
COMP9242
Advanced Operating Systems

S2/2014 Week 2:
Caches:
What every OS Designer Must Know
@GernotHeiser

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

The Memory Wall

COMP9242 S2/2014 W02

Multicore offsets stagnant per-core performance with proliferation of cores
•  Basic trend is unchanged

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Caching

•  Cache is fast (1–5 cycle access time) memory sitting between fast registers
and slow RAM (10–100s cycles access time)

•  Holds recently-used data or instructions to save memory accesses
•  Matches slow RAM access time to CPU speed if high hit rate (> 90%)
•  Is hardware maintained and (mostly) transparent to software
•  Sizes range from few KiB to several MiB.
•  Usually a hierarchy of caches (2–5 levels), on- and off-chip

Good overview of implications of caches for operating systems: [Schimmel 94]

Registers Cache Main
Memory

Disk

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Cache Organization

•  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B)
•  Cache line is transfer unit between cache and RAM (or lower cache)

–  typically 16–32 bytes, sometimes 128 bytes and more
•  Line is also unit of storage allocation in cache
•  Each line has associated control info:

–  valid bit
–  modified bit
–  tag

•  Cache improves memory access by:
–  absorbing most reads (increases bandwidth, reduces latency)
–  making writes asynchronous (hides latency)
–  clustering reads and writes (hides latency)

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Cache Access

CPU
Virtual
Address MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data Data Data

Physical
Address

Physical
Address

COMP9242 S2/2014 W02

•  Virtually indexed: looked up by virtual address
–  operates concurrently with address translation

•  Physically indexed: looked up by physical address
–  requires result of address translation

•  Usually have hierarchy: L1 (closest to core), … Ln (closest to RAM)
–  L1 may use virtual address, all others use physical only

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Cache Indexing

•  The tag is used to distinguish lines of set…
•  Consists of high-order bits not used for indexing

t1

t s b

Address

t0

t2

Byte #

data tag

tag

Set #

1 Set

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Cache Indexing

CPU
Registers

Main Memory Line 1

Line 2

Line 3

Line 4

Set 0

Set 1

COMP9242 S2/2014 W02

•  Address hashed to produce index of line set
•  Associative lookup of line within set
•  n lines per set: n-way set-associative cache

–  typically n = 1 … 5, some embedded processors use 32–64
–  n = 1 is called direct mapped
–  n = ∞ is called fully associative (unusual for I/D caches)

•  Hashing must be simple (complex hardware is slow)
–  generally use least-significant bits of address (except L3 on recent x86)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Cache Indexing: Direct Mapped

tag(25) index(3) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique line to
match

Tag used to check
whether line contains
requested address

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10

Cache Indexing: 2-Way Associative

tag(26) index(2) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

COMP9242 S2/2014 W02

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique set to
match within

Tag checked against
both lines for match

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11 COMP9242 S2/2014 W02

Caching Index: Fully Associative

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(28) offset(4)

Tag compared with all
lines for a match

Note: Lookup hardware for many tags
is large and slow ⇒ does not scale

Offset bits used to
select appropriate
bytes from line

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12

Cache Mapping

•  Multiple memory locations map to the same cache line

•  Locations mapping to cache set i are said to be of colour i
•  n-way associative cache can hold n lines of the same colour
•  Types of cache misses (“the four Cs”):

–  Compulsory miss: data cannot be in the cache (if infinite size)
•  first access (after flush)

–  Capacity miss: all cache entries are in use by other data
•  would not miss on infinite-size cache

–  Conflict miss: all lines of the correct colour are in use by other data
•  would not miss on fully-associative cache

–  Coherence miss: miss forced by hardware coherence protocol

COMP9242 S2/2014 W02

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13

Cache Replacement Policy

•  Indexing (using address) points to specific line set
•  On miss (all lines of set are valid): replace existing line
•  Replacement strategy must be simple (hardware!)

–  dirty bit determines whether line must be written back
–  typical policies:

•  LRU
•  pseudo-LRU
•  FIFO
•  random
•  toss clean

COMP9242 S2/2014 W02

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14

Cache Write Policy

•  Treatment of store operations
–  write back: Stores only update cache;

memory is updated once dirty line is replaced (flushed)
! clusters writes
" memory inconsistent with cache
" unsuitable for most multi-processor designs

–  write through: stores update cache and memory immediately
! memory is always consistent with cache
" increased memory/bus traffic

•  On store to a line not presently in cache (write miss):
–  write allocate: allocate a cache line and store there

•  typically requires reading line into cache first!
–  no allocate: store directly to memory, bypassing the cache

•  Typical combinations:
–  write-back & write-allocate
–  write-through & no allocate

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Cache Addressing Schemes

•  For simplicity assumed so far that cache only sees one type of
address: virtual or physical

•  However, indexing and tagging can use different addresses!
•  Four possible addressing schemes:

–  virtually-indexed, virtually-tagged (VV) cache
–  virtually-indexed, physically-tagged (VP) cache
–  physically-indexed, virtually-tagged (PV) cache
–  physically-indexed, physically-tagged (PP) cache

•  PV caches can make sense only with unusual MMU designs
–  not considered any further

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16

Virtually-Indexed, Virtually-Tagged Cache

•  Also called virtually-addressed cache
•  Various incorrect names in use:

–  virtual cache
–  virtual address cache

•  Uses virtual addresses only
•  Can operate concurrently

with MMU
•  Still needs MMU lookup

for access rights
•  Used for on-core L1

COMP9242 S2/2014 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

MMU

Physical Memory

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17

Virtually-Indexed, Physically-Tagged Cache

•  Virtual address for accessing line (lookup)
•  Physical address for tagging
•  Needs complete address translation

for looking up retrieving data
•  Indexing concurrent with MMU

use MMU output for tag check
•  Used for on-core L1

COMP9242 S2/2014 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

index(2) byte(4)

CPU

MMU

Physical Memory

tag(25)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18

Physically-Indexed, Physically-Tagged Cache

•  Only uses physical addresses
•  Address translation result needed

to begin lookup
•  Only choice for Ln, n>1
•  Note: page offset is invariant under

address translation
–  if index bits are a subset of

the offset bits, PP cache
lookup doesn’t need
MMU result!

–  VP=PP in this case;
fast and suitable for
on-core use (L1)

COMP9242 S2/2014 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

Physical Memory

MMU

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19

Cache Issues

•  Caches are managed by hardware transparently to software
–  OS doesn’t have to worry about them, right?

•  Software-visible cache effects:
–  performance
–  homonyms:

•  same address, different data
•  can affect correctness!

–  synonyms (aliases):
•  different address, same data
•  can affect correctness!

COMP9242 S2/2014 W02

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20

Virtually-Indexed Cache Issues

Homonyms – same name for different data:
•  Problem: VA used for indexing is

context-dependent
–  same VA refers to different PAs
–  tag does not uniquely identify data!
–  wrong data may be accessed
–  an issue for most OSes

•  Homonym prevention:
–  flush cache on each

context switch
–  force non-overlapping

address-space layout
•  single-address-space OS

–  tag VA with address-space ID (ASID)
•  makes VAs global

COMP9242 S2/2014 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

CPU

MMU

Physical Memory

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Virtually-Indexed Cache Issues

Synonyms – multiple names for same data:
•  Several VAs map to the same PA

–  frame shared between ASs
–  frame multiply mapped within AS

•  May access stale data!
–  same data cached in multiple lines
–  on write, one synonym updated
–  read on other synonym

returns old value
–  physical tags don’t help!
–  ASIDs don’t help!

•  Are synonyms a problem?
–  depends on page and cache size
–  no problem for R/O data

or I-caches

COMP9242 S2/2014 W02

VD
VD Tag Tag

Word 3
Word 3

Word 2
Word 2

Word 1
Word 1

Word 0
Word 0

CPU

MMU

Physical Memory

VD

VD

Tag

Tag
Tag

Word 0

Word 0

Word 1

Word 1

Word 2

Word 2

Word 3

Word 3

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22

Example: MIPS R4x00 Synonyms

•  ASID-tagged, on-chip VP cache
–  16 KiB cache, 2-way set associative, 32 B line size
–  4 KiB (base) page size
–  size/associativity = 16/2 KiB = 8 KiB > page size

•  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5)
•  overlap of tag bits and index bits, but from different addresses!

•  Remember, index determines location of data in cache
–  tag only confirms hit
–  synonym problem iff VA12 ≠ VA’12

–  similar issues on other processors where L1 cache has multiple colours
COMP9242 S2/2014 W02

39

35

13 5 0
VA

Cache
index (8 bits)

tag (24 bits)
0 11

s b

PFN offset PA

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Address Mismatch Problem: Aliasing

•  Page aliased in different address spaces
–  AS1: VA12 = 1, AS2: VA12 = 0

•  One alias gets modified
–  in a write-back cache, other alias sees stale data
–  lost-update problem

COMP9242 S2/2014 W02

Physical Memory

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

2nd half of
cache

1st half of
cache

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24

Address Mismatch Problem: Re-Mapping

•  Unmap page with a dirty cache line
•  Re-use (remap) frame for a different page (in same or different AS)
•  Write to new page

–  without mismatch, new write will overwrite old (hits same cache line)
–  with mismatch, order can be reversed: “cache bomb”

COMP9242 S2/2014 W02

Physical Memory

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

Physical
Memory

Cache

write

DMA

DMA Consistency Problem

•  DMA (normally) uses physical addresses and bypasses cache
–  CPU access inconsistent with device access
–  need to flush cache before device write
–  need to invalidate cache before device read

COMP9242 S2/2014 W02

You’ll have to
deal with this!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

Avoiding Synonym Problems

•  Flush cache on context switch
–  doesn’t help for aliasing within address space!

•  Detect synonyms and ensure:
–  all read-only, or
–  only one synonym mapped

•  Restrict VM mapping so synonyms map to same cache set
–  eg on R4x00: ensure VA12 = PA12 – colour memory!

•  Hardware synonym detection
–  e.g. Cortex A9: store overlapping tag bits of both addresses & check
–  “physically”-addressed

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Summary: VV Caches

!  Fastest (don’t rely on TLB for retrieving data)
"  still need TLB lookup for protection
" … or alternative mechanism for providing protection

"  Suffer from synonyms and homonyms
"  requires flushing on context switches

" makes context switches expensive
" may even be required on kernel→user switch

•  … or guarantee no synonyms and homonyms
"  Require TLB lookup for write-back!
•  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
•  Used for I-caches on several other architectures (Alpha, Pentium 4)

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Summary: Tagged VV Caches

•  Add ASID as part of tag
•  On access, compare with CPU’s ASID register
!  Removes homonyms

!  potentially better context-switching performance
"  ASID recycling still needs flush

"  Doesn’t solve synonym problem (but that’s less severe)
"  Doesn’t solve write-back problem

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Summary: VP Caches

•  Medium speed
!  lookup in parallel with address translation
"  tag comparison after address translation

!  No homonym problem
"  Potential synonym problem
"  Bigger tags (cannot leave off set-number bits)

"  increases area, latency, power consumption
•  Used on many architectures for L1 cache

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Summary: PP Caches

"  Slowest
"  requires result of address translation before lookup starts

!  No synonym problem
!  No homonym problem
!  Easy to manage
!  If small or highly associative index can be in parallel with translation

–  all index bits come from page offset
–  combines advantages of VV and PP cache
–  useful for on-core L1 cache (Itanium, recent x86)

!  Cache can use bus snooping to receive/supply DMA data
!  Usable as post-MMU cache with any architecture

For an in-depths coverage see [Wiggins 03]

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

CPU

Cache

…
Store A
…
Store B
…
Store A
…

Write Buffer

•  Store operations can take a long time to complete
–  eg if a cache line must be read or allocated

•  Can avoid stalling the CPU by buffering writes
•  Write buffer is a FIFO queue of incomplete stores

–  also called store buffer or write-behind buffer
•  Can also read intermediate values out of buffer

–  to service lead of a value that is still in write buffer
–  avoids unnecessary stalls of load operations

•  Implies that memory contents are temporarily stale
–  on a multiprocessor, CPUs see different order of writes!
–  “weak store order”, to be revisited in SMP context

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

CPU

I-Cache D-Cache

L2 Cache

L3 Cache

Memory

Write
Buffer

Cache Hierarchy

•  Hierarchy of caches to balance memory accesses:
–  small, fast, virtually-indexed L1
–  large, slow, physically indexed L2–L5

•  Each level reduces and clusters traffic
•  L1 typically split into I- and D-caches

–  “Harvard architecture”
–  requirement of pipelining

•  Other levels tend to be unified
•  Chip multiprocessors often share

on-chip L2, L3

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

Sabre (Cortex A9) System Architecture

COMP9242 S2/2014 W02

Freescale i.MX6

Cortex
A9 core

 L1 cache

 L2 cache

Cortex
A9 core

 L1 cache

Cortex
A9 core

 L1 cache

Cortex
A9 core

 L1 cache

RAM

Device Device

L1:
•  split 2×32 KiB, 4-way,
 32-B lines, “physical”
L2:
•  unified 1 MiB, 16-way
 32-B lines, physical

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

ASID VPN

VPN ASID PFN flags

flags PFN

Translation Lookaside Buffer (TLB)

•  TLB is a (VV) cache for page-table entries
•  TLB can be

–  hardware loaded,
transparent to OS

–  software loaded,
maintained by OS

•  TLB can be:
–  split: I- and D-TLBs
–  unified

•  Modern architectures use a hierarchy
–  tiny (1-4 entries) L1 TLB

•  typically split, hardware loaded
–  larger (64-128 entries) L2 TLB

•  unified, hard- or software loaded

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35

TLB Issues: Associativity

•  First TLB (VAX-11/780 [Clark, Emer 85]) was 2-way associative
•  Most modern architectures have fully-associative TLBs
•  Exceptions:

–  Intel x86: 4-way
–  IBM RS/6000: 2-way

•  Reasons:
–  modern architectures tend to support multiple page sizes

•  “superpages”
•  better utilises TLB entries

–  TLB lookup done without knowing the page’s base address
–  set associativity loses speed advantage

•  x86 uses separate L1 TLBs for each page size
–  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (4 L1 TLBs)
–  unified L2 TLB
–  all 4-way associative

COMP9242 S2/2014 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36

TLB Size (I-TLB + D-TLB)

COMP9242 S2/2014 W02

Not much growth in 30 years!

Architecture TLB Size
(i-TLB + d-TLB)

Page Size TLB Coverage
(base page)

VAX-11 64–256 0.5 KiB 32–128 KiB
ix86 32i + 64d 4 KiB + 4 MiB 128 KiB
MIPS 96–128 4 KiB – 16 MiB 384–512 KiB
SPARC 64 8 KiB – 4 MiB 512 KiB
Alpha 32–128i + 128d 8 KiB – 4 MiB 256 KiB
RS/6000 32i + 128d 4 KiB 256 KiB
Power-4 (G5) 128 4 KiB 512 KiB
PA-8000 96i + 96d 4 KiB – 64 MiB 384 KiB
Itanium 64i + 96d 4 KiB – 4 GiB 384 KiB
ARMv7 (A9) 64–128 4 KiB – 16 MiB 256–512 KiB
x86 (Nehalem) L1:128i+64d; L2:256 4 KiB + 2/4 MiB 1 MiB

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37

TLB Size (I-TLB + D-TLB)

TLB coverage
•  Memory sizes are increasing
•  Number of TLB entries are roughly constant
•  Page sizes are steady

–  4 KiB, although larger on SPARC, Alpha
–  OS designers have trouble using superpages effectively

•  Consequences:
–  total amount of RAM mapped by TLB is not changing much
–  fraction of RAM mapped by TLB is shrinking dramatically!
–  Modern architectures have very low TLB coverage!

•  Also, many 64-bit RISC architectures have software-loaded TLBs
–  general increase in TLB miss handling cost

•  The TLB can become a bottleneck

COMP9242 S2/2014 W02

