
COMP9242
Advanced Operating Systems

S2/2014 Week 9:
Real-Time Systems
@GernotHeiser

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Note: Substantial re-use of material from Stefan M Petters (ex-NICTA)

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

Real-Time System: Definition

 A real-time system is any information processing system which has
to respond to externally generated input stimuli within a finite and
specified period

•  Correctness depends not only on the logical result (function) but also

the time it was delivered

•  Failure to respond is as bad as delivering the wrong result!

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Real-Time Systems

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Types of Real-Time Systems

•  Hard real-time systems
•  Weakly-hard real-time systems
•  Firm real-time systems
•  Soft real-time systems
•  Best-effort systems

•  Real-time systems typically deal with deadlines:
–  A deadline is a time instant by which a response has to be completed
–  A deadline is usually specified as relative to an event

•  The relative deadline is the maximum allowable response time
•  Absolute deadline: event time + relative deadline

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Hard Real-Time Systems

•  Deadline miss is “catastrophic”
–  safety-critical system: failure results in death, severe injury
–  mission-critical system: failure results in massive financial damage

•  Steep and real “cost” function

COMP9242 S2/2014 W09

Deadline

Triggering
Event

Cost

Time

≈ ≈

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Soft Real-Time Systems

•  Deadline miss is undesired but tolerable
–  Frequently results on quality-of-service (QoS) degradation

•  eg audio, video rendering
•  Steep “cost” function

•  Cost of deadline miss may be abstract

COMP9242 S2/2014 W09

Time
Triggering
Event

Deadline Cost

Time

Deadline Cost

Tardiness

Bounded
Tardiness

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Firm Real-Time Systems

•  Deadline miss makes computation obsolete
–  Typical examples are forecast systems

•  weather forecast
•  trading systems

•  Cost may be loss of revenue (gain)

COMP9242 S2/2014 W09

Time

Triggering
Event

Deadline
Gain

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Weakly-Hard Real-Time Systems

•  Tolerate a (small) fraction of deadline misses
–  Most feedback control systems (including life-supporting ones!)

•  occasionally missed deadline can be compensated at next event
•  system becomes unstable if too many deadlines are missed

–  Typically integrated with other fault tolerance
•  electro-magnetic interference, other hardware issues

COMP9242 S2/2014 W09

Time

Triggering
Event

Deadline
Cost

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10

Best-Effort Systems

•  No deadlines, timeliness is not part of required operation
•  In reality, there is at least a nuissance factor to excessive duration

–  response time to user input
•  Again, “cost” may be reduced gain

COMP9242 S2/2014 W09

Time

Triggering
Event

Cost

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11

Real-Time Operating System (RTOS)

•  Designed to support real-time operation
–  Fast context switches, fast interrupt handling?
–  Yes, but predictable response time is more important

•  “Real time is not real fast”
–  Analysis of worst-case execution time (WCET)

•  Support for scheduling policies appropriate for real time
•  Classical RTOSes very primitive

–  single-mode execution
–  no memory protection
–  essentially a scheduler with a threads package
–  “real-time executive”
–  inherently cooperative

•  Many modern uses require actual OS technology for isolation
–  generally microkernels

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12

Approaches to Real Time

•  Clock-driven (cyclic)
–  Typical for control loops
–  Fixed order of actions, round-robin execution
–  Statically determined (static schedule)

•  need to know all execution parameters at system configuration time

•  Event-driven
–  Typical for reactive systems (sensors & actuators)
–  Static or dynamic schedules

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13

Real-Time System Operation

•  Time-triggered
–  Pre-defined temporal relation of events
–  event is not serviced until its defined release time has arrived

•  Event-triggered
–  timer interrupt
–  asynchronous events

•  Rate-based
–  activities get assigned CPU shares (“rates”)

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14

Real-Time Task Model

•  Job: unit of work to be executed
–  … resulting from an event or time trigger

•  Task: set of related jobs which provide some system function
–  A task is a sequence of jobs (typically executing same function)
–  Job i+1 of of a task cannot start until job i is completed/aborted

•  Periodic tasks
–  Time-driven and all relevant characteristics known a priori

•  Task t characterized by period Ti, deadline, Di and execution time Ci

•  Applies to all jobs of task
•  Aperiodic tasks

–  Event driven, characteristics are not known a priori
•  Task t characterized by period Ti, deadline Di and arrival distribution

•  Sporadic tasks
–  Aperiodic but with known minimum inter-arrival time Ti

–  treated similarly to periodic task with period Ti
COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Standard Task Model

C: Worst-case computation time (WCET)
T: Period (periodic) or minimum inter-arrival time (sporadic)
D: Deadline (relative, frequently D=T)
J: Release jitter
P: Priority: higher number means higher priority
B: Worst-case blocking time
R: Worst-case response time
U: Utilisation; U=C/T

COMP9242 S2/2014 W09

Time

Release
Time C

T
J

D

OS terminology:
•  “task” = thread
•  “job” = event-based

activation of thread

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16

Task Constraints

•  Deadline constraint: must complete before deadline
•  Resource constraints:

–  Shared (R/O), exclusive (W-X) access
–  Energy
–  Precedence constraints:

t1 ⇒ t2: t2 execution cannot start until t1 is finished
–  Fault-tolerance requirements

•  eg redundancy

•  Scheduler’s job to ensure that constraints are met!

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17

Scheduling

•  Preemptive vs non-preemptive
•  Static (fixed, off-line) vs dynamic (on-line)
•  Clock-driven vs priority-based

–  clock-driven is static, only works for very simple systems
–  priorities can be static (pre-computed and fixed) or dynamic
–  dynamic priority adjustment can be at task-level (each job has fixed

prio) or job-level (jobs change prios)

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18

Clock-Driven (Time-Triggered) Scheduling

•  Typically implemented as time “frames” adding up to “base rate”
•  Advantages

–  fully deterministic
–  “cyclic executive” is trivial

•  loop waiting for timer tick, followed by function calls to jobs
•  minimal overhead

•  Disadvantage:
–  Big latencies if event rate doesn’t match base rate (hyper-period)
–  Inflexible

COMP9242 S2/2014 W09

t1 t2 t1 t3 t4 t1 t2 t1 t4

Hyper-period

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19

Non-Preemptive Scheduling

•  Minimises context-switching overhead
–  Significant cost on modern processors (pipelinies, caches)

•  Easy to analyse timeliness
•  Drawbacks:

–  Larger response times for “important” tasks
–  Reduced utilisation, schedulability

•  In many cases cannot produce schedule despite plenty idle time
•  Only used in very simple systems

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20

Fixed-Priority Scheduling (FPS)

•  Real-time priorities are absolute:
–  Scheduler always picks highest-priority job

•  Fixed priorities obviously easy to implement, low overhead
•  Drawbacks: inflexible, sub-optimal

–  Cannot schedule some systems which are schedulable preemptively

•  Note: “Fixed” in the sense that system doesn’t change them
–  OS may support dynamic adjustment
–  Requires on-the-fly (re-)admission control

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Rate-Monotonic (RM) Scheduling

•  RM: Standard approach to fixed priority assignment
–  Ti<Tj ⇒ Pi>Pj

–  1/T is the “rate” of a task
•  RM is optimal (as far as fixed priorities go)
•  Schedulability test: RM can schedule n tasks with D=T if

 U ≡ ∑ Ci/Ti ≤ n(21/n-1); limn→∞U = log 2
•  sufficient but not necessary condition

•  If D<T replace by deadline-monotonic (DM):
–  Di<Dj ⇒ Pi>Pj

•  DM is also optimal (but schedulability bound is more complex)

COMP9242 S2/2014 W09

n 1 2 3 4 5 10 ∞
U [%] 100 82.8 78.0 75.7 74.3 71.8 69.3

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22

FPS Example

COMP9242 S2/2014 W09

P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline Release

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Earliest Deadline First (EDF)

•  Dynamic scheduling policy
•  Job with closest deadline executes
•  Preemptive EDS with D=T is optimal: n jobs can be scheduled iff

U ≡ ∑ Ci/Ti ≤ 1
•  necessary and sufficient condition
•  no easy test if D≠T

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24

FPS vs EDF

COMP9242 S2/2014 W09

t3

t2

t1

t3

t2

t1

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

FPS vs EDF

COMP9242 S2/2014 W09

P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 40 40 37.5 0

89.5

t3

t2

t1

Misses
deadline

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

FPS vs EDF

COMP9242 S2/2014 W09

P C T D U [%] release
t1 1 5 20 20 25 5
t2 2 8 30 20 27 12
t3 3 15 40 40 37.5 0

89.5

t3

t2

t1

Misses
deadline

t3

t2

t1 EDF

schedules

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Overload: FPS

COMP9242 S2/2014 W09

P C T D U [%]
t1 1 5 20 20 25
t2 2 8 30 20 27
t3 3 15 50 50 30

82

t3

t2

t1

P C T D U [%]
t3 3 5 20 20 25
t2 2 12 20 20 60
t1 1 15 50 50 30

115

Old

Old New

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Overload: FPS

COMP9242 S2/2014 W09

t3

t2

t1

t3

t2

t1

Old

New

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Overload: FPS vs EDF

COMP9242 S2/2014 W09

t3

t2

t1

t3

t2

t1

FPS

EDF

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Overload: EDF

COMP9242 S2/2014 W09

t3

t2

t1

t3

t2

t1

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

Overload: FPS vs EDF

On overload, (by definition!) lowest-prio jobs miss deadlines

•  Result is well-defined and -understood for FPS
–  Treats highest-prio task as “most important”
–  … but that may not always be appropriate!
–  Under transient overload may miss deadlines of higher-priority tasks

•  Result is unpredictable (apparently random) for EDF
–  May result in all tasks missing deadlines!
–  Under constant overload will scale back all tasks
–  No concept of task “importance”
–  “EDF behaves badly under overload”
–  Main reason EDF is unpopular in industry

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

Why Have Overload?

•  Faults (software, EMI, hardware)
•  Incorrect assumptions about environment
•  Optimistic WCET

–  Computing WCET of non-trivial programs is hard, often infeasible!
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
–  WCET often very unlikely and orders of magnitude worse than “normal”

•  thanks to caches, pipelines, under-specified hardware
•  requires massive over-provisioning

–  Some systems have effectively unbounded execution time
•  e.g. object tracking

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

WCET Analysis

COMP9242 S2/2014 W09

Program
binary

Control
Flow

Graph

Loop
bounds

System
model

Integer
linear

equations

Infeasible
path info

WCET ILP solver Analysis
tool

Accurate &
sound model of
pipeline, caches

Scalability!

Pessimism!

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

Why Have Overload?

•  Faults (software, EMI, hardware)
•  Incorrect assumptions about environment
•  Optimistic WCET

–  Computing WCET of non-trivial programs is hard, often infeasible!
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
–  WCET often very unlikely and orders of magnitude worse than “normal”

•  thanks to caches, pipelines, under-specified hardware
•  requires massive over-provisioning

Way out?
•  Need explicit notion of importance: criticality
•  Expresses effect of failure on the system mission

–  Catastrophic, hazardous, major, minor, no effect
•  Orthogonal to scheduling priority

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35

Mixed Criticality

•  A mixed-criticality system supports multiple criticalities concurrently
–  Eg in avionics: consolidation of multiple functionalities
–  Higher criticality requires more pessimistic analysis, higher certification
–  Needs more than just scheduling support: strong OS-level isolation

•  In overload scheduler drops lowest criticality
–  Current research issue

COMP9242 S2/2014 W09

Criticality T Uworst Uexpec Uaverage
High 10 50% 50% 0.05%
Medium 1 (200%) 10% 2.5%
Low 100 (1000%) 20% 10%

over! 80% 12.55%

Not really
known

Must handle

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36

Mixed Criticality Implementation

•  Whenever running low job, ensure no high job misses deadline
•  Switch to critical mode when not assured

–  Various approaches to determine switch
–  eg. zero slack: high job’s deadline = its WCET

•  Criticality-mode actions:
–  FP: temporarily drop all low jobs’ prios below that of critical high	

•  Simply preempting present job won’t help!
–  EDF: drop all low deadlines earlier than next high deadline

•  Issues:
–  Treatment of low jobs still rather indiscriminate
–  Need to determine when to switch to normal mode, restore prios

•  Alternative: use reservations

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37

CPU Bandwidth Reservations

•  Idea: Utilisation U = C/T can be seen as required CPU bandwidth
–  Account time use against reservation C
–  Not runnable when reservation exhausted
–  Replenish every T

•  Can support over-committing
–  Reduce low reservations if high reservations fully used

•  Advantages:
–  Allows dealing with jobs with unknown (or untrusted) deadlines
–  Allows integrating sporadic, asynchronous and soft tasks

•  Modelled as a “server” which hands out time to jobs
–  effectively a simple (FIFO) sub-scheduler

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 38

Constand Bandwidth Server (CBS)

•  Popular theoretical model suitable for EDF [Abeni & Buttazzo ’98]
•  CBS schedules specified bandwidth

–  server has a period, T and a budget, Q = U × T
–  generates appropriate absolute EDF deadlines on the fly
–  when executing a job, budget is consumed
–  when budget goes to zero, new deadline is generated with new budget

–  Di+1 = Di + T
•  Schedulability: ∑ Ui ≤ 1

COMP9242 S2/2014 W09

hard
(2,3)

soft

CBS
(2,7)

1 1 1 2 2 3

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 39

Message-Based Synchronisation

•  Tasks may communicate via messages
–  blocking IPC

•  Enforces precedence relations
•  Allows sharing resources (services)
•  Tag prios/deadlines onto messages

–  Classical L4 approach: timeslice donation:
•  Receiver continues on sender’s time slice (and prio)
•  Avoids scheduler invocation

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 40

Synchronisation Issues

•  Thread invoked by IPC is essentially a Hoare-style monitor
–  Typical in client-server scenario
–  Blocks other threads IPCing to same thread
–  How long?

•  Time-slice preemption during monitor?
•  Worse: priority inversion – general issue with shared resources

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 41

Shared Resources

•  Problem is not restricted to synchronous communication

t_low() {
 ….
 wait(sem);
 /* critical section */
 signal(sem);
 …

}

t_high() {
 ….
 wait(sem);
 /* critical section */
 signal(sem);
 …

}

COMP9242 S2/2014 W09

•  High-priority job is blocked, waiting for low-priority job
•  Priority inversion!
•  Undermines scheduling policy
•  Must limit and control enough to still allow analysis of timeliness

seL4_Notify

Async EP

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 42

Priority Inversion

•  High-priority job is blocked for a long time by a low-prio job
•  Long wait chain: t1→t4→t3→t2

•  Worst-case blocking time of t1 bounded only by WCET of C2+C3+C4
•  Must find a way to do better!

COMP9242 S2/2014 W09

t4

t3

t2

t1 1 Q Q 1

2

3 3 V V

4 4 V Q Q

Preempted

Blocked!

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 43

Priority Inheritance (“Helping”)

COMP9242 S2/2014 W09

t4

t3

t2

t1 1 Q Q 1

2

3 3 V V

4 4 V Q

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 44

Priority Inheritance

COMP9242 S2/2014 W09

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 45

Priority Inheritance

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

COMP9242 S2/2014 W09

t5

t4

t3

t2

t1

4 4 Q

3 3

5 5 V

1 Q 5 1 4

2 V 2 5 5 5

Transitive
Inheritance

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 46

Priority Inheritance

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

COMP9242 S2/2014 W09

t5

t4

t3

t2

t1

4 4 Q

3 3

5 5 V

1 Q 5 1 4

2 V 2 5 5 5

Deadlock!

?

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 47

Priority Inheritance Protocol (PIP)

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

•  Transitive inheritance
–  potentially long blocking chains
–  potential for deadlock

•  Frequently blocks much longer than necessary

COMP9242 S2/2014 W09

Priority Inheritance:
•  Easy to use, potential deadlocks
•  Complex to implement
•  Bad worst-case blocking times

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 48

Priority Ceiling Protocol (PCP)

•  Purpose: ensure job can block at most once on a resource
–  avoid transitivity, potential for deadlocks

•  Idea: associate a ceiling priority with each resource
–  equal to the highest priority of jobs that may use the resource
–  when job accesses its resource, immediately bump prio to ceiling!

•  Also called:
–  immediate ceiling priority protocol (ICPP)
–  ceiling priority protocol (CPP)
–  stack-based priority-ceiling protocol

•  because it allows running all jobs on the same stack
•  Improved version of the original ceiling priority protocol (OCPP)

–  … which is also called the basic priority ceiling protocol
–  Requires global tracking of ceiling prios

COMP9242 S2/2014 W09

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 49

(Immediate) Priority Ceiling Protocol

COMP9242 S2/2014 W09

t4

t3

t2

t1 1 4 1

2

3 3 4

4 4 4 4

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

PIP

PCP

© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 50

PCP Implementation

•  Each task must declare all resources at admission time
–  System must maintain list of tasks associated with resource
–  Priority ceiling derived from this list
–  For EDF the “ceiling” is the floor of relative deadlines

•  In seL4:
–  Have the server run at the ceiling prio
–  Ceiling is max prio of threads holding a send cap on server EP

•  Obviously hard to determine automatically at admission time
•  Could use trusted server to hand out caps
•  In any case a user-level (system design) problem

•  Challenge: proper time accounting not supported by present seL4
–  Work in progress – stay tuned!

COMP9242 S2/2014 W09

