2
% Australian Government
" Department of Broadbasd, Commenications

and the Digital Ecomomy
Australisn Research Council

OS Security

COMP9242 - Advanced OS

Toby Murray

(with thanks to Gernot Heiser, from whom
some of this material is borrowed)

Bz, ©
Investment

Thursday, 11 December 2014

INTRODUCTION

."—- \.

NICTA

Thursday, 11 December 2014

What is security?

 Different things to different people:

Thursday, 11 December 2014

What is security?

* Different things to different people:

NICTA

Thursday, 11 December 2014

What is security? Je
NICTA

» Different things to different people:

Thursday, 11 December 2014

What is security? (Je

* Different things to different people:

Thursday, 11 December 2014

What is security?

* Different things to different people:

Sharing is Caring

NICTA

Thursday, 11 December 2014

What is security? Je

NICTA

* Different things to different people:

¥ Istalk
¥ youon...

facebook.

Thursday, 11 December 2014

What is security?

 Different things to different people:

Thursday, 11 December 2014

What is security? o

Dn‘ferent things to different people:

Investigating a Cyber Espionage Network

Thursday, 11 December 2014

What is security? ®

 Different things to different people:

Thursday, 11 December 2014

Computer Security e

* Protecting my interests that are under o

computer control from malign threats

 Inherently subjective
— Different people have different interests
— Different people face different threats

* Don’t expect one-size-fits-all solutions
— Grandma doesn’t need an air gap

— Windows alone is insufficient for protecting
TOP SECRET classified data

 on an Internet-connected machine

Thursday, 11 December 2014

State of OS Security Oe

NICTA

 Traditionally:

— Has not kept pace with evolving user
demographics
» Focused on e.g. Defence and Enterprise
— Has not kept pace with evolving threats
» Focused on protecting users from other users, not
from the programs they run

* |Is getting better

— But is hindered because:
« We don't yet understand how to write secure code
« OSes are getting larger and more complex

Thursday, 11 December 2014

OS Security e

NICTA

* What is the role of the OS for security?
* Minimum:
— provide mechanisms to allow the
construction of secure systems

— that are capable of securely implementing the
intended users’/administrators’ policies

— while ensuring these mechanisms cannot be
subverted

Thursday, 11 December 2014

Good security mechanisms

* Are widely applicable
* Support general security principles
* Are easy to use correctly and securely

* Do not hinder non-security priorities (e.g.
productivity, generativity)

* Lend themselves to correct
iImplementation and verification

Thursday, 11 December 2014

Security Design Principles Oe

» Saltzer+Schroeder (SOSP 73, CACM %SA

— Economy of mechanism

— Fail-safe defaults

— Complete mediation

— Open design

— Separation of privilege

— Least privilege

— Least common mechanism
— Psychological acceptability

Thursday, 11 December 2014

Common OS Security Mechanisms

* Access Control Systems
— control what each process can access

* Authentication Systems

— confirm the identity on whose behalf a
process is running

* Logging
— for audit, detection, forensics and recovery
* Filesystem Encryption
* Credential Management
* Automatic Updates

Thursday, 11 December 2014

Security Policies e
NICTA

» Define what should be protected
—and from whom

« Often in terms of common security goals:
— Confidentiality
« X should not be learnt by Y
— Integrity
» X should not be tampered with by Y
— Availability

» X should not be made unavailable to Zby Y

10

Thursday, 11 December 2014

Policy vs. Mechanism

* Policies accompany mechanisms:

* Policy often restricts the applicable
mechanisms

* One person’s policy is another’s
mechanism

Thursday, 11 December 2014

Assumptions

 All policies and mechanisms operate
under certain assumptions

* Problem: implicit or poorly understood
assumptions

* Good assumptions:

Thursday, 11 December 2014

Risk Management e

_ NICTA
 Comes down to risk management

— At the heart of all security
— Assumptions: risks we are willing to tolerate

 Other risks:

— we mitigate (using security mechanisms)
— or transfer (e.g. by buying insurance)

» Security policy should distinguish which is
appropriate for each risk
— Based on a thorough risk assessment

13

Thursday, 11 December 2014

Trust e

« Systems always have trusted entites o

— whose misbehaviour can cause insecurity
— hardware, OS, sysadmin ...

* Trusted Computing Base (TCB):

— the set of all such entities

* Secure systems require trustworthy
TCBs

— achieved through assurance and verification
— shows that the TCB is unlikely to misbehave
— why the TCB should be as small as possible

14

Thursday, 11 December 2014

Assurance and Formal Verification

e Assurance:
e Formal verification:

* Together trying to establish correctness of:

 Certification: establishes that the
assurance or verification was done right

Thursday, 11 December 2014

Covert Channels e

* [Information flow not controlled by secur?fflTA

mechanism
— confidentiality requires absence of all such

* Covert Storage Channel:
— attribute of shared resource used as channel
— controllable by access control

* Covert Timing Channel:
— temporal order of shared resource accesses

— outside of access control system
— much more difficult to control and analyse

16

Thursday, 11 December 2014

Covert Timing Channels Oe

. NICTA
» Created by shared resource whose timing-

related behaviour can be monitored
— network bandwidth, CPU load ...

* Requires access to a time source
— anything that allows processes to synchronise

 Critical issue is channel bandwidth
— low bandwidth limits damage
 why DRM ignores low bandwidth channels
— beware of amplification
 e.g. leaking passwords, encryption keys etc.

17

Thursday, 11 December 2014

Summary: Introduction e

NICTA

* Security is very subjective
* OS security:

— provide good security mechanisms
— that support users’ policies

» Security depends on establishing

trustworthiness of trusted entities

— TCB: set of all such entities
e should be as small as possible

— Main approaches: assurance and verification

 The OS is necessarily part of the TCB

18

Thursday, 11 December 2014

ACCESS CONTROL PRINCIPLES

Thursday, 11 December 2014

Access Control e

. . NICTA
 who can access what in which ways

—the "who” are called subjects
* e.g. users, processes etc.
—the "what” are called objects
* e.g. individual files, sockets, processes efc.
* includes all subjects
— the "ways” are called permissions
* e.g. read, write, execute eftc.
« are usually specific to each kind of object

* include those meta-permissions that allow
modification of the protection state
— e.g. own

20

Thursday, 11 December 2014

AC Mechanisms and Policies Yo

. AC Policy o

— Specifies allowed accesses
— And how these can change over time

« AC Mechanism

— Implements the policy
» Certain mechanisms lend themselves to
certain kinds of policies

— Certain policies cannot be expressed using
certain mechanisms

21

Thursday, 11 December 2014

Protection State

 Access control matrix defines the
protection state at any instant in time

Obj1 | Obj2 | Obj3 | Subj2

Subj1 R RW send
Subj2 RX control
Subj3 | RW RWX recv

own

Thursday, 11 December 2014

Storing Protection State e

NICTA

* Not usually as access control matrix
— too sparse, inefficient

* Two obvious choices:

— store individual columns with each object

* defines the subjects that can access each object

» each such column is called the object’s access
control list

— store individual rows with each subject
* defines the objects each subject can access
* each such is called the subject’s capability list

23

Thursday, 11 December 2014

Access Control Lists (ACLSs)

* Subjects usually aggregated
iInto classes

* Meta-permissions (e.g. own)

* Implemented in almost all
commercial OSes

Obj1

Subj1| R
Subj2
Subj3| RW

Thursday, 11 December 2014

Capabillit

Ies

* A capability is a pability list element

Obj1

Obj3

Subj2

Subj1

R

send

* Less common in commercial systems

Thursday, 11 December 2014

Capabilities: Implementations e

NICTA

» Capabilities must be unforgeable

 On conventional hardware, either:

— Stored as ordinary user-level data, but
unguessable due to sparseness

* like a password or an encryption key

— Stored separately (in-kernel), referred to by
user programs by index/address

* like UNIX file descriptors
« Sparse capabilities can be leaked more
easily, but are easier to revoke
— The only solution for most distributed systems

26

Thursday, 11 December 2014

ACLs and Capabillities: Duals? e

NICTA

* In theory:
— Dual representations of access control matrix

 Practical differences:

— Naming and namespaces
« Confused Deputies

— Evolution of protection state
— Forking
— Auditing of protection state

27

Thursday, 11 December 2014

Duals: Naming and Namespaces e

. ACLS: NICTA

— objects referenced by name
* e.g. open(“/etc/passwd”’,O_RDONLY)

— require a subject (class) namespace
* e.g. UNIX users and groups
« Capabilities:
— objects referenced by capability
* object namespace still required though
— no subject namespace required

28

Thursday, 11 December 2014

Duals: Confused Deputies

* ACLs: separation of object naming and
permission can lead to confused deputies

LogFile

Thursday, 11 December 2014

Duals: Confused Deputies

* ACLs: separation of object naming and
permission can lead to confused deputies

LogFile

exec “gcc” “-o LogFile”

Thursday, 11 December 2014

Duals: Evolution of Protection State Oe

. ACLS: NICTA

— Protection state changes by modifying ACLs
» Requires certain meta-permissions on the ACL

» Capabillities:
— Protection state changes by delegating and
revoking capabilities
» Right to delegate controlled by certain capabilities

* €.g. A can delegate to B only if A has a capability to
B that carries appropriate permissions

30

Thursday, 11 December 2014

Duals: Forking Ve

* What permissions should children get’?NICTA

* ACLs: depends on the child’s subject

— UNIX etc.: child inherits parent’s subject
* Inherits all of the parent’s permissions
* Any program you run inherits all of your authority

— Bad for least privilege

« Capabilities: child has no caps by default
— Parent gets a capability to the child upon fork
— Used to delegate (only) necessary authority
— Much better for least privilege

31

Thursday, 11 December 2014

Duals: Auditing of Protection State

* How to work out who has permission to
access a particular object (right now)?

* How to work out what objects a particular
subject can access (right now)?

* “Who can access my stuff?” vs. “How
much damage can this thing do?”

Thursday, 11 December 2014

Mandatory vs. Discretionary AC Oe

NICTA

» Discretionary Access Control:

— Users can make access control decisions
 delegate their access to other users etc.

* Mandatory Access Control (MAC):

— enforcement of administrator-defined policy

— users cannot make access control decisions
(except those allowed by mandatory policy)

— can prevent untrusted applications running
with user’s privileges from causing damage

33

Thursday, 11 December 2014

MAC e

. . . NICTA
« Common in areas with global security

requirements
— e.g. national security classifications

» Less useful for general-purpose settings:
— hard to support different kinds of policies
— all policy changes must go through sysadmin

— hard to dynamically delegate only specific
rights required at runtime

34

Thursday, 11 December 2014

Bell-LaPadula (BLP) Model
 MAC Policy/Mechanism

* Every object assigned a classification
« Classifications ordered in a lattice

* Every subject assigned a clearance

Thursday, 11 December 2014

BLP: Rules e

NICTA

» Simple Security Property ("no read up”):
— s can read o iff clearance(s) >= class(0)
— S-cleared subject can read U,C,S but not TS
— standard confidentiality

* *-Property (“no write down”):
— s can write o iff clearance(s) <= class(0)
— S-cleared subject can write TS,S, but not C,U

— to prevent accidental or malicious leakage of
data to lower levels

36

Thursday, 11 December 2014

Biba Integrity Model

» Bell-LaPadula enforces confidentiality
» Biba: Its dual, enforces integrity
* Objects now carry integrity classification

* Subjects labelled by lowest level of data
each subject is allowed to learn

* BLP order is inverted:

Thursday, 11 December 2014

Boebert's Attack

* Boebert 1984: “On the Inability of an
Unmodified Capability Machine to Enforce
the *-Property”

« Shows an attack on sparse capability
systems that violates the *-property

Thursday, 11 December 2014

Boebert's Attack @

HiSeg

RW LoSeg

39

Thursday, 11 December 2014

Boebert's Attack @

HiSeg

rw_l.write(rw) rI'| R

RW LoSeg

39

Thursday, 11 December 2014

Boebert's Attack @

HiSeg

RW LoSeg

w_|

39

Thursday, 11 December 2014

Boebert's Attack

. rlread)

39

Thursday, 11 December 2014

Boebert's Attack @

HiSeg

RW |Z/| R

RW LoSeg

w_|

39

Thursday, 11 December 2014

Boebert's Attack

HiSeg

RW |Z/| R

r

RW LoSeg

w_|

* Low writes his cap into the low segment

Thursday, 11 December 2014

Boebert’'s Attack: Lessons

* Not all mechanisms suited to all policies

* Many policies treat data- and access-
propagation differently

* This does not mean that capability
systems and MAC are incompatible in
general

Thursday, 11 December 2014

Decideability

» Boebert’s attack highlights the need for
decideability of safety in an AC system

o Safety Problem: given an initial protection
state s, and a possible future protection
state s’, can s’ be reached from s?

e HRU 1975: undecideable in general

Thursday, 11 December 2014

Decideable AC systems

* The safety problem for an AC system is
decideable if we can always answer this
guestion mechanically

* Most capability-based AC systems
decideable:

* Less clear for many common ACL systems

Thursday, 11 December 2014

Summary: AC Principles e

+ ACLs and Capabilities:
— They are not necessarily duals in practice
— Capabilities tend to better support least
privilege
— But ACLs can be better for auditing
 MAC good for global security requirements

» Certain kinds of policies cannot be
enforced with certain kinds of mechanisms

— e.g. *-property with sparse capabilities
» AC systems should be decideable
— SO We can reason about them

43

Thursday, 11 December 2014

ACCESS CONTROL PRACTICE

Thursday, 11 December 2014

Case Study: SELinux e

NICTA

 NSA-developed MAC for Linux

* Designed to protect systems from buggy
applications

— Especially daemons and servers that have
traditionally run with superuser privileges

* Adds a layer of MAC atop Linux’s
traditional DAC

— Each access check must pass both the
normal DAC checks and the new MAC ones

* Used widely in e.g. RHEL

45

Thursday, 11 December 2014

SELinux: Policy e

NICTA

e Domain-Type Enforcement:
— Each process labelled with a domain
— Each object labelled with a type

— Central policy describes allowed accesses
from domains to types

 Example:

—named runs in named d domain; /sbin
labelled with sbin t type

— "allow named d sbin t:dir search’

46

Thursday, 11 December 2014

SELinux: Domain/Type Transitions e

. . NICTA
 How domains assigned to new processes

— upon exec() (after fork())
— based on exec’ing domain and exec'd file type

— “type transition initrc d
squid exec t:process squid d”
* how types assigned to new files/directories

— based on domain of process creating them
and type of parent directory

— “type transition named t
var run t:sock file named var run t’

47

Thursday, 11 December 2014

SELinux e

 Static fine-grained MAC o
* Monolithic policy of high complexity

* “The simpler targeted policy consists of more than
20,000 concatenated lines ... derived from ...
thousands of lines of TE rules and file context
settings, all interacting in very complex ways.”

— Red Hat Enterprise Linux 4: Red Hat SELinux Guide,
Chapter 6. Tools for Manipulating and Analyzing SELinux

 Limited flexibility
— What authority should we grant a text editor?
* Needed authority determined only by user actions

48

Thursday, 11 December 2014

Case Study: Capsicum

* “Practical Capabilities for UNIX” (Watson
et al., USENIX Security 2010)

* Designed to support least privilege in
conventional systems

* Merged into FreeBSD 9

Thursday, 11 December 2014

Capsicum: Kernel e

« Capsicum adds to the FreeBSD kernel:

— Capabilities with fine-grained access rights for
standard objects (files, processes eftc.)
— Capability Mode
* Disallows access to global namespaces (e.g.
filesystem etc.)
 All accesses must go through capabilities

 *at() system calls can resolve only names
“‘underneath” the passed descriptor

» Allows access to subsets of the filesystem by
directory capabilities

50

Thursday, 11 December 2014

FreeBSD Capsicum: Capabillities

* New file descriptor type
— Wrap traditional file descriptors
— Carry fine-grained access rights

struct capability

10 F---»
14 F---»

struct
file [
mask = READ
T — e ——
struct | struct capability
o mask = READ | WRITE
S T —

@
NICTA
struct | struct
file vhode
 —— S —

51

Thursday, 11 December 2014

FreeBSD Capsicum: Capabilities e

» Capability passing as for file descriptoré::' o
— may be inherited across fork()
— passed via UNIX domain sockets

» Created using cap _new()
— From a raw file descriptor and a set of rights
— Or an existing capability
* New cap’s rights must be a subset
« Capabilities may refer to files, directories,
processes, network sockets efc.

52

Thursday, 11 December 2014

FreeBSD Capsicum: Capability Mode Ye

* Entered via new syscall: cap_enter() e

— Sets a flag that all child processes then inherit
and can never be cleared once set

* Disallows access to all global
namespaces:

— Process ID (PID), file paths, protocol
addresses (e.g. IP addrs), system clocks etc.

* €.g. open() syscall disallowed (but openat() OK)

— All accesses through delegated capabilities
 Removes all ambient authority

53

Thursday, 11 December 2014

FreeBSD Capsicum: *at() syscalls e

NICTA

 Allow lookups of paths relative to a given
directory

— specified by a directory file descriptor
— €.0. openat (rootdirfd, "somepath”, O RDONLY)

* In capability mode, prevented from
traversing any path above the given cap

— €.0. openat(dirfd,”../blah”, flags) disallowed

— Ensures that directory caps do not confer
authority to access their parents

54

Thursday, 11 December 2014

FreeBSD Capsicum: Capability Mode ©

. Directory capabilities allow access to sub-
parts of the filesystem namespace

site1 site2

. .

P------------/—--—-‘-

| A

pache Apache
|
|

Loglcal Application
A A S A A A A A A A ——

55

Thursday, 11 December 2014

FreeBSD Capsicum: Delegation e

. ICTA
* A parent delegates to an app it mvokes“by:
— fork()ing, obtaining a cap to the child

— child drops or weakens unneeded caps, calls
cap_enter(), then exec()s invoked binary

* Allows e.g. your shell to delegate sensibly
to apps it invokes

— Although apps need to be modified to do all
accesses via capabilities

— Provides an incremental path towards security

56

Thursday, 11 December 2014

Filenames as Cap Handles e

. . NICTA
« Capsicum: openat () Mmaps filenames to caps

— relative to some root directory cap
— filenames become capability handles

» Unestos (Krohn et al., HotOS 2005)

— no global namespaces, ever

« each process has distinct filesystem namespace,
like in Plan 9

— all resources represented in filesystem
* e.g. /sockets/tcp/listen/80

— all filenames are just string handles for caps
* file namespace becomes simply a cap namespace

57

Thursday, 11 December 2014

AC Mechanisms and Least Privilege e

* Secure OS should support writing least-

privilege applications
— decomposing app into distinct components
— each of which runs with least privilege
» Largely comes down to its AC system
— some make this far more easy than others
 Example: web browser
— handles lots of the user’s sensitive info

— but processes lots of untrusted input
— Input processing parts need to be sandboxed

58

Thursday, 11 December 2014

Sandboxing Chromium (Watson et al., 2010

NIC
OS Sandbox | LOC FS IPC Net Priv
. DAC
Windows ACLs 22,350
DAC
Linux chroot() 600
OS X Sandbox 560
MAC
Linux SELinux 200
Linux seccomp | 11,300
Caps
FreeBSD | Capsicum | 100

59

Thursday, 11 December 2014

USABLE SECURITY

60

Thursday, 11 December 2014

Users and Security

* “The single biggest cause of network
security breaches is not software bugs and
unknown network vulnerabilities but user
stupidity, according to a survey published
by computer consultancy firm @Stake.”

 “If [educating users] was going to work, it
would have worked by now.”

Thursday, 11 December 2014

http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.zdnetasia.com/staff-oblivious-to-computer-security-threats-21201228.htm
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/
http://www.ranum.com/security/computer_security/editorials/dumb/

Security Advice e

NICTA

» Security advice:

—e.g. check URLs / HTTPS certs, use strong
passwords, don’t write down passwords, etc.

* Is regularly rejected:
— when it makes it impossible to get work done
* why bosses share their passwords with their PAs

— when there is some incentive to do so
» why users give out their passwords for chocolate

— when nobody ever sees any threat

« why nobody checks HTTPS certificates
* who here has ever faced a live MITM?

62

Thursday, 11 December 2014

Security Advice Rejection e

NICTA

* |s often rational (Herley, NSPW 2009)

— because it costs more to follow it than not to
 advice imposes a cost on everyone
* but only a fraction ever get attacked
* so for most, there is not benefit

* |s because security is secondary concern
— people get paid (only) for getting work done
» Writing good security advice is hard

— this says more about poor system design than
about the motivations of end-users

63

Thursday, 11 December 2014

A brief digression... e

* Has your bank ever reminded you not to
forget your ATM card when withdrawing
cash?

64

Thursday, 11 December 2014

User Education e

* Needed when the most secure way to use

a system differs from the easiest
— for rational users: “easiest” = “most profitable”
 will be different for different people
* |s expensive
— Cheaper to avoid need for it by careful design

* Not always possible to avoid:

— when security and productivity goals conflict

— e.g. need-to-know versus intelligence sharing
post 9/11

65

Thursday, 11 December 2014

Why Usable Security? Oe

* Design Principle: Make the easiest wayN’lc(c:>TA

use a system the most secure
— c.f. safe defaults

* In general: exploit the user to make the
system more, not less, secure

— by aligning their incentives to produce
behaviour that enhances security

— requires good understanding of economics,
human behaviour, psychology etc.

* why these are now becoming hot topics in security
research

66

Thursday, 11 December 2014

Secure Interaction Design

» Users often behave “insecurely” because
their actions cause effects different to what
they expect

» General principle: secure systems must
behave in accordance with user
expectations

Thursday, 11 December 2014

User Expectations

NICTA

* To behave In accordance with user

expectations:

— Software must ¢
of any security c

— Software must ¢

early convey consequences
noices presented to user

early inform the user to keep

accurate their mental model that informs their

choices

* Why secure Uls require trusted paths
— Essential security mechanism of a secure OS

68

Thursday, 11 December 2014

Trusted Path (Je

NICTA

* Unspoofable I/O with the user

— unspoofable output
* so the user can believe what they see
— unspoofable input
 so the user knows what they say will be honoured

* Requires trustworthy |/O hardware

* For interactions via the OS, requires:
— trustworthy drivers
— trustworthy kernel

69

Thursday, 11 December 2014

Secure Attention Key e

NICTA

» Atrusted path for logging in
— Ctrl-Alt-Del in Windows NT-based systems
— Untrappable by applications, so unspoofable
— Traps directly to kernel
— Causes login prompt only to be displayed

* Requires user effort
— S0 not optimal N

— But better than S g
nothing

Press Ctd + Al + Delete to log on

70

Thursday, 11 December 2014

Hardware Trusted Paths Yo

* For high-security situations, often cannot

trust kernel or device derivers

* These use hardware-only trusted paths

— Simple I/O hardware directly connected to
security-critical device functions

 €.g. pushbuttons (input) and LEDs (output)
— bypasses OS

 requires only that the hardware is trusted

71

Thursday, 11 December 2014

Case Study: Windows UAC e

NICTA
User Account Control Send Feedback

Do you want to allow the following program to make

changes to this computer?

E Program name: Adobe Reader8.1.2

Verified publisher: Adobe Systems, Incorporated

h File origin: Hard drive on this computer
" Program location: "L:\Softwares\AdbeRdr812_en_US.exe"
f
|| A Hide details User Account Control Send Feedback
!
 Heto me decide Change | | ¥ Do you want to allow the following program from an
\ /" unknown publisher to make changes to this computer?

, ——

Program name: 72457 .exe

Publisher Unknown
i File origin: Downloaded from the Internet
\ Program location: “L:\Softwares\72457.exe”
!
| (A) Hide details | Ves No
!
| Help me decide Change when these notifications appear

72

Thursday, 11 December 2014

Windows UAC: Overview Yo

» User prompted to confirm granting admin

privileges to applications

— distinguishes apps from “known” and
unknown publishers

— graphical trusted path used by default
* via separate desktop session
 prevents apps interfering with the dialog

« User offered a binary choice
— cannot decide which privileges to grant

73

Thursday, 11 December 2014

UAC Levels (Windows 7 and 8) Oe

NICTA

High— Always notify

“I”

— Don’t notify when “I” make changes

* “I” is a component of Windows (e.g. launched via
Control Panel)
— potential confused deputies

* the default

— Don’t dim desktop
* no trusted path

Low — Never notify

74

Thursday, 11 December 2014

UAC as Usable Security e

. . NICTA
* On an uninfected machine:

— User should say yes always
— This can become the most natural action
* \When the user becomes infected, then:
— Most natural action could be the least secure
« Saying yes optimises for short-term
productivity

— S0 users who value short-term productivity
may act insecurely

75

Thursday, 11 December 2014

Admonition vs. Designation Oe
NICTA

 UAC is example of security by
admonition (Yee S&P vol 2, no 4, 2004)

— provide a notification
— to which user must attend to remain secure

 Alternative is security by designation

— Juser actions simultaneously designate and
authorise

* c.f. capabilities

— users’ security decisions inferred through their
usual actions

76

Thursday, 11 December 2014

Security by Admonition

77

Thursday, 11 December 2014

Security by Admonition

 Example: User double-clicks an app

Thursday, 11 December 2014

Security by Admonition Oe

NICTA

 Example: User double-clicks an app

User Account Control Send Feedback

%) Do you want to allow the following program to make

N/ changes to this computer?

E Program name: Adobe Reader8.1.2
Verified publisher: Adobe Systems, Incorporated
File origin: Hard drive on this computer
Program location: “L\Softwares\AdbeRdB12_en_US.exe”

'

|

. pe .

Il A Hide details Yes | No |
|

:

Help me decide Change when these notifications appear

77

Thursday, 11 December 2014

Security by Admonition Oe

NICTA

 Example: User double-clicks an app

User Account Control Send Feedback

%) Do you want to allow the following program to make

N/ changes to this computer?

E Program name: Adobe Reader8.1.2
Verified publisher: Adobe Systems, Incorporated
File origin: Hard drive on this computer
Program location: “L\Softwares\AdbeRdB12_en_US.exe”

|

' .

I A Hide details Yes | No l
!

| Helo me decide Change when these notifications appear

* Answer will always be “yes”
— unless the user clicked the wrong app

77

Thursday, 11 December 2014

Security by Admonition e

 Example: User double-clicks an app

User Account Control Send Feedback

%) Doyouwantto allow the following program to make

4 changes to this computer?

g Program name: Adobe Reader8.1.2
Verified publisher: Adobe Systems, Incorporated
File origin: Hard drive on thes computer
Program location: “L:\Softwares\AdbeRd812_en_US.exe”

'
|
|) vide detsit Yo [N]
!
2 fications anoea

Helo me decide

* Answer will always be “yes”
— unless the user clicked the wrong app

 “why did it forget’ | wanted to run the app?

77

Thursday, 11 December 2014

Security by Designation e

 Example: User double-clicks an app o

—the app just runs

» User’s act of double-clicking both:
— designates the app to run
— grants authority for it to run
« c.f. capabilities
* Ordinary user actions become security
designations
— ordinary actions grant appropriate authority
— In accordance with least privilege

78

Thursday, 11 December 2014

Case Study: OS X Lion (etc.) Powerbox e

 Automatic dynamic grants of authority (T

sandboxed applications
— inferred from ordinary user actions

« OS X sandbox:

— an app declares its needed authorities via a
manifest at install time

 create net connection, listen, capture from camera

— sandboxed applications’ authority limited to
those in its manifest

— plus those granted to it by the user through
the powerbox damon

79

Thursday, 11 December 2014

OS X Lion Powerbox

* Trusted daemon process: pboxd
» Controls open/save dialogs (and similar)
» User selects File -> Open / Save / Save As

* User selects file and clicks e.g. “Open”

» Similar mechanism used for “Recently
Opened” files etc.

Thursday, 11 December 2014

OS X Lion Powerbox: MS Word Oe

NICTA

 How much authority does Word need?

— declared statically (e.g. in its manifest):
* ability to read/execute its shared libraries
* ability to read/write global preferences etc.

* |.e. access to things that were created when it was
installed

— dynamically (through the powerbox):
* the currently opened files

* That's basically it

— same principle can be applied to most other
apps too

81

Thursday, 11 December 2014

Least Authority Filesystem Access Yo

* Most apps need just access to: o

— files created when the app was installed
* /usr/lib/appname

— system-wide space for app-specific data
* /usr/share/appname

— local space for user preferences
« SHOME/.appname

— files selected through the powerbox

 Basic idea behind OLPC’s Bitfrost least-
authority security architecture

— whose creator worked on the Lion powerbox

82

Thursday, 11 December 2014

Inferring other needed authorities

(J®

« By application type (Yee 2004, IEEE Séfﬁ?

— Internet
e network access

— Sound & Video

e camera / mic access

* Determined at install-time
— user drags the app to the

Q Applications Places

E}, Accessories

m Sound & Video

%) Add/Remove...

desired part of the applications menu

* Installs the app
 grants it the necessary authorities

>

>

>

>

>

A4

83

Thursday, 11 December 2014

Inferring more complicated authorities ®

* Windows knows my default
web and email clients

» Manages my passwords etc.[s
« Web browser has access to: |*

« Emall client has access to:

* Bonus: app agnostic

Thursday, 11 December 2014

Aside: App Stores and Incentives Oe

NICTA

* Apple distributes OS X Lion apps via its
App Store

* Apps need to list required authorities

* Opportunity for security:

— allows Apple to target their application
auditing processes

* because low authority apps need less auditing

— natural incentive for developers to minimise
the authorities listed by their apps

* low authority apps can be audited faster
* Incentives are as important as technology!

85

Thursday, 11 December 2014

Case Study: User Driven AC (S&P 2012)

» Generalises powerbox idea from files to
arbitrary user-owned resources

* Access decisions inferred through genuine
Ul interactions

 Avoids user-facing manifests and UAC/
IPhone style permission popups

Thursday, 11 December 2014

User Driven Access Control (Yo

User’s View System’s View NICTA
j c e e S
amera container 2
Resource Monitor Photo Editor App
Policy: Which
app can access
2 BN camera in what <object src=
Camera ACG / fashion 7 “rm://camera/
P takePicture”/>
i HACG
b 2) Take 3) Receive
L picture picture
1) User clicks on
camera ACG

Thursday, 11 December 2014

User-Driven AC e

NICTA
* Access Control Gadget (ACG)
— Ul element that applications can embed

— Interacts with resource Reference Monitor

— Interactions with ACG grant permissions to
the embedding app

— File Powerbox is but one simple ACG for files
* Protected by the OS from interference
from the embedding app

— but app can move, resize etc. embedded
ACGs

88

Thursday, 11 December 2014

ACGs and Resource Classes

89

Thursday, 11 December 2014

ACGs and Resource Classes

 Location data

89

Thursday, 11 December 2014

ACGs and Resource Classes e

NICTA

 Location data

* Microphone, camera N

. Audio W« Video

89

Thursday, 11 December 2014

ACGs and Resource Classes

 Location data

* Microphone, camera

» Clipboard

Clhipboard

Format Painter

Insd

89

Thursday, 11 December 2014

ACGs and Resource Classes

* Location data
* Microphone, camera

» Clipboard

 Files

3] Photo ¢ Link '"§% |

Select an image file ¢
(| Choose File | Jio file

Or upload

89

Thursday, 11 December 2014

ACGs and Access Semantics

permanent access

Least
privilege =

S

(Je
_ _ NICTA

 ACGs may grant one-time, session or

— permanent access rarely required (5% top
100 Android apps)
" Onetime: (L@ .
L m ~ Ul-coupled
) Text: Payrentl | Send SMS

Scheduled: Date: 2011-11-09 = Monthiyl | [U]-

Permanent:M”‘“‘"’“‘"“"‘t | decoupled

90

Thursday, 11 December 2014

ACGs and Trusted Path (Yo

] NICTA
* ACGs require a trusted path from the 0S
— ACG input events must go directly to ACG
— Kernel must control the cursor over ACGs

 ACGs must be isolated from app
— although ACGs can allow customisation

» “Social engineering” attacks still possible
— trick user into granting GI
access to current location @ — \-l7
— high effort/risk for attacker X | €J

X 19

91

Thursday, 11 December 2014

Usable Security: Summary e

NICTA

» Design OS security mechanisms with real
users in mind

— mechanisms that fail when users behave
normally are faulty, not the other way around

* Mechanisms must convey accurate
information to users

— so they can make informed security decisions

* Mechanisms should infer security
decisions from normal user actions

— granting authority according to least privilege

92

Thursday, 11 December 2014

ASSURANCE AND VERIFICATION

93

Thursday, 11 December 2014

Assurance: Substantiating Trust e

NICTA

« Specification
— unambiguous description of desired behaviour

« System design

— justification that it meets specification
* by mathematical proof or compelling argument

* Implementation

— justification that it implements the design
* by proof, code inspection, rigorous testing

 Maintenance
— justifies that system use meets assumptions

94

Thursday, 11 December 2014

Common Criteria e

NICTA

 Common Criteria for IT Security
Evaluation [ISO/IEC 15408, 99]

— IS0 standard, for general use

— evaluates QA used to ensure systems meet
their requirements

 Target of Evaluation (TOE) evaluated
against Security Target (ST)

— ST: statement of desired security properties
based on Protection Profiles

95

Thursday, 11 December 2014

Common Criteria: EALS

 / Evaluated Assurance Levels

— higher levels = more thorough evaluation
* higher cost
* not necessarily better security

Level Requirement |Specification |Design Implementati
EAL1 not eval. Informal not eval. not eval.
EAL2 not eval. Informal Informal not eval.
EAL3 not eval. Informal Informal not eval.
EAL4 not eval. Informal Informal not eval.
EALS not eval. Semi-Formal |Semi-Formal |Informal
EALG Formal Semi-Formal |Semi-Formal |Informal
EAL7 Formal Formal Formal Informal

96

Thursday, 11 December 2014

Common Criteria Protection Profiles (PPs)

« Controlled Access PP (CAPP)

* Single Level Operating System PP
* Labelled Security PP
* Multi-Level Operating System PP

« Separation Kernel Protection Profile

Thursday, 11 December 2014

COTS OS Certifications

e EALSI:
— Mac OS X

« EAL4:
—2003: Windows 2000
— 2005: SUSE Enterprise Linux

— 2006: Solaris 10 (EAL4+)
 against CAPP (an EAL3 PP!)

—2007: Red Hat Linux (EAL4+)
* These OSes are still regularly broken!

NICTA

98

Thursday, 11 December 2014

EALG6 and above OS Certifications Oe

. EAL6 NICTA

— Green Hills INTEGRITY-178B (EALG+)

« Separation Kernel Protection Profile (SKPP)
* relatively simple hardware platform in TOE

— Aiming for EAL7

99

Thursday, 11 December 2014

SKPP on Commodity Hardware e

NICTA
« SKPP:
— OS provides only separation

* One Box One Wire (OB1) Project

— Use INTEGRITY-178B to isolate VMs on
commodity desktop hardware
— Leverage existing INTEGRITY certification

* by “porting” it to commodity platform

— Conclusion (March 2010):

« SKPP validation for commodity hardware platforms
infeasible due to their complexity

« SKPP has limited relevance for these platforms

100

Thursday, 11 December 2014

Common Criteria Limitations e

* \ery expensive
— rule of thumb: EAL6+ costs $1K/LOC

* Too much focus on development process
— rather than the product that was delivered

* Lower EALs of little practical use for OSes
—c.f. COTS OS EALA4 certifications

« Commercial Licensed Evaluation Facilities
licenses rarely revoked

— Leads to potential “race to the
bottom” (Anderson & Fuloria, 2009)

101

Thursday, 11 December 2014

Formal Verification e

» Based on mathematical model of systethCTA

* Proof:

— Model satisfies security properties
* Required by CC EALS-7

— The code implements the model

* Not required by any CC EAL (informal argument
only even for EAL7Y)

 Example: seL4 microkernel
— 2009: proof that code implements model
— 2011: proof that model enforces integrity
— 2013: proof that model enforces confidentiality

102

Thursday, 11 December 2014

Formal Verification Limitations e
NICTA

* Proofs are expensive
—e.g. selL4 took ~30 py for ~10,000 LOC

* Proofs rest on assumptions
— assume correct everything you don’'t model
* e.g. compiler, details of hardware platform, etc.

— difficult to assume that e.g. modern x86
platform is bug free!
— full proofs best suited for systems that run on
simple hardware platform
* e.g. embedded systems
 otherwise they're not yet worth the high cost

103

Thursday, 11 December 2014

Automatic Analyses

 Algorithms that analyse code to detect
certain kinds of defects

« Cannot generally “prove” code is correct
* But much cheaper than proofs

* Tradeoff between completeness and cost
* Need to choose the right tool for the job:

* Best strategy is to mix them appropriately

Thursday, 11 December 2014

SEL4 AND SECURITY ASSURANCE

105

Thursday, 11 December 2014

A 30-Year Dream

Oyetsnrg K Sombnm Gawnn
Edaoc

Specification and
Verification of the
UCLA Unixt Security
Kernel

Brece), Walker. Richard A. Kemmerer, and

Date Sevwre LUmin, o bevmel siructured speratiog v
fom, s oomnirncted as part of an sngeling vt

SO0 Could Do SOmOmMLIEG W & SOREET MR Thas a8 -
pomsonn cheen el e o bug hed boce chawnsed, s
Sonlay hon producion srieen s Iel s, and o
oors aandy meraduond.

Ont rewweh oy 10 develop mosen By sheh
PN RO Cuh B ahown deks winiy. By Dt
doorr sooow e dets meaw be possbic cnly I 15 recendod
ot pebay pemts B The tee mador cempunenty
of thin wek wo 1) dovalging oraem B b i
mamArs (e amoent wnd onegle Uty of wle ol
- o) ot W oode
how 0 el modelon ad 00 applying cvmesne
verfioston methods 10 thet hossel softews o order e
et Dhal inn of dote sevenir criosen s met. This peper
opors on B by pen the srlCaies Cagemace
howe d = anh oy oukd we 2N

LULA 4o evalog p W which
e S predaied and shew i wreeie. Mmﬁ—
—ere *‘nn
b of e
llnon-pnhm-dmlnl-n'
» wowre s T
Mwo*“uw‘nw
ek evel wlivare sy, ding o
porrs from indnied specifontion 2o verionsion of imple-
o wied ool
By Voot aodd Phunsen: vonlatbon, sevmiiny,
e
Q.AU‘IMNMU&LM
el

CR Cabogorion: 400, 40 .0

Ratennd work watudes e PVOR Gpursiing soviem svest
SHE 129 which waen the hicrwchiond dosiga mododohe-
& desiried by Rabvonies and Levin o 10 et oforn
WO M en wltewd o B Usiventy of
LT

Every venlowion weo. from the devtiopeent of o
Wl e ACtns 0 it wded groad of e Pecel
oode, war cwricd sut AkBoughd RO mope woe Bt
oomprid S ol portions of the hosmel. mowt of the b
ot Gon Tor mah of 1he barmet The remmender i o
I woee of (e some. We Dherefore comsblier he prasoct
Seadalty compler In B paper, as seh verdicaion
"y » a of e porioe of
Bt vp o opeen, griher il an dauinn of the
amount of worl soquirod flor completion. Oue dbould
rosot thel A » - oy e vl P
weagh 1 weps of misal el el g oidy Dechent it
woourmty fees i rosl wyioms we Sownd s e leved 100
Sovwrty fany wmive Tound & ow we ety
vorlcason. Goapnit the 1ac) Dt e EPemntion S
wrain owclfelly and owod exiomaives An cuspie of

T L s Fralesart of Bl Latnrwren
Pormtnin o ogy vl fon oF o pat of S metad
T

-~ Sepbole i anpiend a 12 5
Thin wark o wimod o sovondl selioncor the woftears

P i rlind Dl B caper aw el made o
Sorel unmirind alaviags, B ACM wapy v seine el e
B of I PG A B e WA R e
g . B o [
Machows To Cope dlureni, oF W Siwlal. osrvs & fow
AN el T e
Ihmmwnmwmmm
o Sponcy of e Dwpawnent of Dufenes snder Comaat MDA
woorcan l‘-n.-n-b_ LY ‘AUNGI
Poows Dupartmen i

et I “ e
W e Wy Compras o of T LIped MEAEIC poe-
erwe groving offorts 10 deie. B eoeTaing Trvems coe-
andy B e oBunt Ras meslend e Opereng Gy
o wchaeouees. aad the wowrky oemmmanty becsase
B teve & Govind ol B el of seowre spetiien

EROds. and wh COMTOR Rotons of AhaIKT Types aad
wrechred softense Ledervasiing of Aohaed proed

R
- l‘.-s;-
A

NICTA

106

Thursday, 11 December 2014

A 30-Year Dream

Wﬂ'l K S Gawwn

Edaor

Speaﬁcauon and

Verification of the
UCLA Unixt Security

Kernel

Brece J, Walker, Richard A. K
Uerald) Tﬁ
University of Califoeraa, Los A

Dot Sevwre Linis, o bewnel shrnch
tom, was comnirnoted as part of an o
LULA 40 feveiog procrdares b0 which
o S pradiind and shew s wvuie, B
methadn more entensinaly applied a4
wwhs of fv mamrbtobog sever ity eaby

THere oo Papert 1he speciuatom o4

CR Catoporien: 400 M a0

" Lws 'w -l.—.-v-—
r-——--p Dt w48 v put of S metr sl
PO el Dl e capers aw et made o Sl N
-u.—-.-.dm B ACM ry i i ol
of U0 PRGN L B B . WA S B e
M-hg-‘-dﬁ —-—.h(-.‘q
Macnnws To cope dluresi, oF W Sl osrs

B e] -

o
Th stanch o wponrind by e Alvamund Rosd Mo
o Sponcy of e Dwpawnent of Oufones snder Comusn MDA
WOTTCANN Avtons’ osent sidromes B1 Wk and G
Poowk Daparsmen of Componr Sownon, {nwarsey of On
e Gow Angrie CA BNOL BA Sommerw, Compunr Soomx

1 Intrsduction

Farly atampon 10 mulbs spetibng wsdi®n w wbe Patie
¥ found snd Bacd fawy & cuiieg owexs As hew
oforts Laded. 0 Bevame diowr 1N plovemesl Wierioes
wete el evar e ssiceed D01 A mee eeuis
modvd wes roguirod. prrvemadh 0oc iRet coarolied (he
Gven’s Sngn wnd wpemeniin Thee sovete optre
500 Coudd Do SOmOTRLIang W & WOREET s Thas a8 -
pomeonn cieen el e e bug hed boce chanmed. e
Sonlatly shnw producion srsieen ate tely sl and o

Ont sewteh sk 0 doeselop mosen By seh -
s kL e e ™
ownmmhu-nkmb-m ¥ e recendod
----- ". ’.. " Ihv ﬂ.w mm

- i o P

e completed gortoe of
Bt smp b peen, Ngriber vl an wininn of the
amount of work sequired flor completion. One dould
rowiot thet B s eemimiiel W owry e vervioation peiatn
Ireagh 1 Geps of misal et lon ol g oidy bechens il
wourny Saey i ool wyvoms we Sowad & e leved 04
Sovwrty fany eive Tound & o i ety
verlcanon. Goanit the fac) Bt T Enpemnton i
wrain owolfelly and owod exiomainely An cumple of
ot Bl eipble o anpinnid 0 12 5
Thin work & simod a2 sovend salonces the softeas
R aats Tt 3 et e
W e iy comprians ond of e e HEAEC poe-
erew groving offorts 10 deie. (Do opereing Trems com-
watdy becaas e oBurt Nas welend ive Operuing Gy
wm wchaeouees. aad the oy oemamenny becsase
B revoerel & Gvind ol B prd of seowre spetvinn

T » peoorsl propew veslawson
wecnred softewse Undervanding of Mohaed proed
R | whrmary e

e Ve 23

AW Somter i

NICTA

Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data must be possible only if the recorded
protection policy permits it.

The two major components

*

106

Thursday, 11 December 2014

A 30-Year Dream

Mnn K Sumhnm Gann

Edaor

Speaﬁcatnon and

Verification of the
UCLA Unixt Security

Kernel

Brece J, Walker, Richard A, K
Uerald)

University of Califoeraa, Los A

Dot Sevnew Liin, & bevael shruch
tom, was comnirnoted as part of an o
LULA 4o fevaiog procvdares b which
e S pradoind and shew s wvaie, B
methadn more entensinaly applied a4
s of B mamsbtetog seowrty ealy

THere oo Papert 1he speciuatom o4
perbenon s peaducing 8 weowre speratl
warh represtnis 8 vigaoan wmempld
wale. prodection Meel welivare syviey
perrs from iminied specifcation 3 verll
ww wied oo

Ry Vot s Phinsen: voniloark

CR Catoporien: 400 M a0

M“
© (V0 AC Gom L TS o e
"

1 Intrsduction

Farly atamgon 4o mubs spmtibng wrsdi®n wn wbe Putin
¥ found snd Bacd fawy & cuiieg owexs As hew
oforts Laded. 0 Bevame diowr 1N plovemesl Wierioes
ot anlaly evar w sscceed D01 A meoew waeeuie
modvd wes roguirod. prrvemadh 0oc iRet coarolied (he
e’y Singe il wpemaniiin Thee sovete optre
500 Coudd Do SOmOTRLIang W & WOREET s Thas a8 -
pomsonn chee (el e e bug hed boce chawnand, owr
Sonlatly shnw producion srsieen ate tely sl and o

Ont sewteh sk 0 doeselop mosen By seh -
CPUTALEG WO et Be hown dals winiy, Basany Dl
doorr scoow o dets meaw be posabic only ¥ Ihe recendod
..... p‘- p - . lhr lee magor CweguT e

-t i e -

protection policy permits it.

Bl smp b peen, geiher ol an it of the
amount of work soquired flor completion. One dbould
roniot het I s eesteiiel Mo owry e veriioation prisitn
reagh 1 ey of mical ande vl ool Decoow it
wourny Seen i rosl wyvoms we Sownd e el 00
Sovwiity fany eive Tound & o wim devmg

VOrlCEion Acsss tha fant dh de weslesssarsien ws

= Communications

ot Of

o o2 the ACM

Supverwny of Colfurn, Soms Rarbers, A %108

NICTA

Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
dircct access to data musi be possible only if the recorded
The two major components

e —s

February 1980
Volume 23
Number 2

*

106

Thursday, 11 December 2014

Assurance

LT, EAL4 EAL5 EAL6 EAL7 Verified
Criteria
Requirements Informal Formal Formal Formal Formal
Functional _ _
Informal Semiformal | Semiformal Formal Formal
Spec
High-Level . :
i Informal Semiformal | Semiformal Formal Formal
Design
Low-Level _ ,
i Informal Informal Semiformal | Semiformal Formal
Design
Code Informal Informal Informal Informal Formal

Thursday, 11 December 2014

Assurance

Common = oy \ 4 |
Criteria EAL4 EALS EALG EAL7 =) 3 c -r'
Requirements Informal Formal Formal Formal Formal
Functional _ _
Informal Semiformal | Semiformal Formal Formal
Spec
High-Level
D .eve Informal Semiformal | Semiformal Formal Formal
Design
Low-Level . :
i Informal Informal Semiformal | Semiformal Formal
Design
Code Informal Informal Informal Informal Formal

Thursday, 11 December 2014

§

Assurance

Common e o=\ I
Criteria EAL4 EALS EAL6 EAL7 > 3 ¢ A -lr'
Requirements Informal Formal Formal ~ Formal

Functional I ’ t\A ‘PYD O‘Es ~ormal

Spec

High-Le
J . v\e Re ——rOfmal Formal
Design O‘E @ /
Low-Leve n(/ . .
i wirormal Informal Semiformal | Semiformal Formal
Design 7]
Code Informal Informal Informal Informal Formal

Thursday, 11 December 2014

selL4 Security Proofs: Overview

Specification

!

NICTA

108

Thursday, 11 December 2014

selL4 Security Proofs: Overview

Access Control Policy Model

Specification

Code

NICTA

108

Thursday, 11 December 2014

selL4 Security Proofs: Overview

Access Control Policy Model

N !

Specification

Integ rity

NICTA

108

Thursday, 11 December 2014

seL4 Security Proofs: Overview Je
NICTA

Access Control Policy Model

;
i

Integrity

Specification

108

Thursday, 11 December 2014

seL4 Security Proofs: Overview (Je
NICTA

Integrity + nfoflow —» (solation

4
\

Access Control Policy Model

Specification

Integrity

108

Thursday, 11 December 2014

seL4 Security Proofs: Overview (Je
NICTA

Integrity + nfoflow —» (solation

Access Control Policy Model

N\ | }'m

Specification

Integrity

infoflow --» Confidentia Li’cg

108

Thursday, 11 December 2014

selL4 Security Proofs: Overview

Integrity + nfoflow —» (solation

Access Control Policy Model

==?! |

Integ rity

\

Specification

infoflow --» Confidentia Litg

e

NICTA

108

Thursday, 11 December 2014

Information Flow Security (S&P 2013)

Malware Filter

Internet

109

Thursday, 11 December 2014

Information Flow Security (S&P 2013) @

NICTA

general computation ~
within partitions

Malware Filter

Internet

109

Thursday, 11 December 2014

Information Flow Security (S&P 2013)

general computation ~
within partitions

@

NICTA

109

Thursday, 11 December 2014

Only Kernel Change: Partition Scheduling

P1,2

P2,10

P1,5

P3,12

P1,5

A

Current Partition

Partition Time

Thursday, 11 December 2014

Only Kernel Change: Partition Scheduling

Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5

A

Current Partition

Partition Time

110

Thursday, 11 December 2014

Only Kernel Change: Partition Scheduling

Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5 2

A

Current Partition

|

/7
7 Partition Time

decremented on each
timer-tick

110

Thursday, 11 December 2014

Only Kernel Change: Partition Scheduling

Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5 2

__ advances when
A <

pa rtLtlon-timee
hits O

Current Partition

|

/7
7 Partition Time

decremented on each
timer-tick

110

Thursday, 11 December 2014

Only Kernel Change: Partition Scheduling @

« Static round-robin schedule between partitions

P1,2 P2,10 P1.,5 P3,12 P1,5 2
Pal
‘ &—— advawnces whewn 7 Partition Time
Current Partition 'Pa YtLtLDV\z—tLVM,C deOVCV\:LCV\,ted’ own eq ch
hits O timer-tick

* Priority-based scheduling within partitions

— Choose the highest-priority Prio Ready Queue
thread that is ready

— Run idle thread if none ready 295 _’-_’-

— Any other intra-partition
scheduling algorithm possible
o dseriom -

110

Thursday, 11 December 2014

Problematic Kernel APls

NICTA

111

Thursday, 11 December 2014

Problematic Kernel APls

* Leaky kernel APIs need to be disabled

NICTA

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery
— device drivers must poll for interrupts

111

Thursday, 11 December 2014

Problematic Kernel APlIs

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery
— device drivers must poll for interrupts

111

Thursday, 11 December 2014

Problematic Kernel APlIs (}®

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery
— device drivers must poll for interrupts

* |nter-partition object destruction

111

Thursday, 11 December 2014

Problematic Kernel APls 4@

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery
— device drivers must poll for interrupts

* |nter-partition object destruction
— partition-crossing comms. channels cannot be destroyed

111

Thursday, 11 December 2014

Problematic Kernel APls

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay disabled

« Asynchronous interrupt delivery
— device drivers must poll for interrupts

* |nter-partition object destruction
— partition-crossing comms. channels cannot be destroyed

not uncommon Lin high-
assurance sgs’cems

NICTA

111

Thursday, 11 December 2014

Problematic Kernel APls

* Leaky kernel APIs need to be disabled
— by ensuring initially no subject has permission to use them
— the proof guarantees they will stay dis~+'~

’ es
* Asynchronoi= *
Y
— device a\,\a \@‘?
avav
* |nter-partit !
v
— partition- ?aﬁ yed
asY™
not mmon Lin high-

ASSUrance s gs’ccms

111

Thursday, 11 December 2014

Storage Channels e
NICTA

Information Flow Security

Code

Kernel Specification

Thursday, 11 December 2014

Storage Channels (Je

NICTA
* Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

Information Flow Security

Code

Kernel Specification

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec I

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

|

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec I

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

bool 1, h;
1 :=0n 1;

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

bool 1, h;
1 :=0n 1;

s refined by

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism
— not tolerated by nonleakage

bool 1, h;
1 :=0n 1;

is refined by 1 . °ce

g -

Thursday, 11 December 2014

Storage Channels (Je

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec I

appear as user-visible nondeterminism

— not tole-~*~+ hv nonleakage
under ri

LS th
bool 1, 1 ¢ \/al,u,e 0“6
1 :=0nm Veﬁ”"emeVLt—‘PVBSCV\/Cd

“oninterferemce

is refined b

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
2t in kernel spec

* Proof covers all storage channels pre~

— abstract kernel heap, CP"’
IRQ masks.

. oW
e Aler -7 Veved" C
re V\’Ot (‘/O S on Flow Security
x frov™ 0

e

Ls the value of
1 := 0 N VeﬁwﬁmeVLt—‘PVCSCWed

wontinterferemce

Thursday, 11 December 2014

Storage Channels (Jeo

NICTA
« Proof covers all storage channels pre~ gt in kernel spec

— abstract kernel heap, CP"’
IRQ masks. -

. oW
] AIQI\ - O\leved. 0 .
re V\'Ot (‘/ YOVW S on Flow Security
noS VIS
f
_ LYW

€.9. undocumented

\
u
/ hardware APls

Thursday, 11 December 2014

Timing Channels

@

NICTA

113

Thursday, 11 December 2014

Timing Channels

« The proof says nothing about timing channels

NICTA

113

Thursday, 11 December 2014

Timing Channels

The proof says nothing about timing channels
e.g. jitter in scheduler

NICTA

113

Thursday, 11 December 2014

Timing Channels

The proof says nothing about timing channels

e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible

@

NICTA

113

Thursday, 11 December 2014

Timing Channels ()@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

113

Thursday, 11 December 2014

Timing Channels ()@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

113

Thursday, 11 December 2014

Timing Channels O

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

user mode

kernel mode
(irgs disabled)

113

Thursday, 11 December 2014

Timing Channels o

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop

user mode

kernel mode
(irgs disabled)

113

Thursday, 11 December 2014

Timing Channels o

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

113

Thursday, 11 December 2014

Timing Channels ®

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

syscall

113

Thursday, 11 December 2014

Timing Channels ®

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

113

Thursday, 11 December 2014

Timing Channels ®

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

user mode

kernel mode
(irgs disabled)

syscall switch partition

113

Thursday, 11 December 2014

Timing Channels ®

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

timer
tick

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

113

Thursday, 11 December 2014

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

timer
tick

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

* Others: caches, CPU temp. etc.

113

Thursday, 11 December 2014

Timing Channels @
NICTA

e The nronf ~- , L@ﬂted ba nels

ning calls e.g. Revoke()

user mode

kernel mode
(irgs disabled)

syscall switch partition

» Others: caches, CPU temp. etc.

113

Thursday, 11 December 2014

Timing Channels (Je

NICTA
e The nronf ~- / b nels
‘Loated
+ el ymust be mLtLg? 4
oovaLevwﬁWt“‘% e
——) \A,LO\VLCS ning calls e.g. Revoke()

» Others: caches, CPU temp. etc.

113

Thursday, 11 December 2014

Lesson O‘

NICTA

« Functional correctness enables cheap security proofs

Effort (py)
25
20 -
15 -
10 -
5 -
Functional Correctness Integrity Infoflow

114

Thursday, 11 December 2014

Lesson

* Function=! ~-

nables cheap security proofs

¥YS
oVeY ~ 4 Mea
ffort (py)

25

20 -

15 -

10 -

5 -

. — B

Functional Correctness Integrity Infoflow

Qe

NICTA

114

Thursday, 11 December 2014

Lesson e

NICTA
* Function=a! ~- nables cheap security proofs
ars
over —4 Ye

25

20 -
15 -
10 -
5 -
0 -

Functional Correctness Integrity Infoflow

114

Thursday, 11 December 2014

Lesson Oe
NICTA

* Function=! ~-

nables cheap security proofs

YS
over —4 Yeh
ffort (py)\ ~2.5 FTE,
20 -
15 -
10 -
5 -
0 -
Functional Correctness Integrity Infoflow

114

Thursday, 11 December 2014

Analysing Timing Channels (CCS 2014) ®

Formal verification framework has no explicit concept of time

Modern architectures too complex to accurately model timing

Use experimental approach:
— Implement timing channels exploits and mesures
— Sound information theoretic approach to analysis

Objective:
— Understand and quantify kernel-relevant timing channels

— Develop minimal mechanisms to mitigate channels
* Must not compromise sel4’s generality and verifiability
* Must not degrade performance when timing channels don’t matter

115

Thursday, 11 December 2014

Example: cache contention channel

Partitions compete for space in the cache
Low partition can observe High partition’s cache footprint

@

NICTA

116

Thursday, 11 December 2014

Unmitigated Cache Channel ®

MO 10—1
=40 -
§ 102
3 30 -
2 103
5 20 i
R —4
= 10

Lines evicted /10?

« Cache channel measures on the Exynos4412 (ARMv7,
Cortex-A9)

— Estimated bandwidth: 2,350 b/s
— Each column is 1,000 samples
— This graph captures 4.77 TiB of uncompressed data

117

Thursday, 11 December 2014

Cache Colouring 4@

Partition cache between

. . . CPU Cache RAM
different security domains to — —
prevent cache interference

Domain A Domain B

F - - F ! Virtual Memory
.. n-1 ... n-1 ..! n-1 ... n-1 ... n-1

RAM
|
TTHE=

Allocation of colours to domains implemented outside kernel
« Existing kernel memory allocation mechanism already sufficient
Kernel modified to duplicate its own code on-demand

« Each partition has its own copy, preventing i-cache interference

118
18 AOARD visit, June'14

Thursday, 11 December 2014

Effectiveness of Cache Colouring ®

= 10~?
= 40 i
9 —2
O 10
S 30 il
=
= 1077
5 20 il
= —4
S 10
—2
o 125 10
. 12.4 10-3
< 123
2 —4
2121
- b S s L Bandwidth:

30" 2350 b/s — 27 bls
Lines evicted /10?

119

Thursday, 11 December 2014

Timing Channel Observations (JO®

 Empirical measurement is essential
— coupled with sound information theory for analysis

 Has revealed unexpected channels
— cycle counter influenced by cache misses, branch mispredicts

* Well-designed kernel mechanisms can be effective
— ... but manufacturers are working against us

120

Thursday, 11 December 2014

OS DESIGN FOR SECURITY

Thursday, 11 December 2014

OS Design for Security Oe

NICTA

* Minimise kernel code

— can bypass all security, inherent part of TCB
 How?:

— generic mechanisms

— no policies, only mechanisms

— mechanisms as simple as possible

— exclude all code that doesn’t need to be
privileged to support secure systems

— minimise covert channels
* no global namespaces, or absolute time

122

Thursday, 11 December 2014

Security and Concurrency Oe

. ; NICTA
* Avoid concurrent access to security state

— leads easily to security vulnerabilities

* Time of Check-to-Time-of-Use (TOCTTOU)
—common in privileged reference monitors

fiif (access(“file”, W OK) != 0) {
: exit(1l);

£ i\Tisymlink("/etc/passwd", "file");

¥ £fd = open("file", O_WRONLY); i
t write(fd, buffer, sizeof(buffer)); § &

— Make rights checks atomic with accesses
— Why most system-call wrappers don’t work

123

Thursday, 11 December 2014

Unexpected Concurrency Oe

 Example: FreeBSD Capsicum vulnerabbil v

— openat() with paths involving multiple “.."s
— activity can occur between each “..” Iookup

— second process races with first to ensure
each “..” lookup succeeds, using renameat()

— aIIows escaping of sandboxes

 Solutions:
— complicate the lookup code
— disallow multiple “.."s in pathnames (simpler)

« Second solution was chosen

124

Thursday, 11 December 2014

Designing Secure Mechanisms e

. . . . NICTA
» Simplify security mechanisms

— Because they are hard enough to get right in
the first place

* Ensure mechanisms are well-defined

— make policy and granting authority explicit
* Flexibility to support various uses

— support explicit delegation of authority

* Design for verifiability
— minimise implementation complexity

125

Thursday, 11 December 2014

Example: selL4

« Simple AC mechanism: capabilities
* No in-kernel concurrency

* Formal proof of implementation
correctness

* Formal proof that design (and so code)
enforces relevant security properties:

Thursday, 11 December 2014

QUESTIONS?

127

Thursday, 11 December 2014

BEER O'CLOCK?

NICTA

128

Thursday, 11 December 2014

