all cache levels. Hardware
threads share a core, and there can be more than one core in a
package or socket. Depending on the architecture, cores within
a socket may share memory directly, or may be connected via
separate memory buses to different regions of physical memory.
Typically, separate sockets will connect to different regions of
memory.

NICTA Copyright c© 2013 From Imagination to Impact 21-1

SCHEDULING

Locality Issues:

• Best to reschedule on same processor (don’t move

cache footprint, keep memory close)

– Otherwise schedule on a ‘nearby’ processor

• Try to keep whole sockets idle

• Somehow identify cooperating threads, co-schedule

on same package?

NICTA Copyright c© 2013 From Imagination to Impact 22

The rest of the complications in the scheduler are for hierarchi-
cal group-scheduling, and for coping with non-uniform processor
topology.
I’m not going to go into group scheduling here (even though it’s
pretty neat), but its aim is to allow schedulable entities (at the
lowest level, tasks or threads) to be gathered together into higher
level entities according to credentials, or job, or whatever, and
then schedule those entities against each other.
Locality, however, is really important. You’ll recall that in a NUMA
system, physical memory is spread so that some is local to any
particular processor, and other memory is a long way off. To get
good performance, you want as much as possible of a process’s
working set in local memory. Similarly, even in an SMP situation,
if a process’s working set is still (partly) in-cache it should be run
on a processor that shares that cache.

NICTA Copyright c© 2013 From Imagination to Impact 22-1

Linux currently uses a ‘first touch’ policy: the first processor to
write to a page causes the page to be allocated to its nearest
memory. On fork(), the new process is allocated to the same
node as its parent. exec() doesn’t change this (although there
is an API to allow a process to migrate before calling exec().
So how do processors other than the boot processor ever get to
run anything?
The answer is in runqueue balancing.

NICTA Copyright c© 2013 From Imagination to Impact 22-2

NICTA Copyright c© 2013 From Imagination to Impact 22-3

SCHEDULING

• One queue per processor (or hyperthread)

• Processors in hierarchical ‘domains’

• Load balancing per-domain, bottom up

• Aims to keep whole domains idle if possible (power

savings)

NICTA Copyright c© 2013 From Imagination to Impact 23

There is one runqueue for each lowest schedulable entity (hyper-
thread or processor). These are grouped into ‘domains’. Each
domain has its ‘load’ updated at regular intervals (where load is
essentially sum of vruntime/number of processors).
One of the idle processors is nominated the ‘idle load balancer’.
When a processor notices that rebalancing is needed (for exam-
ple, because it is overloaded), it kicks the idle load balancer. The
idle load balancer finds the busiest domains, and tries to move
tasks around to fill up idle processors near the busiest domain. It
needs more imbalance to move a task to a completely idle node
than to a partly idle node.
Solving this problem perfectly is NP-hard — it’s equivalent to
the bin-packing problem — but the heuristic approach seems to
work well enough.

NICTA Copyright c© 2013 From Imagination to Impact 23-1

MEMORY MANAGEMENT

Memory in

zones

Highmem

Normal

DMA

Normal

Physical address 0

16M

900M

DMA

3GLinux kernel

User VM

VirtualPhysical

Id
en

ti
ty

 M
ap

p
ed

 w
it

h
 o

ff
se

t

NICTA Copyright c© 2013 From Imagination to Impact 24

Some of Linux’s memory handling is to account for peculiarities
in the PC architecture. To make things simple, as much memory
as possible is mapped at a fixed offset, at least on X86-derived
processors. Because of legacy devices that could only do DMA
to the lowest 16M or memory, the lowest 16M are handled spe-
cially as ZONE DMA — drivers for devices that need memory in
that range can request it. (Some architectures have no physical
memory in that range; either they have IOMMUs or they do not
support such devices).
The linux kernel maps itself in, and has access to all of user vir-
tual memory. In addition, as much physical memory as possible
is mapped in with a simple offset. This allows easy access for
in-kernel use of physical memory (e.g., for page tables or DMA
buffers).
Any physical memory that cannot be mapped is termed ‘High-

NICTA Copyright c© 2013 From Imagination to Impact 24-1

mem’ and is mapped in on an ad-hoc basis. It is possible to
compile the kernel with no ‘Normal’ memory, to allow all of the
4G 32-bit virtual address space to be allocated to userspace, but
this comes with a performance hit.

NICTA Copyright c© 2013 From Imagination to Impact 24-2

NICTA Copyright c© 2013 From Imagination to Impact 24-3

MEMORY MANAGEMENT

• Direct mapped pages become logical addresses

– pa() and va() convert physical to virtual for

these

• small memory systems have all memory as logical

• More memory → ∆ kernel refer to memory by

struct page

NICTA Copyright c© 2013 From Imagination to Impact 25

Direct mapped pages can be referred to by logical addresses;
there are a simple pair of macros for converting between physi-
cal and logical addresses for these. Anything not mapped must
be referred to by a struct page and an offset within the page.
There is a struct page for every physical page (and for some
things that aren’t memory, such as MMIO regions). A struct
page is less than 10 words (where a word is 64 bits on 64-bit
architectures, and 32 bits on 32-bit architectures).

NICTA Copyright c© 2013 From Imagination to Impact 25-1

MEMORY MANAGEMENT

struct page:

• Every frame has a struct page (up to 10 words)

• Track:

– flags

– backing address space

– offset within mapping or freelist pointer

– Reference counts

– Kernel virtual address (if mapped)

NICTA Copyright c© 2013 From Imagination to Impact 26

A struct page lives on one of several lists, and is in an array
from which the physical address of the frame can be calculated.
Because there has to be a struct page for every frame, there’s
considerable effort put into keeping them small. Without debug-
ging options, for most architectures they will be 6 words long;
with 4k pages and 64bit words that’s a little over 1% of physical
memory in this table.
A frame can be on a free list. If it is not, it will be in an ac-
tive list, which is meant to give an approximation to LRU for the
frames. The same pointers are overloaded for keeping track of
compound frames (for SuperPages). Free lists are organised per
memory domain on NUMA machines, using a buddy algorithm
to merge pages into superpages as necessary.

NICTA Copyright c© 2013 From Imagination to Impact 26-1

MEMORY MANAGEMENT

File
(or swap)

struct

address_space

struct

vm_area_struct
struct

vm_area_struct
struct

vm_area_struct

struct mm_struct

In virtual address order....

struct task_struct

P
ag

e
T

ab
le

(h
ar

d
w

ar
e

d
ef

in
ed

)

owner

NICTA Copyright c© 2013 From Imagination to Impact 27

Some of the structures for managing memory are shown in the
slide. What’s not visible here are the structure for managing
swapping out, NUMA locality and superpages.
There is one task struct for each thread of control. Each
points to an mm struct that describes the address space the
thread runs in. Processes can be multi-threaded; one, the first to
have been created, is the thread group leader, and is pointed to
by the mm struct. The struct mm struct also has a pointer
to the page table for this process (the shape of which is care-
fully abstracted out so that access to it is almost architecture-
independent, but it always has to be a tree), a set of mappings
held both in a red-black tree (for rapid access to the mapping
for any address) and in a double linked list (for traversing the
space).
Each VMA (virtual memory area, or struct vm area struct)

NICTA Copyright c© 2013 From Imagination to Impact 27-1

describes a contiguous mapped area of virtual memory, where
each page within that area is backed (again contiguously) by
the same object, and has the same permissions and flags. You
could think of each mmap() call creating a new VMA. munmap()
calls that split a mapping, or mprotect() calls that change part
of a mapping can also create new VMAs.

NICTA Copyright c© 2013 From Imagination to Impact 27-2

NICTA Copyright c© 2013 From Imagination to Impact 27-3

MEMORY MANAGEMENT

Address Space:

• Misnamed: means collection of pages mapped from

the same object

• Tracks inode mapped from, radix tree of pages in

mapping

• Has ops (from file system or swap manager) to:

dirty mark a page as dirty

readpages populate frames from backing store

writepages Clean pages — make backing store the

same as in-memory copyNICTA Copyright c© 2013 From Imagination to Impact 28

MEMORY MANAGEMENT

migratepage Move pages between NUMA nodes

Others. . . And other housekeeping

NICTA Copyright c© 2013 From Imagination to Impact 29

Each VMA points into a struct address space which repre-
sents a mappable object. An address space also tracks which
pages in the page cache belong to this object.
Most pages will either be backed by a file, or will be anonymous
memory. Anonymous memory is either unbacked, or is backed
by one of a number of swap areas.

NICTA Copyright c© 2013 From Imagination to Impact 29-1

NICTA Copyright c© 2013 From Imagination to Impact 29-2

PAGE FAULT TIME

• Special case in-kernel faults

• Find the VMA for the address

– segfault if not found (unmapped area)

• If it’s a stack, extend it.

• Otherwise:

1. Check permissions, SIG SEGV if bad

2. Call handle mm fault():

– walk page table to find entry (populate higher

levels if nec. until leaf found)

– call handle pte fault()

NICTA Copyright c© 2013 From Imagination to Impact 30

When a fault happens, the kernel has to work out whether this
is a normal fault (where the page table entry just isn’t instanti-
ated yet) or is a userspace problem. Kernel faults are rare: they
should occur only in a few special cases, and when accessing
user virtual memory. They are handled specially.
It does this by first looking up the VMA in the red-black tree.
If there’s no VMA, then this is an unmapped area, and should
generate a segmentation violation. If it’s next to a stack segment,
and the faulting address is at or near the current stack pointer,
then the stack needs to be extended.
If it finds the VMA, then it checks that ther attempted operation is
allowed — for example, writes to a read-only operation will cause
a Segmentation Violation at this stage. If everything’s OK, the
code invokes handle mm fault() which walks the page table
in an architecture-agnostic way, populating ‘middle’ directories

NICTA Copyright c© 2013 From Imagination to Impact 30-1

on the way to the leaf. Transparent superpages are also handled
on the way down.
Finally handle pte fault() is called to handle the fault, now
it’s established that there really is a fault to handle.

NICTA Copyright c© 2013 From Imagination to Impact 30-2

NICTA Copyright c© 2013 From Imagination to Impact 30-3

PAGE FAULT TIME

handle pte fault(): Depending on PTE status, can

• provide an anonymous page

• do copy-on-write processing

• reinstantiate PTE from page cache

• initiate a read from backing store.

and if necessary flushes the TLB.

NICTA Copyright c© 2013 From Imagination to Impact 31

There are a number of different states the pte can be in. Each
PTE holds flags that describe the state.
The simplest case is if the PTE is zero — it has only just been in-
stantiated. In that case if the VMA has a fault handler, it is called
via do linear fault() to instantiate the PTE. Otherwise an
anonymous page is assigned to the PTE.
If this is an attempted write to a frame marked copy-on-write, a
new anonymous page is allocated and copied to.
If the page is already present in the page cache, the PTE can just
be reinstantiated – a ‘minor’ fault. Otherwise the VMA-specific
fault handler reads the page first — a ‘major’ fault.
If this is the first write to an otherwise clean page, it’s corre-
sponding struct page is marked dirty, and a call is made into
the writeback system — Linux tries to have no dirty page older
than 30 seconds (tunable) in the cache.

NICTA Copyright c© 2013 From Imagination to Impact 31-1

DRIVER INTERFACE

Three kinds of device:

1. Platform device

2. enumerable-bus device

3. Non-enumerable-bus device

NICTA Copyright c© 2013 From Imagination to Impact 32

There are esentially three kinds of devices that can be attached
to a computer system:

1. platform devices exist at known locations in the system’s
IO and memory address space, with well known inter-
rupts. An example are the COM1 and COM2 ports on
a PC.

2. Devices on a bus such as PCI or USB have unique iden-
tifiers that can be used at run-time to hook up a driver to
the device. It is possible to enumerate all devices on the
bus, and find out what’s attached.

3. Devices on a bus such as i2c or ISA have no standard
way to query what they are.

NICTA Copyright c© 2013 From Imagination to Impact 32-1

DRIVER INTERFACE

Enumerable buses:

static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {

{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,PCI_DEVICE_ID_REALTEK_8139)

{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,PCI_DEVICE_ID_TTTECH_MC322),

{ },

};

MODULE_DEVICE_TABLE(pci, cp_pci_tbl);

NICTA Copyright c© 2013 From Imagination to Impact 33

Each driver for a bus that identifies devices by some kind of ID
declares a table of IDs of devices it can driver. You can also
specify device IDs to bind against as a module parameter.

NICTA Copyright c© 2013 From Imagination to Impact 33-1

DRIVER INTERFACE

Driver interface:

init called to register driver

exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver

claims device

open, close, etc as necessary for driver class

NICTA Copyright c© 2013 From Imagination to Impact 34

All drivers have an initialisation function, that, even if it does
nothing else, calls a bus register driver() function to tell
the bus subsystem which devices this driver can manage, and
to provide a vector of functions.
Most drivers also have an exit() function, that deregisters the
driver.
When the bus is scanned (either at boot time, or in response to
a hot-plug event), these tables are looked up, and the ‘probe’
routine for each driver that has registered interest is called.
The first whose probe is successful is bound to the device. You
can see the bindings in /sys

NICTA Copyright c© 2013 From Imagination to Impact 34-1

DRIVER INTERFACE

Platform Devices:

static struct platform_device nslu2_uart = {

.name = "serial8250",

.id = PLAT8250_DEV_PLATFORM,

.dev.platform_data = nslu2_uart_data,

.num_resources = 2,

.resource = nslu2_uart_resources,

};

NICTA Copyright c© 2013 From Imagination to Impact 35

Platform devices are made to look like bus devices. Because
there is no unique ID, the platform-specific initialisation code reg-
isters platform devices in a large table.
Here’s an example, from the SLUG. Each platform device is de-
scribed by a struct platform device that contains at the
least a name for the device, the number of ‘resources’ (IO or
MMIO regions) and an array of those resources. The initialisa-
tion code calls platform device register() on each plat-
form device. This registers against a dummy ‘platform bus’ using
the name and ID.
The 8250 driver eventually calls serial8250 probe() which
scans the platform bus claiming anything with the name ‘se-
rial8250’.

NICTA Copyright c© 2013 From Imagination to Impact 35-1

DRIVER INTERFACE

non-enumerable buses: Treat like platform devices

NICTA Copyright c© 2013 From Imagination to Impact 36

At present, devices on non-enumerable buses are treated a bit
like platform devices: at system initialisation time a table of the
addresses where devices are expected to be is created; when
the driver for the adapter for the bus is initialised, the bus ad-
dresses are probed.

NICTA Copyright c© 2013 From Imagination to Impact 36-1

SUMMARY

• I’ve told you status today

– Next week it may be different

• I’ve simplified a lot. There are many hairy details

NICTA Copyright c© 2013 From Imagination to Impact 37

NICTA Copyright c© 2013 From Imagination to Impact 37-1

MULTIPROCESSORS

➜ Moore’s law running out of steam

➜ So scale out instead of up.

➜ Works well only for some applications!

NICTA Copyright c© 2013 From Imagination to Impact 38

For a long time people have been attempting ‘scale-out’ instead
of ‘scale-up’ solutions to lack of processing power. The prob-
lem is that for a uniprocessor, system speed increases (including
I/O and memory bandwidth) are linear for a geometric increase
in cost, so it’s cheaper to buy two machines than to buy one
more expensive machine with twice the actual performance. As
a half-way point, multicore machines have become popular —
especially as the limits to Moore’s Law scalability are beginning
to be felt.

NICTA Copyright c© 2013 From Imagination to Impact 38-1

MULTIPROCESSORS

Classical symmetric

Multiprocessor (SMP)

• Processors with local

caches

• Connected by bus

• Separated cache

hierarchy

• ⇒ cache coherency

issues
Memory

Processor Processor Processor

Bus

DMA−master

device

Cache Cache Cache

NICTA Copyright c© 2013 From Imagination to Impact 39

In the classical multiprocessor, each processor connects to shared
main memory and I/O buses. Each processor has its own cache
hierarchy. Typically, caches are write-through; each cache snoops
the shared bus to invalidate its own cache entries.
There are also non-symmetric multiprocessor designs. In these,
some of the processors are designated as having a special pur-
pose. They may have different architectures (e.g., the IBM Cell
processors) or may be the same (e.g., the early m68k multipro-
cessors, where to avoid problems in the architecture, one pro-
cessor handled page faults, and the other(s) ran normal code).
In addition, the operating system can be structured to be asym-
metric: one or a few cores can be dedicated to running OS code,
the rest, user code.

NICTA Copyright c© 2013 From Imagination to Impact 39-1

MULTIPROCESSORS

Multicore (Chip

Multiprocessor, CMP)

• per-core L1 caches

• Other caches shared

• Cache consistency

addressed in h/w

Memory

Package

Core Core

L1 Cache L1 Cache

L2 Cache

NICTA Copyright c© 2013 From Imagination to Impact 40

It has become common for manufacturers to put more than one
processor in a package. The exact cache levels that are shared
varies from architecture to architecture; L1 cache is almost al-
ways shared; L2 sometimes, and L3 almost never, although the
small number of cores per package mean that broadcast cache-
coherency policies can be made to work.

NICTA Copyright c© 2013 From Imagination to Impact 40-1

MULTIPROCESSORS

Symmetric Multithreading

(SMT)

• Multiple functional units

• Interleaved execution of

several threads

• Fully shared cache

hierarchy

ThreadThread

Core

Cache

NICTA Copyright c© 2013 From Imagination to Impact 41

Almost every modern architecture has multiple functional units.
As instruction-level parallelism often isn’t enough to keep all of
the units busy, some architectures offer some kind of symmetric
multithreading, (one variant of this is called hyperthreading).
The main difference between architectures is whether threads
are truly concurrent (x86 family), interleaved (Niagara) or switched
according to event (Itanium switches on L3 cache miss). These
don’t make a lot of difference from the OS point of view, however.

NICTA Copyright c© 2013 From Imagination to Impact 41-1

MULTIPROCESSORS

Cache Coherency:

Processor A writes a value

to address x

then. . .

Processor B reads from

address x

Does Processor B see the value Processor A wrote?

Memory

Processor Processor Processor

Bus

DMA−master

device

Cache Cache Cache

NICTA Copyright c© 2013 From Imagination to Impact 42

Whenever you have more than one cache for the same memory,
there’s the issue of coherency between those caches.

NICTA Copyright c© 2013 From Imagination to Impact 42-1

MULTIPROCESSORS

Snoopy caches:

• Each cache watches bus write traffic, and invalidates

cache lines written to

• Requires write-through caches.

NICTA Copyright c© 2013 From Imagination to Impact 43

On a sufficiently small system, all processors see all bus oper-
ations. This obviously requires that write operations make it to
the bus (or they would not be seen).

NICTA Copyright c© 2013 From Imagination to Impact 43-1

MULTIPROCESSORS

• Having to go to the bus every time is s l o w.

• Out-of-order execution on a single core becomes

problematic on multiple cores

– barriers

NICTA Copyright c© 2013 From Imagination to Impact 44

As the level of parallelism gets higher, broadcast traffic from ev-
ery processor doing a write can clog the system, so instead,
caches are directory-based.
In addition, although from a single-core perspective loads and
stores happen in program order, when viewed from another core
they can be out-of-order. More later...

NICTA Copyright c© 2013 From Imagination to Impact 44-1

CACHE COHERENCY

• There are many different coherency models used.

• We’ll cover MESI only (four states).

– Some consistency protocols have more states (up

to ten!)

• ‘memory bus’ actually allows complex message

passing between caches.

NICTA Copyright c© 2013 From Imagination to Impact 45

‘Under the hood’ that simple bus architecture is a complex message-
passing system. Each cache line can be in one of a number of
states; cache line states in different caches are coordinated by
message passing.
This material is adapted from the book chapter by McKenney
(2010).

NICTA Copyright c© 2013 From Imagination to Impact 45-1

CACHE COHERENCY

MESI:

Each cache line is in one of four

states:

M Modified

E Exclusive

S Shared

I Invalid

M

E

I

S

a

j k

c d

h

g

i l

f

eb

NICTA Copyright c© 2013 From Imagination to Impact 46

One commonly used protocol is the MESI protocol. Each cache
line (containing more than one datum) is in one of four states.
In the Modified state, the cache line is present only in the current
cache, and it has been modified locally.
In the Exclusive state, the cache line is present only in the cur-
rent cache, but it has not been modified locally.
In the Shared state, the data is read-only, and possibly present
in other caches with the same values.
The Invalid state means that the cache line is out-of-date, or
doesn’t match the ‘real’ value of the data, or similar. In any event,
it is not to be used.

NICTA Copyright c© 2013 From Imagination to Impact 46-1

CACHE COHERENCY

MESI protocol messages:

Caches maintain consistency by

passing messages:

Read

Read Response

Invalidate

Invalidate acknowledge

Read invalidate

Writeback

M

E

I

S

a

j k

c d

h

g

i l

f

eb

NICTA Copyright c© 2013 From Imagination to Impact 47

A Read message contains a physical address. A read response
message contains the data held in that address: it can be pro-
vided either by main memory or by another processor’s cache.
An invalidate message contains a physical address. It says to
mark the cache line containing that address as invalid. Each
cache that contains the line must generate an invalidate ac-
knowledge message; on small systems that do not use directory-
based caching, all caches have to generate an invalidate ac-
knowledge.
Read invalidate combines both read and invalidate messages
into one: presumably the processor is getting a cache line to
write to it. It requires both read response and Invalidate Ac-
knowledge messages in return.
The Writeback message contains a physical address, and data
to be written to that address in main memory. Other processors’

NICTA Copyright c© 2013 From Imagination to Impact 47-1

caches may snoop the data on the way, too. This message al-
lows caches to eject lines in the M state to make room for more
data.

NICTA Copyright c© 2013 From Imagination to Impact 47-2

NICTA Copyright c© 2013 From Imagination to Impact 47-3

CACHE COHERENCY

M

E

I

S

a

j k

c d

h

g

i l

f

eb

NICTA Copyright c© 2013 From Imagination to Impact 48

a M → E A cache line is written back to memory (Writeback
message) but the processor maintains the right to modify
the cacheline

b E → M The processor writes to a cache line it already had
exclusive access to. No messages are needed.

c M → I The processor receives a read invalidate message
for a cacheline it had modified. The processor must in-
validate its local copy, then respond with both a Read Re-
sponse and an Invalidate Acknowledge message.

d I → M The processor is doing an atomic operation (read-
modify-write) on data not in its cache. It sends a Read
Invalidate message; it can complete its transition when

NICTA Copyright c© 2013 From Imagination to Impact 48-1

it has received a full set of Invalidate acknowledge re-
sponses.

e S →M The processor is doing an atomic operation on a data
item that it had a read-only shared copy of in its cache.
It cannot complete the state transition until all Invalidate
acknowledge responses have been received.

f M → S Some other processor reads (with a Read message)
the cache line, and it is supplied (with a Read Response)
from this cache. The data may also be written to main
memory.

g E → S Some other processor reads data from this cache
line, and it is supplied either from this processor’s cache

NICTA Copyright c© 2013 From Imagination to Impact 48-2

or from main memory. Either way, this cache retains a
read-only copy.

h S → E There can be two causes for this transition: either
all other processors have moved the cacheline to Invalid
state, so this is the last copy; or this processor has de-
cided it wants to write fairly soon to this cacheline, and
has transmitted an Invalidate message. In the second
case, it must wait for a full set of Invalidate Acknowledge
responses before completing the transition.

i E → I Some other processor does an atomic operation on a
datum held only by this processor’s cache. The transition
is initiated by a Read Invalidate message; this processor
responds with both Read Response and Invalidate Ac-
knowledge.

NICTA Copyright c© 2013 From Imagination to Impact 48-3

j I → E This processor is attempting to store to an address
not currently cached. It will transmit a Read Invalidate
message; and will complete the transition only when a
Read Response and a full set of Invalidate Acknowledge
messages have been received. The cacheline will usually
move E → M soon afterwards, when the store actually
happens.

k I → S This processor wants to get some data, It sends Read
and receives Read Response

l S → I Some other processor is attempting to modify the cache
line. An Invalidate message is received; an Invalidate Ac-
knowledge is sent.

NICTA Copyright c© 2013 From Imagination to Impact 48-4

NICTA Copyright c© 2013 From Imagination to Impact 48-5

CACHE COHERENCY

• Why don’t Invalidate Acknowledge storms saturate

interconnect?

⇒ simple bus doesn’t scale; add directory to each

cache that tracks who holds what cache line.

NICTA Copyright c© 2013 From Imagination to Impact 49

With all this bus traffic, cache line bouncing can be a major con-
cern tying up the interconnect for relatively long periods of time.
In addition, if a cache is busy, because of the necessity to wait
for a remote transaction to complete, the current processor is
stalled

NICTA Copyright c© 2013 From Imagination to Impact 49-1

CACHE COHERENCY

CPU 0 CPU 1

S
ta

ll

Write

Acknowledge

Invalidate

NICTA Copyright c© 2013 From Imagination to Impact 50

While waiting for all the invalidate-acknowledgements, the pro-
cessor can make no forward progress.

NICTA Copyright c© 2013 From Imagination to Impact 50-1

CACHE COHERENCY

Memory

Core

Store
Buffer

Core

Store
Buffer

Interconnect

Cache Cache

NICTA Copyright c© 2013 From Imagination to Impact 51

In most architectures this latency is hidden by queueing up stores
in a store buffer. When the processor does a write to a cache-
line in Invalid or Shared states, it sends a read-invalidate or a
invalidate message, and then queues the write to its store buffer.
It can then continue with its next operation without stalling.

NICTA Copyright c© 2013 From Imagination to Impact 51-1

CACHE COHERENCY

Problems:

a = 1

b = a + 1

assert(b == 2)

Memory

Core

Store
Buffer

Core

Store
Buffer

Interconnect

Cache Cache

NICTA Copyright c© 2013 From Imagination to Impact 52

If this is all it did, there would be problems. Imagine a is not in
the current cache (state Invalid).

1. a not in cache, sends Read Invalidate
2. a← 1 in store buffer
3. starts executing b=a+1, needs to read a

4. gets Read Response with a==0

5. loads a from cache
6. applies store from store buffer writing 1 to cache
7. adds one to the loaded value of a and stores it into b

8. Assertion now fails because b is 1.

NICTA Copyright c© 2013 From Imagination to Impact 52-1

CACHE COHERENCY

Solution is Store Forwarding

Processors snoop their store buffers as well as their

caches on loads.

Local ops seen in program order

Insufficient in a Multiprocessor.

NICTA Copyright c© 2013 From Imagination to Impact 53

CACHE COHERENCY

CPU 0 CPU 1

a = 1

b = 1

while (b==0) continue;

assert(a == 1);

Start with a in CPU 1’s cache; b in CPU 0.

NICTA Copyright c© 2013 From Imagination to Impact 54

CACHE COHERENCY

1. CPU0: a← 1. New value of a to store buffer, send

Read Invalidate.

2. CPU1: reads b, sends Read message.

3. CPU0: executes b← 1. It owns this cache line, so no

messages sent.

4. CPU0 gets Read ; sends value of b (now 1), marks it

Shared.

5. CPU1 receives Read Response, breaks out of while

loop, and the assertion fails.

6. CPU1 gets the Read Invalidate message and sendsNICTA Copyright c© 2013 From Imagination to Impact 55

CACHE COHERENCY

the cache line containing a to CPU 0.

7. CPU0 finally gets the Read Response

NICTA Copyright c© 2013 From Imagination to Impact 56

The hardware cannot know about data-dependencies like these,
and needs help from the programmer. Almost every MP-capable
architecture has some form of barrier or fence instruction, that
waits until anything in the store buffer is visible to all other pro-
cessors, and also tweaks the out-of-order engine (if any) to con-
trol whether stores and loads before this instruction can be occur
afterwards, and vice versa.

NICTA Copyright c© 2013 From Imagination to Impact 56-1

NICTA Copyright c© 2013 From Imagination to Impact 56-2

CACHE COHERENCY

Invalidate Queues:

• Invalidates take too long (busy caches, lots of other

processors sending Invalidates)

• So buffer them:

– Send Invalidate Acknowledge immediately

– Guarantee not to send any other MESI message

about this cache line until Invalidate completes.

• Can give more memory ordering problems McKenney

(2010)
NICTA Copyright c© 2013 From Imagination to Impact 57

Busy caches can delay Invalidate Acknowledge messages for a
long time. This latency is hidden using an ‘Invalidate Queue’. A
processor with an invalidate queue can send an Invalidate Ac-
knowledge as soon as it receives the Invalidate Request. The
Invalidate Request is queued instead of being actioned immedi-
ately.
Placing an Invalidate Request in the queue is a promise not to
send any MESI protocol messages that relate to that cache line
until the line has been invalidated.

NICTA Copyright c© 2013 From Imagination to Impact 57-1

CACHE COHERENCY

Barriers: (also called fences)

Write barrier Waits for store buffer to drain

Read barrier Waits for Invalidate Queue to drain

Memory barrier Waits for both

All barriers also tweak out-of-order engine.

NICTA Copyright c© 2013 From Imagination to Impact 58

In addition to waiting for queues to drain, barriers tell the out-of-
order execution engine (on OOO processors) not to move writes
past a write barrier, or reads before a read barrier. This ensures
in a critical section that instructions don’t ‘leak’.

NICTA Copyright c© 2013 From Imagination to Impact 58-1

CACHE COHERENCY

Guarantees:

1. Each processor sees its own memory accesses in

program order

2. Processors may reorder writes only if they are to

different memory locations

3. All of a processor’s loads before a read barrier will be

perceived by all processors to precede any load after

that read barrier

4. Likewise for stores and a write barrier, or loads and

stores and a full barrier
NICTA Copyright c© 2013 From Imagination to Impact 59

Particular processors may give stronger guarantees than these.
In particular, X86 is fairly strongly ordered, and sometimes you
can get away without a barrier that would be needed, say, on
Alpha.

NICTA Copyright c© 2013 From Imagination to Impact 59-1

CACHE COHERENCY

Another example:

void foo() {

a = 1;

mb();

b = 1;

}

void bar(void) {

while (!b)

;

assert (a == 1);

}

Assume a == 0 in Shared state; b == 0 in Exclusive

state in CPU 0; CPU0 does foo(), CPU1 does bar()

NICTA Copyright c© 2013 From Imagination to Impact 60

CACHE COHERENCY

1. CPU0 puts a← 1 into store buffer; sends Invalidate.

2. CPU 1 starts while (!b); sends Read and stalls.

3. CPU 1 gets Invalidate, puts it into queue, and

responds.

4. CPU 0 gets Invalidate Acknowledge, completes

a← 1, moves past barrier.

5. CPU 0 does b← 1; no need for store buffer.

6. CPU 0 gets Read for b, sends Read Response,

transition to Shared

7. CPU 1 gets Read Response with b == 1, breaks

out of while(...).
NICTA Copyright c© 2013 From Imagination to Impact 61

CACHE COHERENCY

8. CPU 1 reads a from cache, it’s still 0 so assertion

fails.

9. CPU 1 completes Invalidate on a Too late!

NICTA Copyright c© 2013 From Imagination to Impact 62

CACHE COHERENCY

Fix:

void foo() {

a = 1;

wmb();

b = 1;

}

void bar(void) {

while (!b)

;

rmb();

assert (a == 1);

}

NICTA Copyright c© 2013 From Imagination to Impact 63

Adding a read barrier (or a full barrier) after the loop makes sure
that the read of a cannot happen before the read of b — so
(after a lot of coherency traffic) this will cause the assertion not
to trigger.

NICTA Copyright c© 2013 From Imagination to Impact 63-1

NICTA Copyright c© 2013 From Imagination to Impact 63-2

CACHE COHERENCY

DMA and I/O consistency:

• PCI MMIO writes are posted (i.e., queued) and can

occur out of order WRT other I/Os.

• PCI I/O writes are strongly ordered and are

effectively a barrier. wrt MMIO writes.

• Depending on architecture, CPU memory barriers

may or may not be enough to serialise I/O

reads/writes.

– DMA not necessarily coherent with CPU cache:

some bus-mastering devices need cache flushes.
NICTA Copyright c© 2013 From Imagination to Impact 64

We’ve talked a lot about memory consistency between proces-
sors – what about DMA? What of IPI?
Different I/O devices differ; some respect cache coherency, oth-
ers do not. Read the docs!
In particular note that MMIO writes are ‘posted’ — they can be
queued. The PCI spec says that any read from a device must
force all writes to the device to complete.
Other buses have different memory-ordering issues. Be aware
of them!
Some cases (from McKenney (2010)): a processor is very busy,
and holds onto a cache line, so that when a device’s DMA com-
plete interrupt arrives, it still has old data in its cache.
Context switching also needs appropriate memory barriers, so if
a thread is migrated from one processor to another, it sees its
current data.

NICTA Copyright c© 2013 From Imagination to Impact 64-1

LOCKING AND ALL THAT. . .

• Shared data an issue

• How to maintain data consistency?

• Critical Sections

• Lock-free algorithms

NICTA Copyright c© 2013 From Imagination to Impact 65

In general to get good scalability, you need to avoid sharing data.
However, sometimes shared data is essential.
Single word reads and writes are atomic, always; the visibility of
such operations can be controlled with barriers as above.
When updating some data requires more than one cycle, there’s
the possibility of problems, when two processors try to update
relate data items at the same time. For instance, consider a
shared counter. If it has the value 2 to start with, and CPU0
wants to add 3 and CPU1 wants to add 1, the result could be 3,
5 or 6. Only 6 is the answer we want!
To solve this problem, we identify critical sections of code, and
lock the data during those sections of code. However, locks have
problems (in particular heavily contended locks cause much cache
coherency traffic) and so for some common cases it’s possible
to use lock-free algorithms to ensure consistency.

NICTA Copyright c© 2013 From Imagination to Impact 65-1

LOCKING AND ALL THAT. . .

Lock Granularity:

• Coarse grained: ‘Big Kernel Lock’

– Kernel becomes a monitor Hoare (1974)

– At most one process/processor in kernel at a time

– Limits kernel scalability

• Finer grained locking

– Each group of related data has a lock

– If carefully designed, can be efficient

Good discussion of trade-offs in ch.10Schimmel (1994),NICTA Copyright c© 2013 From Imagination to Impact 66

The simplest locking is to treat all kernel data as shared, and use
a single Big Kernel Lock to protect it. The Kernel then essentially
becomes a Hoare Monitor.
The main problem with this is that it doesn’t scale to very many
processors. For systems that do not spend much time in the
kernel, and do not have very many processors, this is a good
solution though. It has also been used as a first step in convert-
ing from a uniprocessor OS to a multiprocessor OS.
The next step is generally identifying large chunks of data (e.g.,
the process table, the namei cache etc.) and providing a single
lock for each.
As systems have grown, it’s been noticed that finer-grain access
to these things is desirable, and locks have become finer over
time.

NICTA Copyright c© 2013 From Imagination to Impact 66-1

LOCKING AND ALL THAT. . .

Lock Data not Code!

NICTA Copyright c© 2013 From Imagination to Impact 67

The one thing to remember, is that we’re locking data, not code.
Be very clear over what data items need to be kept consistent,
and insert appropriate locks into the code that manipulates that
data.

NICTA Copyright c© 2013 From Imagination to Impact 67-1

LOCKING AND ALL THAT. . .

Uniprocessor Considerations:

• Just need to protect against preëmption

• (and interrupt handlers)

– disable/enable interrupts is sufficient

– some processors have multiple interrupt levels

spl0. . .spl7

NICTA Copyright c© 2013 From Imagination to Impact 68

On a uniprocessor, the only way for multiple threads of control
to access the same data at a time is by a context switch, either
to interrupt context, or to a different thread. As context switches
happen only in two circumstances: voluntarily, or in response to
an interrupt, it suffices to disable interrupts.
Some processors have multiple interrupt levels (e.g., M68K); op-
erating systems for such architectures can selectively disable in-
terrupts.

NICTA Copyright c© 2013 From Imagination to Impact 68-1

LOCKING AND ALL THAT. . .

Simple spin locks:

spinlock(volatile int *lp)

{

while (test_and_set(*lp))

;

}
spinunlock(volatile int *lp)

{

*lp = 0;

}

NICTA Copyright c© 2013 From Imagination to Impact 69

The simplest way to implement a spinlock, is to use an atomic
test-and-set instruction sequence. On x86, this is usually a compare-
exchange sequence; on m68k a tas instruction; ARM instead
uses a send and receive event pair.
Such atomic operations usually have implicit memory barriers.

NICTA Copyright c© 2013 From Imagination to Impact 69-1

LOCKING AND ALL THAT. . .

Issues with simple Spinlocks:

• Need to disable interrupts as well

• Wasted time spinning

• Too much cache coherency traffic

• Unfairness

NICTA Copyright c© 2013 From Imagination to Impact 70

Spinlocks have problems. To prevent context switching, you
need to disable interrupts as well as hold the spinlock. While
spinning, the processor uses power and wastes CPU cycles.
Evey test-and-set instruction sends a Read Invalidate message
and gets all the Invalidate Acknowledge results if there’s any
contention at all. And if there’s a code sequence where a pro-
cessor releases the lock, then reacquires it, it’s likely not to let
any other processor in (because the lock is locally cache-hot).

NICTA Copyright c© 2013 From Imagination to Impact 70-1

LOCKING AND ALL THAT. . .

Ameliorating the problem:

• Spin on read Segall & Rudolph (1984)

while (*lp || test_and_set(*lp))

;

– Most processors spin on while(*lp)

– The test_and_set() invalidates all locks,

causes coherency traffic.

– Better than plain test_and_set() but not

perfect.

– Unfairness still an issueNICTA Copyright c© 2013 From Imagination to Impact 71

Segall & Rudolph (1984) suggested guarding the test-and-set
with a read. That way, the spinning processors all have the
cache-line in Shared state, and spin on their own local caches
until the lock is released. This reduces coherency traffic, al-
though there’ll still be a thundering horde at unlock time. And
the resulting lock is still unfair.

NICTA Copyright c© 2013 From Imagination to Impact 71-1

LOCKING AND ALL THAT. . .

• Ticket locks Anderson (1990), Corbet (2008)

– Queue of waiting processes,

– Always know which one to let in next —

Deterministic latencies run to run

– As implemented in Linux, coherency traffic still an

issue.

NICTA Copyright c© 2013 From Imagination to Impact 72

If you’ve ever bought Cheese at David Jones, you’ll be familiar
with a ticket lock: each person takes a ticket with a number on
it; when the global counter (controlled by the server) matches
the number on your ticket, you get served. Nick Piggin put these
into the Linux kernel in 2008; his contribution was to put the ticket
and the lock into a single word so that an optimal code sequence
could be written to take the lock and wait for it.

NICTA Copyright c© 2013 From Imagination to Impact 72-1

LOCKING AND ALL THAT. . .

lock(lp)

{

x = atomic_inc(lp->next);

while (lp->current != x)

;

}

unlock(lp)

{

lp->current++;

}

NICTA Copyright c© 2013 From Imagination to Impact 73

Logically, the code sequence is as in the slide (I’ve omitted the
necessary read barriers). It’s assumed that the hardware pro-
vides a way to atomically increment a variable, do a write mem-
ory barrier and return its old value. If the lock was heavily con-
tested it would make sense to have the ticket counter and the
current ticket in separate cache lines, but this makes the lock
larger.

NICTA Copyright c© 2013 From Imagination to Impact 73-1

LOCKING AND ALL THAT. . .

• Multi-reader locks

– Count readers, allow more than one

– Single writer, blocks readers

• BRlocks

NICTA Copyright c© 2013 From Imagination to Impact 74

There are other locks used. There are many data structures that
are read-mostly. Concurrent reads can allow forward progress
for all readers. Multi-reader locks are slightly more expensive to
implement than simple spin locks or ticket locks, but can provide
good scalability enhancements.
Another lock used is the so-called brlock, or local-global lock.
These use per-cpu spinlocks for read access. A process at-
tempting write access needs to acquire all the per-cpu spinlocks.
This can be very slow.

NICTA Copyright c© 2013 From Imagination to Impact 74-1

LOCKING AND ALL THAT. . .

Other locking issues:

• Deadlocking

• Convoying

• Priority inversion

• Composibility issues

NICTA Copyright c© 2013 From Imagination to Impact 75

All locks have other issues. Lock ordering is important: if two
processes each have to take two locks, and they do not take
them in the same order, then they can deadlock.
Because locks serialise access to a data structure, they can
cause processes to start proceeding in lock step — rather like
cars after they’re released from traffic lights.
It’s possible for a process to be blocked trying to get a lock held
by a lower priority process. This is usually only a problem with
sleeping locks — while holding a spinlock, a process is always
running. There have been many solutions proposed for this (usu-
ally involving some way to boost the priority of the process hold-
ing the lock) but none are entirely satisfactory.
Finally there are issues with operation composability: how do
you operate on several data structures at once, when each is
protected by a different lock? The simplest way is always to take

NICTA Copyright c© 2013 From Imagination to Impact 75-1

all the locks, but to watch for deadlocks.

NICTA Copyright c© 2013 From Imagination to Impact 75-2

NICTA Copyright c© 2013 From Imagination to Impact 75-3

LOCKING AND ALL THAT. . .

Sleeping locks:

semaphore Dijkstra (1965)

mutex just a binary semaphore

adaptive spinlock

NICTA Copyright c© 2013 From Imagination to Impact 76

In 1965, Edsgar Dijkstra proposed a way for processes to co-
operate using a semaphore. The idea is that there is a variable
which has a value. Any attempt to reduce the value below zero
causes the process making the attempt to sleep until the value
is positive. Any attempt to increase the value when there are
sleeping processes associated with the semaphore wakes one
of them.
A semaphore can thus be used as a counter (of number of items
in a buffer for example), or if its values are restricted to zero or
one, it can be used as a mutual-exclusion lock (mutex).
Many systems provide adaptive spinlocks — these spin for a
short while, then if the lock has not been acquired the process is
put to sleep.

NICTA Copyright c© 2013 From Imagination to Impact 76-1

LOCKING AND ALL THAT. . .

Doing without locks: (See Fraser & Harris (2007) and

McKenney (2003))

• Atomic operations

– Differ from architecture to architecture

– compare-exchange common

– Usually have implicit memory barrier

– Fetch-op useful in large multiprocessors: op

carried out in interconnect.

NICTA Copyright c© 2013 From Imagination to Impact 77

Simple operations can be carried out lock free. Almost every
architecture provides some number of atomic operations. Archi-
tectures that do not, can emulate them using spinlocks.
Some architectures may provide fetch-and-add or fetch-and-mul
etc., instructions. These are implemented in the interconnect
or in the L2 cache, and provide a way of atomically updating a
variable and returning its previous or subsequent value.

NICTA Copyright c© 2013 From Imagination to Impact 77-1

LOCKING AND ALL THAT. . .

Optimism:

• Generation counter updated on write

• Check before and after read/calc: if changed retry

• Also called Sequence Locks

NICTA Copyright c© 2013 From Imagination to Impact 78

If you can afford to waste a little time, then an optimistic lock can
be used. The idea here is that a reading process grabs a gener-
ation counter before starting, and checks it just after finishing. If
the generation numbers are the same, the data are consistent;
otherwise the operation can be retried.
Concurrent writers still need to be serialised. Writers as their last
operation update the generation count.

NICTA Copyright c© 2013 From Imagination to Impact 78-1

SCALABILITY

The Multiprocessor Effect:

• Some fraction of the system’s cycles are not available

for application work:

– Operating System Code Paths

– Inter-Cache Coherency traffic

– Memory Bus contention

– Lock synchronisation

– I/O serialisation

NICTA Copyright c© 2013 From Imagination to Impact 79

We’ve seen that because of locking and other issues, some por-
tion of the multiprocessor’s cycles are not available for useful
work. In addition, some part of any workload is usually unavoid-
ably serial.

NICTA Copyright c© 2013 From Imagination to Impact 79-1

SCALABILITY

Amdahl’s law:

If a process can be split

such that σ of the running

time cannot be sped up, but

the rest is sped up by

running on p processors,

then overall speedup is

p

1 + σ(p− 1)

T(1−σ) Tσ

Tσ

T(1−σ)

T(1−σ)

T(1−σ)

NICTA Copyright c© 2013 From Imagination to Impact 80

It’s fairly easy to derive Amdahl’s law: perfect speedup for p pro-
cessors would be p (running on two processors is twice as fast,
takes half the time, than running on one processor).
The time taken for the workload to run on p processors if it took
1 unit of time on 1 processor is σ + (1 − σ)/p. Speedup is then
1/(σ+ (1− σ)/p) which, multiplying by p/p gives p/(pσ+1− σ),
or p/(1 + σ(p− 1))

NICTA Copyright c© 2013 From Imagination to Impact 80-1

SCALABILITY

1 processor

Throughput

Applied load

2 processors

3 processors

NICTA Copyright c© 2013 From Imagination to Impact 81

The general scalability curve looks something like the one in this
slide. The Y-axis is throughput, the X-axis, applied load. Un-
der low loads, where there is no bottleneck, throughput is deter-
mined solely by the load—each job is processed as it arrives,
and the server is idle for some of the time. Latency for each job
is the time to do the job.
As the load increases, the line starts to curve. At this point,
some jobs are arriving before the previous one is finished: there
is queueing in the system. Latency for each job is the time spent
queued, plus the time to do the job.
When the system becomes overloaded, the curve flattens out.
At this point, throughput is determined by the capacity of the
system; average latency becomes infinite (because jobs cannot
be processed as fast as they arrive, so the queue grows longer
and longer), and the bottleneck resource is 100% utilised.

NICTA Copyright c© 2013 From Imagination to Impact 81-1

When you add more resources, you want the throughput to go
up. Unfortunately, because of various effects we’ll talk about
later that doesn’t always happen...

NICTA Copyright c© 2013 From Imagination to Impact 81-2

NICTA Copyright c© 2013 From Imagination to Impact 81-3

SCALABILITY

3 processors

2 processors

Applied load

Throughput

Latency

Throughput

NICTA Copyright c© 2013 From Imagination to Impact 82

This graph shows the latency ‘hockey-stick’ curve. Latency is
determined by service time in the left-hand flat part of the curve,
and by service+queueing time in the upward sloping right-hand
side.
When the system is totally overloaded, the average latency is
infinite.

NICTA Copyright c© 2013 From Imagination to Impact 82-1

SCALABILITY

Gunther’s law:

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:

N is demand

α is the amount of serialisation: represents Amdahl’s law

β is the coherency delay in the system.

C is Capacity or Throughput

NICTA Copyright c© 2013 From Imagination to Impact 83

Neil Gunther (2002) captured this in his ‘Universal Scalability
Law’, which is a closed-form solution to the machine-shop-repairman
queueing problem.
It has two parameters, α which is the amount of non-scalable
work, and beta which is to account for the degradation often
seen in system-performance graphs, because of cross-system
communication (‘coherency’ or ‘contention’, depending on the
system).
The independent variable N can represent applied load, or num-
ber of logic-units (if the work per logic-unit is kept constant).

NICTA Copyright c© 2013 From Imagination to Impact 83-1

SCALABILITY

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

NICTA Copyright c© 2013 From Imagination to Impact 84

Here are some examples. If α and β are both zero, the system
scales perfectly—throughput is proportional to load (or to pro-
cessors in the system).
If α is slightly positive it indicates that part of the workload is not
scalable. Hence the curve plateaus to the right. Another way of
thinking about this is that some (shared) resource is approaching
100% utilisation.
If in addition β is slightly positive, it implies that some resource
is contended: for example, preliminary processing of new jobs
steals time from the main task that finishes the jobs.

NICTA Copyright c© 2013 From Imagination to Impact 84-1

SCALABILITY

Queueing Models:

ServerQueue

Poisson
arrivals

Poisson
service times

ServerQueue

Poisson
service times

Same Server

High Priority

Normal Priority

Sink

NICTA Copyright c© 2013 From Imagination to Impact 85

You can think of the system as in these diagrams. The second
diagram has an additional input queue; the same servers service
both queues, so time spent serving the input queue is stolen
from time servicing the main queue.

NICTA Copyright c© 2013 From Imagination to Impact 85-1

SCALABILITY

Real examples:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput

NICTA Copyright c© 2013 From Imagination to Impact 86

These graphs are courtesy of Etienne, Adrian and the Rapilog
team. This is a throughput graph for TPC-C on an 8-way mul-
tiprocessor using the ext3 filesystem with a single disk spindle.
As you can see, β > 0, indicating coherency delay as a major
performance issue.

NICTA Copyright c© 2013 From Imagination to Impact 86-1

SCALABILITY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

USL with alpha=0.342101,beta=0.017430
Postgres TPC throughput

NICTA Copyright c© 2013 From Imagination to Impact 87

Using R to fit the scalability curve, we get β = 0.017, α = 0.342 —
you can see the fit isn’t perfect, so fixing the obvious coherency
issue isn’t going to fix the scalability entirely.

NICTA Copyright c© 2013 From Imagination to Impact 87-1

SCALABILITY

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput, separate log disc

NICTA Copyright c© 2013 From Imagination to Impact 88

Moving the database log to a separate filesystem shows a much
higher peak, but still shows a β > 0. There is still coherency
delay in the system, probably the file-system log. From other
work I’ve done, I know that ext3’s log becomes a serialisation
bottleneck on a busy filesystem with more than a few cores —
switching to XFS (which scales better) or ext2 (which has no log)
would be the next step to try.

NICTA Copyright c© 2013 From Imagination to Impact 88-1

SCALABILITY

Another example:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way

NICTA Copyright c© 2013 From Imagination to Impact 89

This shows the reaim-7 benchmark running on various numbers
of cores on an HP 12-way Itanium system. As you can see, the
12-way line falls below the 8-way line — α must be greater than
zero. So we need to look for contention in the system some-
where.

NICTA Copyright c© 2013 From Imagination to Impact 89-1

SCALABILITY

SPINLOCKS HOLD WAIT

UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0%

find lock page+0x30

0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%) 1113 14.7% 85.3% 0%

find lock page+0x130

NICTA Copyright c© 2013 From Imagination to Impact 90

Lockmetering shows that a single spinlock in find lock page() is
the problem:

NICTA Copyright c© 2013 From Imagination to Impact 90-1

SCALABILITY

struct page *find lock page(struct address space *mapping,

unsigned long offset)

{

struct page *page;

spin lock irq(&mapping->tree lock);

repeat:

page = radix tree lookup(&mapping>page tree, offset);

if (page) {

page cache get(page);

if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);

lock page(page);

spin lock irq(&mapping->tree lock);

. . .NICTA Copyright c© 2013 From Imagination to Impact 91

So replace the spinlock with a rwlock, and bingo:

NICTA Copyright c© 2013 From Imagination to Impact 91-1

SCALABILITY

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

NICTA Copyright c© 2013 From Imagination to Impact 92

The scalability is much much better.

NICTA Copyright c© 2013 From Imagination to Impact 92-1

TACKLING SCALABILITY PROBLEMS

• Find the bottleneck

• fix or work around it

• check performance doesn’t suffer too much on the

low end.

• Experiment with different algorithms, parameters

NICTA Copyright c© 2013 From Imagination to Impact 93

Fixing a performance problem for your system can break some-
one else’s system. In particular, algorithms that have good worst-
case performance on large systems may have poorer perfor-
mance on small systems that algorithsm that do not scale. The
holy grail is to find ways that work well for two processor and two
thousand processor systems.

NICTA Copyright c© 2013 From Imagination to Impact 93-1

TACKLING SCALABILITY PROBLEMS

• Each solved problem

uncovers another

• Fixing performance for

one workload can

worsen another

• Performance problems

can make you cry

NICTA Copyright c© 2013 From Imagination to Impact 94

Performance and scalability work is like peeling an onion. Solv-
ing one bottleneck just moves the overall problem to another bot-
tleneck. Sometimes, the new bottleneck can be worse than the
one fixed.
Just like an onion, performance problems can make you cry.

NICTA Copyright c© 2013 From Imagination to Impact 94-1

DOING WITHOUT LOCKS

Avoiding Serialisation:

• Lock-free algorithms

• Allow safe concurrent access without excessive

serialisation

• Many techniques. We cover:

– Sequence locks

– Read-Copy-Update (RCU)

NICTA Copyright c© 2013 From Imagination to Impact 95

If you can reduce serialisation you can generally improve per-
formance on multiprocessors. Two locking techniques are pre-
sented here.

NICTA Copyright c© 2013 From Imagination to Impact 95-1

DOING WITHOUT LOCKS

Sequence locks:

• Readers don’t lock

• Writers serialised.

NICTA Copyright c© 2013 From Imagination to Impact 96

If you have a data structure that is read-mostly, then a sequence
lock may be of advantage. These are less cache-friendly than
some other forms of locks.

NICTA Copyright c© 2013 From Imagination to Impact 96-1

DOING WITHOUT LOCKS

Reader:

volatile seq;

do {

do {

lastseq = seq;

} while (lastseq & 1);

rmb();

....

} while (lastseq != seq);

NICTA Copyright c© 2013 From Imagination to Impact 97

DOING WITHOUT LOCKS

Writer:

spinlock(&lck);

seq++; wmb()

...

wmb(); seq++;

spinunlock(&lck);

NICTA Copyright c© 2013 From Imagination to Impact 98

The idea is to keep a sequence number that is updated (twice)
every time a set of variables is updated, once at the start, and
once after the variables are consistent again. While a writer is
active (and the data may be inconsistent) the sequence number
is odd; while the data is consistent the sequence is even.
The reader grabs a copy of the sequence at the start of its sec-
tion, spinning if the result is odd. At the end of the section, it
rereads the sequence, if it is different from the first read value,
the section is repeated.
This is in effect an optimistic multi-reader lock. Writers need to
protect against each other, but if there is a single writer (which
is often the case) then the spinlocks can be omitted. A writer
can delay a reader; readers do not delay writers – there’s no
need as in a standard multi-reader lock for writers to delay until
all readers are finished.

NICTA Copyright c© 2013 From Imagination to Impact 98-1

This is used amongst other places in Linux for protecting the
current time-of-day.

NICTA Copyright c© 2013 From Imagination to Impact 98-2

DOING WITHOUT LOCKS

RCU: McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

NICTA Copyright c© 2013 From Imagination to Impact 99

Another way is so called read-copy-update. The idea here is that
if you have a data structure (such as a linked list), that is very
very busy with concurrent readers, and you want to remove an
item in the middle, you can do it by updating the previous item’s
next pointer, but you cannot then free the item just unlinked until
you’re sure that there is no thread accessing it.
If you prevent preëmption while walking the list, then a sufficient
condition is that every processor is either in user-space or has
done a context switch. At this point, there will be no threads
accessing the unlinked item(s), and they can be freed.
Inserting an item without locking is left as an exercise for the
reader.
Updating an item then becomes an unlink, copy, update, and
insert the copy; leaving the old unlinked item to be freed at the
next quiescent point.

NICTA Copyright c© 2013 From Imagination to Impact 99-1

BACKGROUND READING

References

Anderson, T. (1990), ‘The performance of spin-lock

alternatives for shared memory multiprocessors’, IEEE

Transactions on Parallel and Distributed Systems

1(1), 6–16.

URL:

http://www.cs.washington.edu/homes/tom/pubs/

Corbet, J. (2008), ‘Ticket spinlocks’, Linux Weekly News .

URL: http://lwn.net/Articles/267968/

Dijkstra, E. W. (1965), ‘Cooperating sequential processesNICTA Copyright c© 2013 From Imagination to Impact 100

BACKGROUND READING

(ewd-123)’.

URL:

http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

Fraser, K. & Harris, T. (2007), ‘Concurrent programming

without locks’, ACM Trans. Comput. Syst. 25.

URL:

http://doi.acm.org/10.1145/1233307.1233309

Hoare, C. (1974), ‘Monitors: An operating system

structuring concept’, CACM 17, 549–57.

McKenney, P. E. (2003), ‘Using RCU in the Linux 2.5

kernel’, Linux Journal 1(114), 18–26.NICTA Copyright c© 2013 From Imagination to Impact 101

http://www.cs.washington.edu/homes/tom/pubs/spinlock.html
http://lwn.net/Articles/267968/
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://doi.acm.org/10.1145/1233307.1233309

BACKGROUND READING

URL:

http://www.linuxjournal.com/article/6993

McKenney, P. E. (2004), Exploiting Deferred Destruction:

An Analysis of Read-Copy-Update Techniques in

Operating System Kernels, PhD thesis, OGI School of

Science and Engineering at Oregon Health and

Sciences University.

URL:

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

McKenney, P. E. (2010), ‘Memory barriers: A hardware
NICTA Copyright c© 2013 From Imagination to Impact 102

BACKGROUND READING

view for software hackers’,

http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A.,

Krieger, O. & Russell, R. (2002), Read copy update, in

‘Ottawa Linux Symp.’.

URL:

http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

Ritchie, D. M. (1984), ‘The evolution of the UNIX

time-sharing system’, AT&T Bell Laboratories Technical

Journal 63(8), 1577–1593.
NICTA Copyright c© 2013 From Imagination to Impact 103

http://www.linuxjournal.com/article/6993
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.07c.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

BACKGROUND READING

URL:

ftp://cm.bell-labs.com/who/dmr/hist.html

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX

time-sharing system’, CACM 17(7), 365–375.

Schimmel, C. (1994), UNIX Systems for Modern

Architectures, Addison-Wesley.

Segall, Z. & Rudolph, L. (1984), Dynamic decentralized

cache schemes for an MIMD parallel processor, in

‘Proc. 11th Annual International Symposium on

Computer Architecture’, pp. 340–347.NICTA Copyright c© 2013 From Imagination to Impact 104

ftp://cm.bell-labs.com/who/dmr/hist.html

