
OS Security
COMP9242 - Advanced OS

Toby Murray

(with thanks to Gernot Heiser, from whom
some of this material is borrowed)

NICTA Copyright 2011 From imagination to impact

INTRODUCTION

2

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact 2

What is security?

• Different things to different people:

NICTA Copyright 2011 From imagination to impact

Computer Security

• Protecting my interests that are under
computer control from malign threats

• Inherently subjective
– Different people have different interests
– Different people face different threats

• Don’t expect one-size-fits-all solutions
– Grandma doesn’t need an air gap
– Windows alone is insufficient for protecting

TOP SECRET classified data
• on an Internet-connected machine

4

NICTA Copyright 2011 From imagination to impact

State of OS Security

• Traditionally:
– Has not kept pace with evolving user

demographics
• Focused on e.g. Defence and Enterprise

– Has not kept pace with evolving threats
• Focused on protecting users from other users, not

from the programs they run

• Is getting better
– But is hindered because:

• We don’t yet understand how to write secure code
• OSes are getting larger and more complex

5

NICTA Copyright 2011 From imagination to impact

OS Security

• What is the role of the OS for security?
• Minimum:

– provide mechanisms to allow the
construction of secure systems

– that are capable of securely implementing the
intended users’/administrators’ policies

– while ensuring these mechanisms cannot be
subverted

6

NICTA Copyright 2011 From imagination to impact

Good security mechanisms

• Are widely applicable
• Support general security principles
• Are easy to use correctly and securely
• Do not hinder non-security priorities (e.g.

productivity, generativity)
• Lend themselves to correct

implementation and verification

7

NICTA Copyright 2011 From imagination to impact

Security Design Principles

• Saltzer+Schroeder (SOSP ’73, CACM ’74)
– Economy of mechanism
– Fail-safe defaults
– Complete mediation
– Open design
– Separation of privilege
– Least privilege
– Least common mechanism
– Psychological acceptability

8

NICTA Copyright 2011 From imagination to impact

Common OS Security Mechanisms

• Access Control Systems
– control what each process can access

• Authentication Systems
– confirm the identity on whose behalf a

process is running
• Logging

– for audit, detection, forensics and recovery
• Filesystem Encryption
• Credential Management
• Automatic Updates

9

NICTA Copyright 2011 From imagination to impact

Security Policies

• Define what should be protected
– and from whom

• Often in terms of common security goals:
– Confidentiality

• X should not be learnt by Y
– Integrity

• X should not be tampered with by Y
– Availability

• X should not be made unavailable to Z by Y

10

NICTA Copyright 2011 From imagination to impact

Policy vs. Mechanism

• Policies accompany mechanisms:
– access control policy

• who can access what?
– authentication policy

• is password sufficient to authenticate TS access?

• Policy often restricts the applicable
mechanisms

• One person’s policy is another’s
mechanism

11

NICTA Copyright 2011 From imagination to impact

Assumptions

• All policies and mechanisms operate
under certain assumptions
– e.g. TS cleared users can be trusted not to

write TS data into the UNCLASS window
• Problem: implicit or poorly understood

assumptions
• Good assumptions:

– clearly identified
– verifiable

12

NICTA Copyright 2011 From imagination to impact

Risk Management

• Comes down to risk management
– At the heart of all security
– Assumptions: risks we are willing to tolerate

• Other risks:
– we mitigate (using security mechanisms)
– or transfer (e.g. by buying insurance)

• Security policy should distinguish which is
appropriate for each risk
– Based on a thorough risk assessment

13

NICTA Copyright 2011 From imagination to impact

Trust

• Systems always have trusted entites
– whose misbehaviour can cause insecurity
– hardware, OS, sysadmin ...

• Trusted Computing Base (TCB):
– the set of all such entities

• Secure systems require trustworthy
TCBs
– achieved through assurance and verification
– shows that the TCB is unlikely to misbehave
– why the TCB should be as small as possible

14

NICTA Copyright 2011 From imagination to impact

Assurance and Formal Verification

• Assurance:
– systematic evaluation and testing

• Formal verification:
– mathematical proof

• Together trying to establish correctness of:
– the design of the mechanisms
– and their implementation

• Certification: establishes that the
assurance or verification was done right

15

NICTA Copyright 2011 From imagination to impact

Covert Channels

• Information flow not controlled by security
mechanism
– confidentiality requires absence of all such

• Covert Storage Channel:
– attribute of shared resource used as channel
– controllable by access control

• Covert Timing Channel:
– temporal order of shared resource accesses
– outside of access control system
– much more difficult to control and analyse

16

NICTA Copyright 2011 From imagination to impact

Covert Timing Channels

• Created by shared resource whose timing-
related behaviour can be monitored
– network bandwidth, CPU load ...

• Requires access to a time source
– anything that allows processes to synchronise

• Critical issue is channel bandwidth
– low bandwidth limits damage

• why DRM ignores low bandwidth channels
– beware of amplification

• e.g. leaking passwords, encryption keys etc.

17

NICTA Copyright 2011 From imagination to impact

Summary: Introduction

• Security is very subjective
• OS security:

– provide good security mechanisms
– that support users’ policies

• Security depends on establishing
trustworthiness of trusted entities
– TCB: set of all such entities

• should be as small as possible
– Main approaches: assurance and verification

• The OS is necessarily part of the TCB
18

NICTA Copyright 2011 From imagination to impact

ACCESS CONTROL PRINCIPLES

19

NICTA Copyright 2011 From imagination to impact

Access Control

• who can access what in which ways
– the “who” are called subjects

• e.g. users, processes etc.
– the “what” are called objects

• e.g. individual files, sockets, processes etc.
• includes all subjects

– the “ways” are called permissions
• e.g. read, write, execute etc.
• are usually specific to each kind of object
• include those meta-permissions that allow

modification of the protection state
– e.g. own

20

NICTA Copyright 2011 From imagination to impact

AC Mechanisms and Policies

• AC Policy
– Specifies allowed accesses
– And how these can change over time

• AC Mechanism
– Implements the policy

• Certain mechanisms lend themselves to
certain kinds of policies
– Certain policies cannot be expressed using

certain mechanisms

21

NICTA Copyright 2011 From imagination to impact

Protection State

• Access control matrix defines the
protection state at any instant in time

22

Obj1 Obj2 Obj3 Subj2

Subj1

Subj2

Subj3

R RW send

RX control

RW RWX
own

recv

NICTA Copyright 2011 From imagination to impact

Storing Protection State

• Not usually as access control matrix
– too sparse, inefficient

• Two obvious choices:
– store individual columns with each object

• defines the subjects that can access each object
• each such column is called the object’s access

control list
– store individual rows with each subject

• defines the objects each subject can access
• each such is called the subject’s capability list

23

NICTA Copyright 2011 From imagination to impact

Access Control Lists (ACLs)

• Subjects usually aggregated
into classes
– e.g. UNIX: owner, group,

everyone
• Meta-permissions (e.g. own)

– control class membership
– allow modifying the ACL

• Implemented in almost all
commercial OSes

24

Subj1

Subj2

Subj3

R

RW

Obj1

NICTA Copyright 2011 From imagination to impact

Capabilities

• A capability is a capability list element

– Names an object to which the capability refers
– Confers permissions over that object

• Less common in commercial systems
– More common in research though

25

Obj1 Obj2 Obj3 Subj2

R RW send
Subj1

NICTA Copyright 2011 From imagination to impact

Capabilities: Implementations

• Capabilities must be unforgeable
• On conventional hardware, either:

– Stored as ordinary user-level data, but
unguessable due to sparseness

• like a password or an encryption key
– Stored separately (in-kernel), referred to by

user programs by index/address
• like UNIX file descriptors

• Sparse capabilities can be leaked more
easily, but are easier to revoke
– The only solution for most distributed systems

26

NICTA Copyright 2011 From imagination to impact

ACLs and Capabilities: Duals?

• In theory:
– Dual representations of access control matrix

• Practical differences:
– Naming and namespaces

• Confused Deputies
– Evolution of protection state
– Forking
– Auditing of protection state

27

NICTA Copyright 2011 From imagination to impact

Duals: Naming and Namespaces

• ACLs:
– objects referenced by name

• e.g. open(“/etc/passwd”,O_RDONLY)
– require a subject (class) namespace

• e.g. UNIX users and groups

• Capabilities:
– objects referenced by capability

• object namespace still required though
– no subject namespace required

28

NICTA Copyright 2011 From imagination to impact

Duals: Confused Deputies

• ACLs: separation of object naming and
permission can lead to confused deputies
– Capabilities are both names and permissions

• You can’t name something without having
permission to it

29

gcc
RW

LogFileAlice
X

NICTA Copyright 2011 From imagination to impact

Duals: Confused Deputies

• ACLs: separation of object naming and
permission can lead to confused deputies
– Capabilities are both names and permissions

• You can’t name something without having
permission to it

29

gcc
RW

LogFileAlice
X

exec “gcc” “-o LogFile”

NICTA Copyright 2011 From imagination to impact

Duals: Evolution of Protection State

• ACLs:
– Protection state changes by modifying ACLs

• Requires certain meta-permissions on the ACL

• Capabilities:
– Protection state changes by delegating and

revoking capabilities
• Right to delegate controlled by certain capabilities
• e.g. A can delegate to B only if A has a capability to

B that carries appropriate permissions

30

NICTA Copyright 2011 From imagination to impact

Duals: Forking

• What permissions should children get?
• ACLs: depends on the child’s subject

– UNIX etc.: child inherits parent’s subject
• Inherits all of the parent’s permissions
• Any program you run inherits all of your authority

– Bad for least privilege
• Capabilities: child has no caps by default

– Parent gets a capability to the child upon fork
– Used to delegate (only) necessary authority
– Much better for least privilege

31

NICTA Copyright 2011 From imagination to impact

Duals: Auditing of Protection State

• How to work out who has permission to
access a particular object (right now)?
– ACLs: Just look at the ACL

• How to work out what objects a particular
subject can access (right now)?
– Capabilities: Just look at its capabilities

• “Who can access my stuff?” vs. “How
much damage can this thing do?”

32

NICTA Copyright 2011 From imagination to impact

Mandatory vs. Discretionary AC

• Discretionary Access Control:
– Users can make access control decisions

• delegate their access to other users etc.

• Mandatory Access Control (MAC):
– enforcement of administrator-defined policy
– users cannot make access control decisions

(except those allowed by mandatory policy)
– can prevent untrusted applications running

with user’s privileges from causing damage

33

NICTA Copyright 2011 From imagination to impact

MAC

• Common in areas with global security
requirements
– e.g. national security classifications

• Less useful for general-purpose settings:
– hard to support different kinds of policies
– all policy changes must go through sysadmin
– hard to dynamically delegate only specific

rights required at runtime

34

NICTA Copyright 2011 From imagination to impact

Bell-LaPadula (BLP) Model

• MAC Policy/Mechanism
– Formalises National Security Classifications

• Every object assigned a classification
– e.g. TS, S, C, U

• Classifications ordered in a lattice
– e.g. TS > S > C > U

• Every subject assigned a clearance
– Highest classification they’re allowed to learn

35

NICTA Copyright 2011 From imagination to impact

BLP: Rules

• Simple Security Property (“no read up”):
– s can read o iff clearance(s) >= class(o)
– S-cleared subject can read U,C,S but not TS
– standard confidentiality

• *-Property (“no write down”):
– s can write o iff clearance(s) <= class(o)
– S-cleared subject can write TS,S, but not C,U
– to prevent accidental or malicious leakage of

data to lower levels

36

NICTA Copyright 2011 From imagination to impact

Biba Integrity Model

• Bell-LaPadula enforces confidentiality
• Biba: Its dual, enforces integrity
• Objects now carry integrity classification
• Subjects labelled by lowest level of data

each subject is allowed to learn
• BLP order is inverted:

– s can read o iff clearance(s) <= class(o)
– s can write o iff clearance(s) >= class(o)

37

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

• Boebert 1984: “On the Inability of an
Unmodified Capability Machine to Enforce
the *-Property“

• Shows an attack on sparse capability
systems that violates the *-property
– Where caps and data are indistinguishable
– Does not work against partitioned capability

systems
• Practically all capability-based kernels

38

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

Rr_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

Rrw_l.write(rw_l) r_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

Rr_l

rw_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

R

r_l.read()

r_l

rw_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

Rr_lRW

rw_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack

39

High HiSegR

Low LoSegRW
rw_l

Rr_lRW

• Low writes his cap into the low segment
– from which High reads it out

rw_l

NICTA Copyright 2011 From imagination to impact

Boebert’s Attack: Lessons

• Not all mechanisms suited to all policies
• Many policies treat data- and access-

propagation differently
– BLP is one example
– Cannot be expressed using sparse capability

systems
• This does not mean that capability

systems and MAC are incompatible in
general

40

NICTA Copyright 2011 From imagination to impact

Decideability

• Boebert’s attack highlights the need for
decideability of safety in an AC system

• Safety Problem: given an initial protection
state s, and a possible future protection
state s’, can s’ be reached from s?
– i.e. can an arbitrary (unwanted) access

propagation occur?
• HRU 1975: undecideable in general

– equivalent to the halting problem

41

NICTA Copyright 2011 From imagination to impact

Decideable AC systems

• The safety problem for an AC system is
decideable if we can always answer this
question mechanically

• Most capability-based AC systems
decideable:
– instances of Lipton-Snyder Take-Grant

access control model
– Take-Grant is decideable in linear time

• Less clear for many common ACL systems

42

NICTA Copyright 2011 From imagination to impact

Summary: AC Principles

• ACLs and Capabilities:
– They are not necessarily duals in practice
– Capabilities tend to better support least

privilege
– But ACLs can be better for auditing

• MAC good for global security requirements
• Certain kinds of policies cannot be

enforced with certain kinds of mechanisms
– e.g. *-property with sparse capabilities

• AC systems should be decideable
– so we can reason about them

43

NICTA Copyright 2011 From imagination to impact

ACCESS CONTROL PRACTICE

44

NICTA Copyright 2011 From imagination to impact

Case Study: SELinux

• NSA-developed MAC for Linux
• Designed to protect systems from buggy

applications
– Especially daemons and servers that have

traditionally run with superuser privileges
• Adds a layer of MAC atop Linux’s

traditional DAC
– Each access check must pass both the

normal DAC checks and the new MAC ones
• Used widely in e.g. RHEL

45

NICTA Copyright 2011 From imagination to impact

SELinux: Policy

• Domain-Type Enforcement:
– Each process labelled with a domain
– Each object labelled with a type
– Central policy describes allowed accesses

from domains to types
• Example:

– named runs in named_d domain; /sbin
labelled with sbin_t type

– “allow named_d sbin_t:dir search”

46

NICTA Copyright 2011 From imagination to impact

SELinux: Domain/Type Transitions

• How domains assigned to new processes
– upon exec() (after fork())
– based on exec’ing domain and exec’d file type
– “type_transition initrc_d
squid_exec_t:process squid_d”

• how types assigned to new files/directories
– based on domain of process creating them

and type of parent directory
– “type_transition named_t
var_run_t:sock_file named_var_run_t”

47

NICTA Copyright 2011 From imagination to impact

SELinux

• Static fine-grained MAC
• Monolithic policy of high complexity

• “The simpler targeted policy consists of more than
20,000 concatenated lines ... derived from ...
thousands of lines of TE rules and file context
settings, all interacting in very complex ways.”

– Red Hat Enterprise Linux 4: Red Hat SELinux Guide,
Chapter 6. Tools for Manipulating and Analyzing SELinux

• Limited flexibility
– What authority should we grant a text editor?

• Needed authority determined only by user actions

48

NICTA Copyright 2011 From imagination to impact

Case Study: Capsicum

• “Practical Capabilities for UNIX” (Watson
et al., USENIX Security 2010)

• Designed to support least privilege in
conventional systems
– without downsides of MAC
– through delegation

• Merged into FreeBSD 9
– But turned off by default

49

NICTA Copyright 2011 From imagination to impact

Capsicum: Kernel

• Capsicum adds to the FreeBSD kernel:
– Capabilities with fine-grained access rights for

standard objects (files, processes etc.)
– Capability Mode

• Disallows access to global namespaces (e.g.
filesystem etc.)

• All accesses must go through capabilities
• *at() system calls can resolve only names

“underneath” the passed descriptor
• Allows access to subsets of the filesystem by

directory capabilities

50

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: Capabilities

• New file descriptor type
– Wrap traditional file descriptors
– Carry fine-grained access rights

51

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: Capabilities

• Capability passing as for file descriptors:
– may be inherited across fork()
– passed via UNIX domain sockets

• Created using cap_new()
– From a raw file descriptor and a set of rights
– Or an existing capability

• New cap’s rights must be a subset

• Capabilities may refer to files, directories,
processes, network sockets etc.

52

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: Capability Mode

• Entered via new syscall: cap_enter()
– Sets a flag that all child processes then inherit

and can never be cleared once set
• Disallows access to all global

namespaces:
– Process ID (PID), file paths, protocol

addresses (e.g. IP addrs), system clocks etc.
• e.g. open() syscall disallowed (but openat() OK)

– All accesses through delegated capabilities
• Removes all ambient authority

53

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: *at() syscalls

• Allow lookups of paths relative to a given
directory
– specified by a directory file descriptor
– e.g. openat(rootdirfd,”somepath”, O_RDONLY)

• In capability mode, prevented from
traversing any path above the given cap
– e.g. openat(dirfd,”../blah”, flags) disallowed
– Ensures that directory caps do not confer

authority to access their parents

54

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: Capability Mode

• Directory capabilities allow access to sub-
parts of the filesystem namespace

55

NICTA Copyright 2011 From imagination to impact

FreeBSD Capsicum: Delegation

• A parent delegates to an app it invokes by:
– fork()ing, obtaining a cap to the child
– child drops or weakens unneeded caps, calls

cap_enter(), then exec()s invoked binary
• Allows e.g. your shell to delegate sensibly

to apps it invokes
– Although apps need to be modified to do all

accesses via capabilities
– Provides an incremental path towards security

56

NICTA Copyright 2011 From imagination to impact

Filenames as Cap Handles

• Capsicum: openat() maps filenames to caps
– relative to some root directory cap
– filenames become capability handles

• Unestos (Krohn et al., HotOS 2005)
– no global namespaces, ever

• each process has distinct filesystem namespace,
like in Plan 9

– all resources represented in filesystem
• e.g. /sockets/tcp/listen/80

– all filenames are just string handles for caps
• file namespace becomes simply a cap namespace

57

NICTA Copyright 2011 From imagination to impact

AC Mechanisms and Least Privilege

• Secure OS should support writing least-
privilege applications
– decomposing app into distinct components
– each of which runs with least privilege

• Largely comes down to its AC system
– some make this far more easy than others

• Example: web browser
– handles lots of the user’s sensitive info
– but processes lots of untrusted input
– input processing parts need to be sandboxed

58

NICTA Copyright 2011 From imagination to impact

Sandboxing Chromium (Watson et al., 2010)

59

OS Sandbox LOC FS IPC Net Priv

DACDAC

MACMAC

CapsCaps

Windows DAC
ACLs 22,350

Linux chroot() 600

OS X Sandbox 560

Linux SELinux 200

Linux seccomp 11,300

FreeBSD Capsicum 100

NICTA Copyright 2011 From imagination to impact

USABLE SECURITY

60

NICTA Copyright 2011 From imagination to impact

Users and Security

• “The single biggest cause of network
security breaches is not software bugs and
unknown network vulnerabilities but user
stupidity, according to a survey published
by computer consultancy firm @Stake.”
– http://www.zdnetasia.com/staff-oblivious-to-

computer-security-threats-21201228.htm
• “if [educating users] was going to work, it

would have worked by now.”
– http://www.ranum.com/security/

computer_security/editorials/dumb/
61

http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/

NICTA Copyright 2011 From imagination to impact

Security Advice

• Security advice:
– e.g. check URLs / HTTPS certs, use strong

passwords, don’t write down passwords, etc.
• Is regularly rejected:

– when it makes it impossible to get work done
• why bosses share their passwords with their PAs

– when there is some incentive to do so
• why users give out their passwords for chocolate

– when nobody ever sees any threat
• why nobody checks HTTPS certificates
• who here has ever faced a live MITM?

62

NICTA Copyright 2011 From imagination to impact

Security Advice Rejection

• Is often rational (Herley, NSPW 2009)
– because it costs more to follow it than not to

• advice imposes a cost on everyone
• but only a fraction ever get attacked
• so for most, there is not benefit

• Is because security is secondary concern
– people get paid (only) for getting work done

• Writing good security advice is hard
– this says more about poor system design than

about the motivations of end-users

63

NICTA Copyright 2011 From imagination to impact

A brief digression...

64

• Has your bank ever reminded you not to
forget your ATM card when withdrawing
cash?

NICTA Copyright 2011 From imagination to impact

User Education

• Needed when the most secure way to use
a system differs from the easiest
– for rational users: “easiest” = “most profitable”

• will be different for different people

• Is expensive
– Cheaper to avoid need for it by careful design

• Not always possible to avoid:
– when security and productivity goals conflict
– e.g. need-to-know versus intelligence sharing

post 9/11

65

NICTA Copyright 2011 From imagination to impact

Why Usable Security?

• Design Principle: Make the easiest way to
use a system the most secure
– c.f. safe defaults

• In general: exploit the user to make the
system more, not less, secure
– by aligning their incentives to produce

behaviour that enhances security
– requires good understanding of economics,

human behaviour, psychology etc.
• why these are now becoming hot topics in security

research

66

NICTA Copyright 2011 From imagination to impact

Secure Interaction Design

• Users often behave “insecurely” because
their actions cause effects different to what
they expect
– User types password into a phishing website

• did not expect the website was fraudulent
– User executes email attachment

• did not expect the attachment to be dangerous

• General principle: secure systems must
behave in accordance with user
expectations

67

NICTA Copyright 2011 From imagination to impact

User Expectations

• To behave in accordance with user
expectations:
– Software must clearly convey consequences

of any security choices presented to user
– Software must clearly inform the user to keep

accurate their mental model that informs their
choices

• Why secure UIs require trusted paths
– Essential security mechanism of a secure OS

68

NICTA Copyright 2011 From imagination to impact

Trusted Path

• Unspoofable I/O with the user
– unspoofable output

• so the user can believe what they see
– unspoofable input

• so the user knows what they say will be honoured

• Requires trustworthy I/O hardware
• For interactions via the OS, requires:

– trustworthy drivers
– trustworthy kernel

69

NICTA Copyright 2011 From imagination to impact

Secure Attention Key

• A trusted path for logging in
– Ctrl-Alt-Del in Windows NT-based systems
– Untrappable by applications, so unspoofable
– Traps directly to kernel
– Causes login prompt only to be displayed

• Requires user effort
– So not optimal
– But better than

nothing

70

NICTA Copyright 2011 From imagination to impact

Hardware Trusted Paths

• For high-security situations, often cannot
trust kernel or device derivers

• These use hardware-only trusted paths
– Simple I/O hardware directly connected to

security-critical device functions
• e.g. pushbuttons (input) and LEDs (output)

– bypasses OS
• requires only that the hardware is trusted

71

NICTA Copyright 2011 From imagination to impact

Case Study: Windows UAC

72

NICTA Copyright 2011 From imagination to impact

Windows UAC: Overview

• User prompted to confirm granting admin
privileges to applications
– distinguishes apps from “known” and

unknown publishers
– graphical trusted path used by default

• via separate desktop session
• prevents apps interfering with the dialog

• User offered a binary choice
– cannot decide which privileges to grant

73

NICTA Copyright 2011 From imagination to impact

UAC Levels (Windows 7 and 8)

74

– Always notify

– Don’t notify when “I” make changes
• “I” is a component of Windows (e.g. launched via

Control Panel)
– potential confused deputies

• the default

– Don’t dim desktop
• no trusted path

– Never notify

High

Low

NICTA Copyright 2011 From imagination to impact

UAC as Usable Security

• On an uninfected machine:
– User should say yes always
– This can become the most natural action

• When the user becomes infected, then:
– Most natural action could be the least secure

• Saying yes optimises for short-term
productivity
– So users who value short-term productivity

may act insecurely

75

NICTA Copyright 2011 From imagination to impact

Admonition vs. Designation

• UAC is example of security by
admonition (Yee S&P vol 2, no 4, 2004)
– provide a notification
– to which user must attend to remain secure

• Alternative is security by designation
– ∫user actions simultaneously designate and

authorise
• c.f. capabilities

– users’ security decisions inferred through their
usual actions

76

NICTA Copyright 2011 From imagination to impact

Security by Admonition

77

NICTA Copyright 2011 From imagination to impact

Security by Admonition

• Example: User double-clicks an app

77

NICTA Copyright 2011 From imagination to impact

Security by Admonition

• Example: User double-clicks an app

77

NICTA Copyright 2011 From imagination to impact

Security by Admonition

• Example: User double-clicks an app

• Answer will always be “yes”
– unless the user clicked the wrong app

77

NICTA Copyright 2011 From imagination to impact

Security by Admonition

• Example: User double-clicks an app

• Answer will always be “yes”
– unless the user clicked the wrong app

• “why did it ‘forget’ I wanted to run the app?

77

NICTA Copyright 2011 From imagination to impact

Security by Designation

• Example: User double-clicks an app
– the app just runs

• User’s act of double-clicking both:
– designates the app to run
– grants authority for it to run

• c.f. capabilities

• Ordinary user actions become security
designations
– ordinary actions grant appropriate authority
– in accordance with least privilege

78

NICTA Copyright 2011 From imagination to impact

Case Study: OS X Lion (etc.) Powerbox

• Automatic dynamic grants of authority to
sandboxed applications
– inferred from ordinary user actions

• OS X sandbox:
– an app declares its needed authorities via a

manifest at install time
• create net connection, listen, capture from camera

– sandboxed applications’ authority limited to
those in its manifest

– plus those granted to it by the user through
the powerbox damon

79

NICTA Copyright 2011 From imagination to impact

OS X Lion Powerbox

• Trusted daemon process: pboxd
• Controls open/save dialogs (and similar)
• User selects File -> Open / Save / Save As

– pboxd launches appropriate dialog on behalf
of the app

• User selects file and clicks e.g. “Open”
– pboxd grants the app access to the specific

file / directory only
• Similar mechanism used for “Recently

Opened” files etc.
80

NICTA Copyright 2011 From imagination to impact

OS X Lion Powerbox: MS Word

• How much authority does Word need?
– declared statically (e.g. in its manifest):

• ability to read/execute its shared libraries
• ability to read/write global preferences etc.
• i.e. access to things that were created when it was

installed
– dynamically (through the powerbox):

• the currently opened files

• That’s basically it
– same principle can be applied to most other

apps too

81

NICTA Copyright 2011 From imagination to impact

Least Authority Filesystem Access

• Most apps need just access to:
– files created when the app was installed

• /usr/lib/appname
– system-wide space for app-specific data

• /usr/share/appname
– local space for user preferences

• $HOME/.appname
– files selected through the powerbox

• Basic idea behind OLPC’s Bitfrost least-
authority security architecture
– whose creator worked on the Lion powerbox

82

NICTA Copyright 2011 From imagination to impact

Inferring other needed authorities

• By application type (Yee 2004, IEEE S&P)
– Internet

• network access
– Sound & Video

• camera / mic access
– ...

• Determined at install-time
– user drags the app to the

desired part of the applications menu
• installs the app
• grants it the necessary authorities

83

NICTA Copyright 2011 From imagination to impact

Inferring more complicated authorities

• Windows knows my default
web and email clients

• Manages my passwords etc.
• Web browser has access to:

– my bookmarks
– web passwords,

• Email client has access to:
– my mail servers
– account names / passwords ...

• Bonus: app agnostic
84

NICTA Copyright 2011 From imagination to impact

Aside: App Stores and Incentives

• Apple distributes OS X Lion apps via its
App Store

• Apps need to list required authorities
• Opportunity for security:

– allows Apple to target their application
auditing processes

• because low authority apps need less auditing
– natural incentive for developers to minimise

the authorities listed by their apps
• low authority apps can be audited faster

• Incentives are as important as technology!
85

NICTA Copyright 2011 From imagination to impact

Case Study: User Driven AC (S&P 2012)

• Generalises powerbox idea from files to
arbitrary user-owned resources
– camera, microphone, address book, facebook

friends list
• Access decisions inferred through genuine

UI interactions
• Avoids user-facing manifests and UAC/

iPhone style permission popups
– Android malware has shown that users don’t

audit install-time manifests carefully
– users tend to click-through popups

86

NICTA Copyright 2011 From imagination to impact

User Driven Access Control

87

NICTA Copyright 2011 From imagination to impact

User-Driven AC

• Access Control Gadget (ACG)
– UI element that applications can embed
– Interacts with resource Reference Monitor
– Interactions with ACG grant permissions to

the embedding app
– File Powerbox is but one simple ACG for files

• Protected by the OS from interference
from the embedding app
– but app can move, resize etc. embedded

ACGs

88

NICTA Copyright 2011 From imagination to impact

ACGs and Resource Classes

89

NICTA Copyright 2011 From imagination to impact

ACGs and Resource Classes

• Location data

89

NICTA Copyright 2011 From imagination to impact

ACGs and Resource Classes

• Location data

• Microphone, camera

89

NICTA Copyright 2011 From imagination to impact

ACGs and Resource Classes

• Location data

• Microphone, camera

• Clipboard

89

NICTA Copyright 2011 From imagination to impact

ACGs and Resource Classes

• Location data

• Microphone, camera

• Clipboard

• Files

89

NICTA Copyright 2011 From imagination to impact

ACGs and Access Semantics

• ACGs may grant one-time, session or
permanent access
– permanent access rarely required (5% top

100 Android apps)

90

NICTA Copyright 2011 From imagination to impact

ACGs and Trusted Path

• ACGs require a trusted path from the OS
– ACG input events must go directly to ACG
– Kernel must control the cursor over ACGs

• ACGs must be isolated from app
– although ACGs can allow customisation

• “Social engineering” attacks still possible
– trick user into granting

access to current location
– high effort/risk for attacker

91

NICTA Copyright 2011 From imagination to impact

Usable Security: Summary

• Design OS security mechanisms with real
users in mind
– mechanisms that fail when users behave

normally are faulty, not the other way around
• Mechanisms must convey accurate

information to users
– so they can make informed security decisions

• Mechanisms should infer security
decisions from normal user actions
– granting authority according to least privilege

92

NICTA Copyright 2011 From imagination to impact

ASSURANCE AND VERIFICATION

93

NICTA Copyright 2011 From imagination to impact

Assurance: Substantiating Trust

• Specification
– unambiguous description of desired behaviour

• System design
– justification that it meets specification

• by mathematical proof or compelling argument

• Implementation
– justification that it implements the design

• by proof, code inspection, rigorous testing

• Maintenance
– justifies that system use meets assumptions

94

NICTA Copyright 2011 From imagination to impact

Common Criteria

• Common Criteria for IT Security
Evaluation [ISO/IEC 15408, 99]
– ISO standard, for general use
– evaluates QA used to ensure systems meet

their requirements
• Target of Evaluation (TOE) evaluated

against Security Target (ST)
– ST: statement of desired security properties

based on Protection Profiles

95

NICTA Copyright 2011 From imagination to impact

Common Criteria: EALs

• 7 Evaluated Assurance Levels
– higher levels = more thorough evaluation

• higher cost
• not necessarily better security

96

Level Requirement
s

Specification Design Implementati
onEAL1 not eval. Informal not eval. not eval.

EAL2 not eval. Informal Informal not eval.
EAL3 not eval. Informal Informal not eval.
EAL4 not eval. Informal Informal not eval.
EAL5 not eval. Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

NICTA Copyright 2011 From imagination to impact

Common Criteria Protection Profiles (PPs)

• Controlled Access PP (CAPP)
– standard OS security, up to EAL3

• Single Level Operating System PP
– superset of CAPP, up to EAL4+

• Labelled Security PP
– MAC for COTS OSes

• Multi-Level Operating System PP
– superset of CAPP, LSPP, up to EAL4+

• Separation Kernel Protection Profile
– strict partitioning, for EAL6-7

97

NICTA Copyright 2011 From imagination to impact

COTS OS Certifications

• EAL3:
– Mac OS X

• EAL4:
– 2003: Windows 2000
– 2005: SuSE Enterprise Linux
– 2006: Solaris 10 (EAL4+)

• against CAPP (an EAL3 PP!)
– 2007: Red Hat Linux (EAL4+)

• These OSes are still regularly broken!

98

NICTA Copyright 2011 From imagination to impact

EAL6 and above OS Certifications

• EAL6
– Green Hills INTEGRITY-178B (EAL6+)

• Separation Kernel Protection Profile (SKPP)
• relatively simple hardware platform in TOE

– Aiming for EAL7

99

NICTA Copyright 2011 From imagination to impact

SKPP on Commodity Hardware

• SKPP:
– OS provides only separation

• One Box One Wire (OB1) Project
– Use INTEGRITY-178B to isolate VMs on

commodity desktop hardware
– Leverage existing INTEGRITY certification

• by “porting” it to commodity platform
– Conclusion (March 2010):

• SKPP validation for commodity hardware platforms
infeasible due to their complexity

• SKPP has limited relevance for these platforms

100

NICTA Copyright 2011 From imagination to impact

Common Criteria Limitations

• Very expensive
– rule of thumb: EAL6+ costs $1K/LOC

• Too much focus on development process
– rather than the product that was delivered

• Lower EALs of little practical use for OSes
– c.f. COTS OS EAL4 certifications

• Commercial Licensed Evaluation Facilities
licenses rarely revoked
– Leads to potential “race to the

bottom” (Anderson & Fuloria, 2009)
–

101

NICTA Copyright 2011 From imagination to impact

Formal Verification

• Based on mathematical model of system
• Proof:

– Model satisfies security properties
• Required by CC EAL5-7

– The code implements the model
• Not required by any CC EAL (informal argument

only even for EAL7)

• Example: seL4 microkernel
– 2009: proof that code implements model
– 2011: proof that model enforces integrity
– 2013: proof that model enforces confidentiality

102

NICTA Copyright 2011 From imagination to impact

Formal Verification Limitations

• Proofs are expensive
– e.g. seL4 took ~30 py for ~10,000 LOC

• Proofs rest on assumptions
– assume correct everything you don’t model

• e.g. compiler, details of hardware platform, etc.
– difficult to assume that e.g. modern x86

platform is bug free!
– full proofs best suited for systems that run on

simple hardware platform
• e.g. embedded systems
• otherwise they’re not yet worth the high cost

103

NICTA Copyright 2011 From imagination to impact

Automatic Analyses

• Algorithms that analyse code to detect
certain kinds of defects

• Cannot generally “prove” code is correct
• But much cheaper than proofs
• Tradeoff between completeness and cost
• Need to choose the right tool for the job:

– Testing
– Automatic Analyses
– Formal Proof

• Best strategy is to mix them appropriately
104

NICTA Copyright 2011 From imagination to impact

OS DESIGN FOR SECURITY

105

NICTA Copyright 2011 From imagination to impact

OS Design for Security

• Minimise kernel code
– can bypass all security, inherent part of TCB

• How?:
– generic mechanisms
– no policies, only mechanisms
– mechanisms as simple as possible
– exclude all code that doesn’t need to be

privileged to support secure systems
– minimise covert channels

• no global namespaces, or absolute time

106

NICTA Copyright 2011 From imagination to impact

Security and Concurrency

• Avoid concurrent access to security state
– leads easily to security vulnerabilities

• Time of Check-to-Time-of-Use (TOCTTOU)
– common in privileged reference monitors

– Make rights checks atomic with accesses
– Why most system-call wrappers don’t work

107

if (access(“file”, W_OK) != 0) {
 exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof(buffer));

symlink("/etc/passwd", "file");

NICTA Copyright 2011 From imagination to impact

Unexpected Concurrency

108

• Example: FreeBSD Capsicum vulnerability
– openat() with paths involving multiple “..”s
– activity can occur between each “..” lookup
– second process races with first to ensure

each “..” lookup succeeds, using renameat()
– allows escaping of sandboxes

• Solutions:
– complicate the lookup code
– disallow multiple “..”s in pathnames (simpler)

• Second solution was chosen

NICTA Copyright 2011 From imagination to impact

Designing Secure Mechanisms

• Simplify security mechanisms
– Because they are hard enough to get right in

the first place
• Ensure mechanisms are well-defined

– make policy and granting authority explicit
• Flexibility to support various uses

– support explicit delegation of authority
• Design for verifiability

– minimise implementation complexity

109

NICTA Copyright 2011 From imagination to impact

Example: seL4

• Simple AC mechanism: capabilities
– supports least privilege, decideable

• No in-kernel concurrency
– single kernel stack, poll for IRQs

• Formal proof of implementation
correctness

• Formal proof that design (and so code)
enforces relevant security properties:
– integrity (ITP, 2011)
– confidentiality (S&P, 2013)

110

NICTA Copyright 2011 From imagination to impact

QUESTIONS?

111

NICTA Copyright 2011 From imagination to impact

BEER O’CLOCK?

112

