
1

Events, Co-routines,

Continuations and Threads

-

OS (and application)

Execution Models

System Building

• General purpose systems need to deal with

– Many activities

• potentially overlapping

• may be interdependent

– Activities that depend on external phenomena

• may requiring waiting for completion (e.g. disk read)

• reacting to external triggers (e.g. interrupts)

• Need a systematic approach to system

structuring

2

© Kevin Elphinstone

Construction Approaches

• Events

• Coroutines

• Threads

• Continuations

3

© Kevin Elphinstone

Events

• External entities generate (post) events.

– keyboard presses, mouse clicks, system calls

• Event loop waits for events and calls an

appropriate event handler.

– common paradigm for GUIs

• Event handler is a function that runs until

completion and returns to the event loop.

4

© Kevin Elphinstone

Event Model

• The event model only
requires a single stack
– All event handlers must

return to the event loop
• No blocking

• No yielding

• No preemption of
handlers

– Handlers generally short
lived

5

© Kevin Elphinstone

PC
SP

REGS

CPU

Stack

Memory

Event

Loop

Data

Event

Handler 1

Event

Handler 2

Event

Handler 3

What is ‘a’?
int a; /* global */

int func()

{

a = 1;

if (a == 1) {

a = 2;

}

return a;

}

6

© Kevin Elphinstone

No concurrency issues within a
handler

2

Event-based kernel on CPU

with protection

7

© Kevin Elphinstone

Kernel-only Memory

Scheduling?

User Memory

Stack

User

Code

User

Data

PC

SP
REGS

CPU

• Huh?

• How to support
multiple
processes?Stack

Event

Loop

Data

Event

Handler 1

Event

Handler 2

Event

Handler 3

Event-based kernel on CPU

with protection

8

© Kevin Elphinstone

Kernel-only Memory

Timer Event
(Scheduler)

User Memory

Stack

User

Code

User

Data

PC
SP

REGS

CPU

• User-level state in

PCB

• Kernel starts on

fresh stack on each
trap

• No interrupts, no
blocking in kernel
mode

PCB

A

PCB

B

PCB

C

Stack

Trap

Dispatcher

Data

Event

Handler 1

Event

Handler 2

Current

Thead

Co-routines
• Originally described in:

– Melvin E. Conway. 1963. Design of a separable transition-diagram

compiler. Commun. ACM 6, 7 (July 1963), 396-408.
DOI=http://dx.doi.org/10.1145/366663.366704

• Analogous to a “subroutine” with

extra entry and exit points.

• Via yield()

– Supports long running subroutines

– An implement sync primitives that wait
for a condition to be true

9

© Kevin Elphinstone

Co-routines

• yield() saves state of routine
A and starts routine B

– or resumes B’s state from its

previous yield() point.

• No preemption

10

© Kevin Elphinstone

PC
SP

REGS

CPU
Routine A

Stack

Memory

Data

Routine B

What is ‘a’?
int a; /* global */

int func()

{

a = 1;

yield();

if (a == 1) {

a = 2;

}

return a;

}
11

© Kevin Elphinstone

What is ‘a’?
int a; /* global */

int func() {

a = 1;

if (a == 1) {

yield();

a = 2;

}

return a;

}

12

© Kevin Elphinstone

No concurrency issues/races as
globals are exclusive between

yields()

3

Co-routines Implementation

strategy?
• Usually implemented with a

stack per routine

• Preserves current state of
execution of the routine

13

© Kevin Elphinstone

PC
SP

REGS

CPU
Routine A

Stack

A

Memory

Data

Routine B

Stack

B

Co-routines

• Routine A state currently
loaded

• Routine B state stored on
stack

• Routine switch from A → B
– saving state of A a

• regs, sp, pc

– restoring the state of B
• regs, sp, pc

14

© Kevin Elphinstone

PC
SP

REGS

CPU
Routine A

Stack

A

Memory

Data

Routine B

Stack

B

15

A hypothetical yield()

yield:

/*

* a0 contains a pointer to the previous routine’s struct.

* a1 contains a pointer to the new routine’s struct.

*

* The registers get saved on the stack, namely:

*

* s0-s8

* gp, ra

*

*

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

16

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

sw s8, 32(sp)

sw s7, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

Save the registers
that the ‘C’

procedure calling
convention

expects
preserved

17

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s7, 28(sp)

lw s8, 32(sp)

lw gp, 36(sp)

lw ra, 40(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch 18

Yield
yield(a,b)

{

yield(a,b)

{

yield(b,a)

{

}

}

}

Routine A Routine B

4

What is ‘a’?

int a; /* global */

int func() {

a = 1;

func2();

if (a == 1) {

a = 2;

}

return a;

}
19

© Kevin Elphinstone

Coroutines

• What about subroutines combined with
coroutines

– i.e. what is the issue with calling

subroutines?

• Subroutine calling might involve an

implicit yield()

– potentially creates a race on globals

• either understand where all yields lie, or

• cooperative multithreading
20

© Kevin Elphinstone

Cooperative Multithreading

• Also called green threads

• Conservatively assumes a

multithreading model

– i.e. uses synchronisation to avoid races,

– and makes no assumption about

subroutine behaviour

• Everything thing can potentially yield()

21

© Kevin Elphinstone

int a; /* global */

int func() {

int t;

lock_aquire(lock)

a = 1;

func2();

if (a == 1) {

a = 2;

}

t = a;

lock_release(lock);

return t;

}

22

© Kevin Elphinstone

A Thread

• Thread attributes

– processor related

• memory

• program counter

• stack pointer

• registers (and status)

– OS/package related

• state (running/blocked)

• identity

• scheduler (queues,

priority)

• etc…

23

© Kevin Elphinstone

PC
SP

REGS

CPU
Code

Stack

Memory

Data

Thread Control Block

• To support more than a
single thread we to

need store thread state
and attributes

• Stored in thread control
block

– also indirectly in stack

24

© Kevin Elphinstone

PC
SP

REGS

CPU

Stack

Memory

TCB

A

Code

Data

5

Thread A and Thread B

• Thread A state currently
loaded

• Thread B state stored in
TCB B

• Thread switch from A → B
– saving state of thread a

• regs, sp, pc

– restoring the state of thread B
• regs, sp, pc

• Note: registers and PC can

be stored on the stack, and
only SP stored in TCB

25

© Kevin Elphinstone

PC
SP

REGS

CPU

Stack

Memory

TCB

A

Code

Data

Stack

TCB

B

Approximate OS

mi_switch()

{

struct thread *cur, *next;

next = scheduler();

/* update curthread */

cur = curthread;

curthread = next;

/*

* Call the machine-dependent code that actually does the

* context switch.

*/

md_switch(&cur->t_pcb, &next->t_pcb);

/* back running in same thread */

}
26

© Kevin Elphinstone

Note: global
variable curthread

27

OS/161 mips_switch

mips_switch:

/*

* a0 contains a pointer to the old thread's struct pcb.

* a1 contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which

* we save the stack pointer in. The other registers get saved

* on the stack, namely:

*

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

28

OS/161 mips_switch

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

sw s8, 32(sp)

sw s7, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

Save the registers
that the ‘C’

procedure calling
convention

expects
preserved

29

OS/161 mips_switch

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s7, 28(sp)

lw s8, 32(sp)

lw gp, 36(sp)

lw ra, 40(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch 30

Thread

Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b

6

Preemptive Multithreading

• Switch can be triggered by
asynchronous external event

– timer interrupt

• Asynch event saves current state

– on current stack, if in kernel (nesting)

– on kernel stack or in TCB if coming from

user-level

• call thread_switch()
31

© Kevin Elphinstone

Threads on simple CPU

32

© Kevin Elphinstone

Stack

Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

Threads on CPU with

protection

• What is
missing?

33

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

PC

SP

REGS

CPU

Threads on CPU with

protection

34

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

Stack

User

Code

User

Data

PC

SP
REGS

CPU

• What
happens on
kernel entry

and exit?

Switching Address Spaces

on Thread Switch = Processes

35

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

Stack

User

Code

User

Data

PC

SP
REGS

CPU

Switching Address Spaces

on Thread Switch = Processes

36

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

Stack

User

Code

User

Data

PC

SP
REGS

CPU

7

What is this?

37

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

Stack

User

Code

User

Data

PC

SP
REGS

CPU

Stack Stack

What is this?

38

© Kevin Elphinstone

Stack

Kernel-only Memory

TCB

A

Code

Data

Stack

TCB

B

Stack

TCB

C

Scheduling

& Switching

User Memory

PC

SP
REGS

CPU

Stack

TCB

1

Code

Data

Stack

TCB

2

Stack

TCB

3

Scheduling

& Switching

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

� Fast thread management (creation, deletion,

switching, synchronisation…)

� Blocking blocks all threads in a process

– Syscalls

– Page faults

� No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-level Threads

� Slow thread management (creation, deletion,

switching, synchronisation…)

• System calls

�Blocking blocks only the appropriate thread in

a process

� Thread-level parallelism on multiprocessor

8

Continuations (in

Functional Languages)

• Definition of a Continuation

– representation of an instance of a

computation at a point in time

43

© Kevin Elphinstone

call/cc in Scheme

call/cc = call-with-current-continuation

• A function

– takes a function (f) to call as an argument

– calls that function with a reference to
current continuation (cont) as an

argument

– when cont is later called, the continuation

is restored.

• The argument to cont is returned from to the
caller of call/cc 44

© Kevin Elphinstone

…

(call-with-current-continuation f)

…

(f (x)

…

(x return_arg)

)

45

© Kevin Elphinstone

Note

• For C-programmers, call/cc is effectively
saving stack, and PC

46

© Kevin Elphinstone

Simple Example

(define (f arg)

(arg 2)

3)

(display (f (lambda (x) x))); displays 3

(display (call-with-current-continuation f))

;displays 2

Derived from http://en.wikipedia.org/wiki/Call-with-current-continuation

47

© Kevin Elphinstone

Another Simple Example
(define the-continuation #f)

(define (test)

(let ((i 0))

; call/cc calls its first function argument, passing

; a continuation variable representing this point in

; the program as the argument to that function.

;

; In this case, the function argument assigns that

; continuation to the variable the-continuation.

;

(call/cc (lambda (k) (set! the-continuation k)))

;

; The next time the-continuation is called, we start here.
(set! i (+ i 1))

i))

48

© Kevin Elphinstone

9

Another Simple Example
> (test)

1

> (the-continuation)

2

> (the-continuation)

3

> ; stores the current continuation (which will print 4 next) away

> (define another-continuation the-continuation)

> (test) ; resets the-continuation

1

> (the-continuation)

2

> (another-continuation) ; uses the previously stored continuation

4

Derived from http://en.wikipedia.org/wiki/Continuation

49

© Kevin Elphinstone

Yet Another Simple Example

;;; Return the first element in LST for which WANTED? returns a true

;;; value.

(define (search wanted? lst)

(call/cc (lambda (arg)

(for-each (lambda (element)

(if (wanted? element)

(arg element)))

lst)

#f)))

Derived from http://community.schemewiki.org/?call-with-current-continuation

50

© Kevin Elphinstone

Coroutine Example
;;; This starts a new routine running (proc).

(define (fork proc)

(call/cc (lambda (k)

(enqueue k)

(proc))))

;;; This yields the processor to another routine, if there is one.

(define (yield)

(call/cc

(lambda (k)

(enqueue k)

((dequeue)))))

51

© Kevin Elphinstone

Continuations
• A method to snapshot current state and

return to the computation in the future

• In the general case, as many times as

we like

• Variations and language environments

(e.g. in C) result in less general
continuations

– e.g. one shot continuations,

setjmp()/longjump()
52

© Kevin Elphinstone

What should be a kernel’s

execution model?

Note that the same question can be
asked of applications

53

© Kevin Elphinstone

The two alternatives

No one correct answer

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack

Only one stack is

used all the time to support

all user threads.

Every user thread has a

kernel stack.

10

Per-Thread Kernel Stack
Processes Model

• A thread’s kernel state is implicitly
encoded in the kernel activation

stack

– If the thread must block in-

kernel, we can simply switch

from the current stack, to
another threads stack until

thread is resumed

– Resuming is simply switching

back to the original stack

– Preemption is easy

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

thread_block();

P2(arg2);

} else {

P3();

}

/* return control to user */

return SUCCESS;

}

Single Kernel Stack
“Event” or “Interrupt” Model

• How do we use a single kernel stack to
support many threads?
– Issue: How are system calls that block handled?

⇒ either continuations
– Using Continuations to Implement Thread Management

and Communication in Operating Systems. [Draves et
al., 1991]

⇒ or stateless kernel (event model)
• Interface and Execution Models in the Fluke Kernel.

[Ford et al., 1999]

• Also seL4

Continuations
• State required to resume a

blocked thread is explicitly

saved in a TCB

• A function pointer

• Variables

• Stack can be discarded and

reused to support new
thread

• Resuming involves
discarding current stack,

restoring the continuation,

and continuing

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

save_arg_in_TCB;

thread_block(example_continue);

/* NOT REACHED */

} else {

P3();

}

thread_syscall_return(SUCCESS);

}

example_continue() {

recover_arg2_from_TCB;

P2(recovered arg2);

thread_syscall_return(SUCCESS);

}

Stateless Kernel

• System calls can not block within the kernel

– If syscall must block (resource unavailable)

• Modify user-state such that syscall is restarted when

resources become available

• Stack content is discarded (functions all return)

• Preemption within kernel difficult to achieve.

⇒Must (partially) roll syscall back to a restart point

• Avoid page faults within kernel code

⇒Syscall arguments in registers

• Page fault during roll-back to restart (due to a page fault)
is fatal.

IPC implementation examples

– Per thread stack

msg_send_rcv(msg, option,

send_size, rcv_size, ...) {

rc = msg_send(msg, option,

send_size, ...);

if (rc != SUCCESS)

return rc;

rc = msg_rcv(msg, option, rcv_size, ...);

return rc;

} Block inside
msg_rcv if no

message
available

Send and Receive
system call

implemented by a
non-blocking send

part and a blocking
receive part.

IPC examples - Continuations
msg_send_rcv(msg, option,

send_size, rcv_size, ...) {

rc = msg_send(msg, option,

send_size, ...);

if (rc != SUCCESS)

return rc;

cur_thread->continuation.msg = msg;

cur_thread->continuation.option = option;

cur_thread->continuation.rcv_size = rcv_size;

...

rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);

return rc;

}

msg_rcv_continue() {

msg = cur_thread->continuation.msg;

option = cur_thread->continuation.option;

rcv_size = cur_thread->continuation.rcv_size;

...

rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);

return rc;

}

The function to
continue with if

blocked

11

IPC Examples – stateless

kernel
msg_send_rcv(cur_thread) {

rc = msg_send(cur_thread);

if (rc != SUCCESS)

return rc;

rc = msg_rcv(cur_thread);

if (rc == WOULD_BLOCK) {

set_pc(cur_thread, msg_rcv_entry);

return RESCHEDULE;

}

return rc;

}

Set user-level PC

to restart msg_rcv
only

RESCHEDULE changes

curthread on exiting the
kernel

Single Kernel Stack
per Processor, event model• either continuations

– complex to program

– must be conservative in state saved (any state that might be
needed)

– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

• or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program

– request all potentially required resources prior to execution

– blocking syscalls must always be re-startable

– Processor-provided stack management can get in the way

– system calls need to be kept simple “atomic”.

– e.g. the fluke kernel from Utah

• low cache footprint
– always the same stack is used !

– reduced memory footprint

Per-Thread Kernel Stack

• simple, flexible
– kernel can always use threads, no special techniques

required for keeping state while interrupted / blocked

– no conceptual difference between kernel mode and user

mode

– e.g. traditional L4, Linux, Windows, OS/161

• but larger cache footprint

• and larger memory consumption

