
COMP9242 
Advanced Operating Systems 

S2/2014 Week 2: 
Caches: 
What every OS Designer Must Know 
@GernotHeiser 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2 

Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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The Memory Wall 
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Multicore offsets stagnant per-core performance with proliferation of cores 
•  Basic trend is unchanged 
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Caching 

•  Cache is fast (1–5 cycle access time) memory sitting between fast registers 
and slow RAM (10–100s cycles access time) 

•  Holds recently-used data or instructions to save memory accesses 
•  Matches slow RAM access time to CPU speed if high hit rate (> 90%) 
•  Is hardware maintained and (mostly) transparent to software 
•  Sizes range from few KiB to several MiB. 
•  Usually a hierarchy of caches (2–5 levels), on- and off-chip 

Good overview of implications of caches for operating systems: [Schimmel 94] 

Registers Cache Main 
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Disk 
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Cache Organization 

•  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B) 
•  Cache line is transfer unit between cache and RAM (or lower cache) 

–  typically 16–32 bytes, sometimes 128 bytes and more 
•  Line is also unit of storage allocation in cache 
•  Each line has associated control info: 

–  valid bit 
–  modified bit 
–  tag 

•  Cache improves memory access by: 
–  absorbing most reads (increases bandwidth, reduces latency) 
–  making writes asynchronous (hides latency) 
–  clustering reads and writes (hides latency) 
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Cache Access 
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•  Virtually indexed: looked up by virtual address 
–  operates concurrently with address translation 

•  Physically indexed: looked up by physical address 
–  requires result of address translation 

•  Usually have hierarchy: L1 (closest to core), … Ln (closest to RAM) 
–  L1 may use virtual address, all others use physical only 
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Cache Indexing 

•  The tag is used to distinguish lines of set… 
•  Consists of high-order bits not used for indexing 
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Cache Indexing 
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•  Address hashed to produce index of line set 
•  Associative lookup of line within set 
•  n lines per set: n-way set-associative cache 

–  typically n = 1 … 5, some embedded processors use 32–64 
–  n = 1 is called direct mapped 
–  n = ∞ is called fully associative (unusual for I/D caches) 

•  Hashing must be simple (complex hardware is slow) 
–  generally use least-significant bits of address (except L3 on recent x86) 
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Cache Indexing: Direct Mapped 
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Cache Indexing: 2-Way Associative 
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Caching Index: Fully Associative 

VD 
VD 
VD 
VD 
VD 
VD 
VD 
VD 

Tag 
Tag 
Tag 
Tag 
Tag 
Tag 
Tag 
Tag 

Word 3 
Word 3 

Word 3 
Word 3 

Word 3 

Word 3 

Word 3 

Word 3 

Word 2 
Word 2 
Word 2 
Word 2 
Word 2 
Word 2 
Word 2 
Word 2 

Word 1 
Word 1 
Word 1 
Word 1 
Word 1 
Word 1 
Word 1 
Word 1 

Word 0 
Word 0 
Word 0 
Word 0 
Word 0 
Word 0 
Word 0 
Word 0 

tag(28) offset(4) 

Tag compared with all 
lines for a match 

Note: Lookup hardware for many tags 
is large and slow ⇒ does not scale 

Offset bits used to 
select appropriate 
bytes from line 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12 

Cache Mapping 

•  Multiple memory locations map to the same cache line 

•  Locations mapping to cache set i are said to be of colour i 
•  n-way associative cache can hold n lines of the same colour 
•  Types of cache misses (“the four Cs”): 

–  Compulsory miss: data cannot be in the cache (if infinite size) 
•  first access (after flush) 

–  Capacity miss: all cache entries are in use by other data 
•  would not miss on infinite-size cache 

–  Conflict miss: all lines of the correct colour are in use by other data 
•  would not miss on fully-associative cache 

–  Coherence miss: miss forced by hardware coherence protocol 
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Cache Replacement Policy 

•  Indexing (using address) points to specific line set 
•  On miss (all lines of set are valid): replace existing line 
•  Replacement strategy must be simple (hardware!) 

–  dirty bit determines whether line must be written back 
–  typical policies: 

•  LRU 
•  pseudo-LRU 
•  FIFO 
•  random 
•  toss clean 
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Cache Write Policy 

•  Treatment of store operations 
–  write back: Stores only update cache; 

memory is updated once dirty line is replaced (flushed) 
! clusters writes 
" memory inconsistent with cache 
" unsuitable for most multi-processor designs 

–  write through: stores update cache and memory immediately 
! memory is always consistent with cache 
" increased memory/bus traffic 

•  On store to a line not presently in cache (write miss): 
–  write allocate: allocate a cache line and store there 

•  typically requires reading line into cache first! 
–  no allocate: store directly to memory, bypassing the cache 

•  Typical combinations: 
–  write-back & write-allocate 
–  write-through & no allocate 
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Cache Addressing Schemes 

•  For simplicity assumed so far that cache only sees one type of 
address: virtual or physical 

•  However, indexing and tagging can use different addresses! 
•  Four possible addressing schemes: 

–  virtually-indexed, virtually-tagged (VV) cache 
–  virtually-indexed, physically-tagged (VP) cache 
–  physically-indexed, virtually-tagged (PV) cache 
–  physically-indexed, physically-tagged (PP) cache 

•  PV caches can make sense only with unusual MMU designs 
–  not considered any further 

COMP9242 S2/2014 W02 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16 

Virtually-Indexed, Virtually-Tagged Cache  

•  Also called virtually-addressed cache 
•  Various incorrect names in use: 

–  virtual cache 
–  virtual address cache 

•  Uses virtual addresses only 
•  Can operate concurrently 

with MMU 
•  Still needs MMU lookup 

for access rights 
•  Used for on-core L1 
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Virtually-Indexed, Physically-Tagged Cache 

•  Virtual address for accessing line (lookup) 
•  Physical address for tagging 
•  Needs complete address translation 

for looking up retrieving data 
•  Indexing concurrent with MMU 

use MMU output for tag check 
•  Used for on-core L1 
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Physically-Indexed, Physically-Tagged Cache 

•  Only uses physical addresses 
•  Address translation result needed 

to begin lookup 
•  Only choice for Ln, n>1 
•  Note: page offset is invariant under 

address translation 
–  if index bits are a subset of 

the offset bits, PP cache 
lookup doesn’t need 
MMU result! 

–  VP=PP in this case; 
fast and suitable for 
on-core use (L1) 
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Cache Issues 

•  Caches are managed by hardware transparently to software 
–  OS doesn’t have to worry about them, right? 

•  Software-visible cache effects: 
–  performance 
–  homonyms: 

•  same address, different data 
•  can affect correctness! 

–  synonyms (aliases): 
•  different address, same data 
•  can affect correctness! 
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Virtually-Indexed Cache Issues 

Homonyms – same name for different data: 
•  Problem: VA used for indexing is 

context-dependent 
–  same VA refers to different PAs 
–  tag does not uniquely identify data! 
–  wrong data may be accessed 
–  an issue for most OSes 

•  Homonym prevention: 
–  flush cache on each 

context switch 
–  force non-overlapping 

address-space layout 
•  single-address-space OS 

–  tag VA with address-space ID (ASID) 
•  makes VAs global 
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Virtually-Indexed Cache Issues 

Synonyms – multiple names for same data: 
•  Several VAs map to the same PA 

–  frame shared between ASs 
–  frame multiply mapped within AS 

•  May access stale data! 
–  same data cached in multiple lines 
–  on write, one synonym updated 
–  read on other synonym 

returns old value 
–  physical tags don’t help! 
–  ASIDs don’t help! 

•  Are synonyms a problem? 
–  depends on page and cache size 
–  no problem for R/O data 

or I-caches 
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Example: MIPS R4x00 Synonyms  

•  ASID-tagged, on-chip VP cache 
–  16 KiB cache, 2-way set associative, 32 B line size 
–  4 KiB (base) page size 
–  size/associativity = 16/2 KiB = 8 KiB > page size 

•  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5) 
•  overlap of tag bits and index bits, but from different addresses! 

•  Remember, index determines location of data in cache 
–  tag only confirms hit 
–  synonym problem iff VA12 ≠ VA’12 

–  similar issues on other processors where L1 cache has multiple colours 
COMP9242 S2/2014 W02 
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Address Mismatch Problem: Aliasing 

•  Page aliased in different address spaces 
–  AS1: VA12 = 1, AS2: VA12 = 0 

•  One alias gets modified 
–  in a write-back cache, other alias sees stale data 
–  lost-update problem 
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Address Mismatch Problem: Re-Mapping 

•  Unmap page with a dirty cache line 
•  Re-use (remap) frame for a different page (in same or different AS) 
•  Write to new page 

–  without mismatch, new write will overwrite old (hits same cache line) 
–  with mismatch, order can be reversed: “cache bomb” 
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Physical 
Memory 

Cache 

write 

DMA 

DMA Consistency Problem 

•  DMA (normally) uses physical addresses and bypasses cache 
–  CPU access inconsistent with device access 
–  need to flush cache before device write 
–  need to invalidate cache before device read 
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Avoiding Synonym Problems 

•  Flush cache on context switch 
–  doesn’t help for aliasing within address space! 

•  Detect synonyms and ensure: 
–  all read-only, or 
–  only one synonym mapped 

•  Restrict VM mapping so synonyms map to same cache set 
–  eg on R4x00: ensure VA12 = PA12 – colour memory! 

•  Hardware synonym detection 
–  e.g. Cortex A9: store overlapping tag bits of both addresses & check 
–  “physically”-addressed 
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Summary: VV Caches 

!  Fastest (don’t rely on TLB for retrieving data) 
"  still need TLB lookup for protection 
" … or alternative mechanism for providing protection 

"  Suffer from synonyms and homonyms 
"  requires flushing on context switches 

" makes context switches expensive 
" may even be required on kernel→user switch  

•  … or guarantee no synonyms and homonyms 
"  Require TLB lookup for write-back! 
•  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale 
•  Used for I-caches on several other architectures (Alpha, Pentium 4) 
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Summary: Tagged VV Caches 

•  Add ASID as part of tag 
•  On access, compare with CPU’s ASID register 
!  Removes homonyms 

!  potentially better context-switching performance 
"  ASID recycling still needs flush 

"  Doesn’t solve synonym problem (but that’s less severe) 
"  Doesn’t solve write-back problem 
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Summary: VP Caches 

•  Medium speed 
!  lookup in parallel with address translation 
"  tag comparison after address translation 

!  No homonym problem 
"  Potential synonym problem 
"  Bigger tags (cannot leave off set-number bits) 

"  increases area, latency, power consumption 
•  Used on many architectures for L1 cache 
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Summary: PP Caches 

"  Slowest 
"  requires result of address translation before lookup starts 

!  No synonym problem 
!  No homonym problem 
!  Easy to manage 
!  If small or highly associative index can be in parallel with translation 

–  all index bits come from page offset 
–  combines advantages of VV and PP cache 
–  useful for on-core L1 cache (Itanium, recent x86) 

!  Cache can use bus snooping to receive/supply DMA data 
!  Usable as post-MMU cache with any architecture 

For an in-depths coverage see [Wiggins 03] 
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CPU 

Cache 

… 
Store A 
… 
Store B 
… 
Store A 
… 

Write Buffer 

•  Store operations can take a long time to complete 
–  eg if a cache line must be read or allocated 

•  Can avoid stalling the CPU by buffering writes 
•  Write buffer is a FIFO queue of incomplete stores 

–  also called store buffer or write-behind buffer 
•  Can also read intermediate values out of buffer 

–  to service lead of a value that is still in write buffer 
–  avoids unnecessary stalls of load operations 

•  Implies that memory contents are temporarily stale 
–  on a multiprocessor, CPUs see different order of writes! 
–  “weak store order”, to be revisited in SMP context 
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CPU 

I-Cache D-Cache 

L2 Cache 

L3 Cache 
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Write 
Buffer 

Cache Hierarchy 

•  Hierarchy of caches to balance memory accesses: 
–  small, fast, virtually-indexed L1 
–  large, slow, physically indexed L2–L5 

•  Each level reduces and clusters traffic 
•  L1 typically split into I- and D-caches 

–  “Harvard architecture” 
–  requirement of pipelining 

•  Other levels tend to be unified 
•  Chip multiprocessors often share  

on-chip L2, L3 

COMP9242 S2/2014 W02 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33 

Sabre (Cortex A9) System Architecture 
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Freescale i.MX6 

Cortex 
A9 core 

 L1 cache 

 L2 cache 

Cortex 
A9 core 

 L1 cache 
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A9 core 

 L1 cache 

Cortex 
A9 core 

 L1 cache 
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Device Device 

L1: 
•  split 2×32 KiB, 4-way, 
  32-B lines, “physical” 
L2: 
•  unified 1 MiB, 16-way 
  32-B lines, physical 
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ASID VPN 

VPN ASID PFN flags 

flags PFN 

Translation Lookaside Buffer (TLB) 

•  TLB is a (VV) cache for page-table entries 
•  TLB can be 

–  hardware loaded, 
transparent to OS 

–  software loaded, 
maintained by OS 

•  TLB can be: 
–  split: I- and D-TLBs 
–  unified 

•  Modern architectures use a hierarchy 
–  tiny (1-4 entries) L1 TLB 

•  typically split, hardware loaded 
–  larger (64-128 entries) L2 TLB 

•  unified, hard- or software loaded 
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TLB Issues: Associativity 

•  First TLB (VAX-11/780 [Clark, Emer 85]) was 2-way associative 
•  Most modern architectures have fully-associative TLBs 
•  Exceptions: 

–  Intel x86: 4-way 
–  IBM RS/6000: 2-way 

•  Reasons: 
–  modern architectures tend to support multiple page sizes 

•  “superpages” 
•  better utilises TLB entries 

–  TLB lookup done without knowing the page’s base address 
–  set associativity loses speed advantage 

•  x86 uses separate L1 TLBs for each page size 
–  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (4 L1 TLBs) 
–  unified L2 TLB 
–  all 4-way associative 
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TLB Size (I-TLB + D-TLB) 

COMP9242 S2/2014 W02 

Not much growth in 30 years! 

Architecture TLB Size 
(i-TLB + d-TLB) 

Page Size TLB Coverage 
(base page) 

VAX-11 64–256 0.5 KiB 32–128 KiB 
ix86 32i + 64d 4 KiB + 4 MiB 128 KiB 
MIPS 96–128 4 KiB – 16 MiB 384–512 KiB 
SPARC 64 8 KiB – 4 MiB 512 KiB 
Alpha 32–128i + 128d 8 KiB – 4 MiB 256 KiB 
RS/6000 32i + 128d 4 KiB 256 KiB 
Power-4 (G5) 128 4 KiB 512 KiB 
PA-8000 96i + 96d 4 KiB – 64 MiB 384 KiB 
Itanium 64i + 96d 4 KiB – 4 GiB 384 KiB 
ARMv7 (A9) 64–128 4 KiB – 16 MiB 256–512 KiB 
x86 (Nehalem) L1:128i+64d; L2:256 4 KiB + 2/4 MiB 1 MiB 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37 

TLB Size (I-TLB + D-TLB) 

TLB coverage 
•  Memory sizes are increasing 
•  Number of TLB entries are roughly constant 
•  Page sizes are steady  

–  4 KiB, although larger on SPARC, Alpha 
–  OS designers have trouble using superpages effectively 

•  Consequences: 
–  total amount of RAM mapped by TLB is not changing much 
–  fraction of RAM mapped by TLB is shrinking dramatically! 
–  Modern architectures have very low TLB coverage! 

•  Also, many 64-bit RISC architectures have software-loaded TLBs 
–  general increase in TLB miss handling cost 

•  The TLB can become a bottleneck 
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