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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
 
Note: Substantial re-use of material from Stefan M Petters (ex-NICTA) 
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Real-Time System: Definition 

 A real-time system is any information processing system which has 
to respond to externally generated input stimuli within a finite and 
specified period 

 
•  Correctness depends not only on the logical result (function) but also 

the time it was delivered 

•  Failure to respond is as bad as delivering the wrong result! 
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Real-Time Systems 

COMP9242 S2/2014 W09 



© 2013 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5 

Types of Real-Time Systems   

•  Hard real-time systems 
•  Weakly-hard real-time systems 
•  Firm real-time systems 
•  Soft real-time systems 
•  Best-effort systems 

•  Real-time systems typically deal with deadlines: 
–  A deadline is a time instant by which a response has to be completed 
–  A deadline is usually specified as relative to an event 

•  The relative deadline is the maximum allowable response time 
•  Absolute deadline: event time + relative deadline 
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Hard Real-Time Systems 

•  Deadline miss is “catastrophic” 
–  safety-critical system: failure results in death, severe injury 
–  mission-critical system: failure results in massive financial damage 

•  Steep and real “cost” function 
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Soft Real-Time Systems 

•  Deadline miss is undesired but tolerable 
–  Frequently results on quality-of-service (QoS) degradation 

•  eg audio, video rendering 
•  Steep “cost” function 

•  Cost of deadline miss may be abstract 
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Firm Real-Time Systems 

•  Deadline miss makes computation obsolete 
–  Typical examples are forecast systems 

•  weather forecast 
•  trading systems 

•  Cost may be loss of revenue (gain) 
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Weakly-Hard Real-Time Systems 

•  Tolerate a (small) fraction of deadline misses 
–  Most feedback control systems (including life-supporting ones!) 

•  occasionally missed deadline can be compensated at next event 
•  system becomes unstable if too many deadlines are missed 

–  Typically integrated with other fault tolerance 
•  electro-magnetic interference, other hardware issues 
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Best-Effort Systems 

•  No deadlines, timeliness is not part of required operation 
•  In reality, there is at least a nuissance factor to excessive duration 

–  response time to user input 
•  Again, “cost” may be reduced gain 
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Real-Time Operating System (RTOS) 

•  Designed to support real-time operation 
–  Fast context switches, fast interrupt handling? 
–  Yes, but predictable response time is more important 

•  “Real time is not real fast” 
–  Analysis of worst-case execution time (WCET) 

•  Support for scheduling policies appropriate for real time 
•  Classical RTOSes very primitive 

–  single-mode execution 
–  no memory protection 
–  essentially a scheduler with a threads package 
–  “real-time executive” 
–  inherently cooperative 

•  Many modern uses require actual OS technology for isolation 
–  generally microkernels 
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Approaches to Real Time 

•  Clock-driven (cyclic) 
–  Typical for control loops 
–  Fixed order of actions, round-robin execution 
–  Statically determined (static schedule) 

•  need to know all execution parameters at system configuration time 

•  Event-driven 
–  Typical for reactive systems (sensors & actuators) 
–  Static or dynamic schedules 
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Real-Time System Operation 

•  Time-triggered 
–  Pre-defined temporal relation of events 
–  event is not serviced until its defined release time has arrived 

•  Event-triggered 
–  timer interrupt 
–  asynchronous events 

•  Rate-based 
–  activities get assigned CPU shares (“rates”) 
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Real-Time Task Model 

•  Job: unit of work to be executed  
–  … resulting from an event or time trigger 

•  Task: set of related jobs which provide some system function 
–  A task is a sequence of jobs (typically executing same function) 
–  Job i+1 of of a task cannot start until job i is completed/aborted 

•  Periodic tasks 
–  Time-driven and all relevant characteristics known a priori 

•  Task t characterized by period Ti, deadline, Di and execution time Ci 

•  Applies to all jobs of task 
•  Aperiodic tasks 

–  Event driven, characteristics are not known a priori 
•  Task t characterized by period Ti, deadline Di and arrival distribution 

•  Sporadic tasks 
–  Aperiodic but with known minimum inter-arrival time Ti 

–  treated similarly to periodic task with period Ti  
COMP9242 S2/2014 W09 
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Standard Task Model 

C:  Worst-case computation time (WCET) 
T:  Period (periodic) or minimum inter-arrival time (sporadic) 
D:  Deadline (relative, frequently D=T)  
J:  Release jitter 
P:  Priority: higher number means higher priority 
B:  Worst-case blocking time 
R:  Worst-case response time 
U:  Utilisation; U=C/T 
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Task Constraints 

•  Deadline constraint: must complete before deadline 
•  Resource constraints: 

–  Shared (R/O), exclusive (W-X) access 
–  Energy 
–  Precedence constraints: 

t1 ⇒ t2: t2 execution cannot start until t1 is finished 
–  Fault-tolerance requirements 

•  eg redundancy 

•  Scheduler’s job to ensure that constraints are met! 
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Scheduling 

•  Preemptive vs non-preemptive 
•  Static (fixed, off-line) vs dynamic (on-line) 
•  Clock-driven vs priority-based 

–  clock-driven is static, only works for very simple systems 
–  priorities can be static (pre-computed and fixed) or dynamic 
–  dynamic priority adjustment can be at task-level (each job has fixed 

prio) or job-level (jobs change prios) 
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Clock-Driven (Time-Triggered) Scheduling 

•  Typically implemented as time “frames” adding up to “base rate” 
•  Advantages 

–  fully deterministic 
–  “cyclic executive” is trivial 

•  loop waiting for timer tick, followed by function calls to jobs 
•  minimal overhead 

•  Disadvantage: 
–  Big latencies if event rate doesn’t match base rate (hyper-period) 
–  Inflexible 
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Non-Preemptive Scheduling 

•  Minimises context-switching overhead 
–  Significant cost on modern processors (pipelinies, caches) 

•  Easy to analyse timeliness 
•  Drawbacks: 

–  Larger response times for “important” tasks 
–  Reduced utilisation, schedulability 

•  In many cases cannot produce schedule despite plenty idle time 
•  Only used in very simple systems 
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Fixed-Priority Scheduling (FPS) 

•  Real-time priorities are absolute:  
–  Scheduler always picks highest-priority job 

•  Fixed priorities obviously easy to implement, low overhead 
•  Drawbacks: inflexible, sub-optimal 

–  Cannot schedule some systems which are schedulable preemptively 

•  Note: “Fixed” in the sense that system doesn’t change them 
–  OS may support dynamic adjustment 
–  Requires on-the-fly (re-)admission control 
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Rate-Monotonic (RM) Scheduling 

•  RM: Standard approach to fixed priority assignment 
–  Ti<Tj ⇒ Pi>Pj 

–  1/T is the “rate” of a task 
•  RM is optimal (as far as fixed priorities go) 
•  Schedulability test: RM can schedule n tasks with D=T if 

 U ≡ ∑ Ci/Ti ≤ n(21/n-1);    limn→∞U = log 2 
•  sufficient but not necessary condition 

•  If D<T replace by deadline-monotonic (DM): 
–  Di<Dj ⇒ Pi>Pj 

•  DM is also optimal (but schedulability bound is more complex) 
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FPS Example 
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Earliest Deadline First (EDF) 

•  Dynamic scheduling policy 
•  Job with closest deadline executes 
•  Preemptive EDS with D=T is optimal: n jobs can be scheduled iff 

U ≡ ∑ Ci/Ti ≤ 1 
•  necessary and sufficient condition 
•  no easy test if D≠T 
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FPS vs EDF 
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FPS vs EDF 
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FPS vs EDF 
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Overload: FPS 
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Overload: FPS 
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Overload: FPS vs EDF 
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Overload: EDF 
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Overload: FPS vs EDF 

On overload, (by definition!) lowest-prio jobs miss deadlines 

•  Result is well-defined and -understood for FPS 
–  Treats highest-prio task as “most important” 
–  … but that may not always be appropriate! 
–  Under transient overload may miss deadlines of higher-priority tasks 

•  Result is unpredictable (apparently random) for EDF 
–  May result in all tasks missing deadlines! 
–  Under constant overload will scale back all tasks 
–  No concept of task “importance” 
–  “EDF behaves badly under overload” 
–  Main reason EDF is unpopular in industry 
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Why Have Overload? 

•  Faults (software, EMI, hardware) 
•  Incorrect assumptions about environment 
•  Optimistic WCET 

–  Computing WCET of non-trivial programs is hard, often infeasible! 
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!) 
–  WCET often very unlikely and orders of magnitude worse than “normal” 

•  thanks to caches, pipelines, under-specified hardware 
•  requires massive over-provisioning 

–  Some systems have effectively unbounded execution time 
•  e.g. object tracking 
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WCET Analysis 
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Why Have Overload? 

•  Faults (software, EMI, hardware) 
•  Incorrect assumptions about environment 
•  Optimistic WCET 

–  Computing WCET of non-trivial programs is hard, often infeasible! 
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!) 
–  WCET often very unlikely and orders of magnitude worse than “normal” 

•  thanks to caches, pipelines, under-specified hardware 
•  requires massive over-provisioning 

Way out?  
•  Need explicit notion of importance: criticality 
•  Expresses effect of failure on the system mission 

–  Catastrophic, hazardous, major, minor, no effect 
•  Orthogonal to scheduling priority 
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Mixed Criticality 

•  A mixed-criticality system supports multiple criticalities concurrently 
–  Eg in avionics: consolidation of multiple functionalities 
–  Higher criticality requires more pessimistic analysis, higher certification 
–  Needs more than just scheduling support: strong OS-level isolation 

•  In overload scheduler drops lowest criticality 
–  Current research issue 
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Mixed Criticality Implementation 

•  Whenever running low job, ensure no high job misses deadline 
•  Switch to critical mode when not assured 

–  Various approaches to determine switch 
–  eg. zero slack: high job’s deadline = its WCET 

•  Criticality-mode actions: 
–  FP: temporarily drop all low jobs’ prios below that of critical high	


•  Simply preempting present job won’t help! 
–  EDF: drop all low deadlines earlier than next high deadline 

•  Issues: 
–  Treatment of low jobs still rather indiscriminate 
–  Need to determine when to switch to normal mode, restore prios 

•  Alternative: use reservations 
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CPU Bandwidth Reservations 

•  Idea: Utilisation U = C/T can be seen as required CPU bandwidth 
–  Account time use against reservation C 
–  Not runnable when reservation exhausted 
–  Replenish every T 

•  Can support over-committing 
–  Reduce low reservations if high reservations fully used 

•  Advantages: 
–  Allows dealing with jobs with unknown (or untrusted) deadlines 
–  Allows integrating sporadic, asynchronous and soft tasks 

•  Modelled as a “server” which hands out time to jobs 
–  effectively a simple (FIFO) sub-scheduler 
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Constand Bandwidth Server (CBS) 

•  Popular theoretical model suitable for EDF [Abeni & Buttazzo ’98] 
•  CBS schedules specified bandwidth 

–  server has a period, T and a budget, Q = U × T 
–  generates appropriate absolute EDF deadlines on the fly 
–  when executing a job, budget is consumed 
–  when budget goes to zero, new deadline is generated with new budget 

–  Di+1 = Di + T 
•  Schedulability: ∑ Ui ≤ 1 
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Message-Based Synchronisation 

•  Tasks may communicate via messages 
–  blocking IPC 

•  Enforces precedence relations 
•  Allows sharing resources (services) 
•  Tag prios/deadlines onto messages 

–  Classical L4 approach: timeslice donation: 
•  Receiver continues on sender’s time slice (and prio) 
•  Avoids scheduler invocation 
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Synchronisation Issues 

•  Thread invoked by IPC is essentially a Hoare-style monitor 
–  Typical in client-server scenario 
–  Blocks other threads IPCing to same thread 
–  How long? 

•  Time-slice preemption during monitor? 
•  Worse: priority inversion – general issue with shared resources 
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Shared Resources 

•  Problem is not restricted to synchronous communication 

t_low() { 
 …. 
 wait(sem); 
 /* critical section */ 
 signal(sem); 
 … 

} 

t_high() { 
 …. 
 wait(sem); 
 /* critical section */ 
 signal(sem); 
 … 

} 
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Priority Inversion 

•  High-priority job is blocked for a long time by a low-prio job 
•  Long wait chain: t1→t4→t3→t2 

•  Worst-case blocking time of t1 bounded only by WCET of C2+C3+C4 
•  Must find a way to do better! 
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Priority Inheritance (“Helping”) 
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Priority Inheritance 
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Priority Inheritance 

•  If t1 blocks on a resource held by t2, and P1>P2, then 
–  t2 is temporarily given priority P1 
–  when tt releases the resource, its priority reverts to P2 
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Priority Inheritance 

•  If t1 blocks on a resource held by t2, and P1>P2, then 
–  t2 is temporarily given priority P1 
–  when tt releases the resource, its priority reverts to P2 
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Priority Inheritance Protocol (PIP) 

•  If t1 blocks on a resource held by t2, and P1>P2, then 
–  t2 is temporarily given priority P1 
–  when tt releases the resource, its priority reverts to P2 

•  Transitive inheritance 
–  potentially long blocking chains 
–  potential for deadlock 

•  Frequently blocks much longer than necessary  
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Priority Ceiling Protocol (PCP) 

•  Purpose: ensure job can block at most once on a resource 
–  avoid transitivity, potential for deadlocks 

•  Idea: associate a ceiling priority with each resource 
–  equal to the highest priority of jobs that may use the resource 
–  when job accesses its resource, immediately bump prio to ceiling! 

•  Also called: 
–  immediate ceiling priority protocol (ICPP) 
–  ceiling priority protocol (CPP) 
–  stack-based priority-ceiling protocol 

•  because it allows running all jobs on the same stack 
•  Improved version of the original ceiling priority protocol (OCPP) 

–  … which is also called the basic priority ceiling protocol 
–  Requires global tracking of ceiling prios 
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(Immediate) Priority Ceiling Protocol 
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PCP Implementation 

•  Each task must declare all resources at admission time 
–  System must maintain list of tasks associated with resource 
–  Priority ceiling derived from this list 
–  For EDF the “ceiling” is the floor of relative deadlines 

•  In seL4: 
–  Have the server run at the ceiling prio 
–  Ceiling is max prio of threads holding a send cap on server EP 

•  Obviously hard to determine automatically at admission time 
•  Could use trusted server to hand out caps 
•  In any case a user-level (system design) problem 

•  Challenge: proper time accounting not supported by present seL4 
–  Work in progress – stay tuned! 
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