
COMP9242 Advanced OS
S2/2016 W05: Performance Evaluation
@GernotHeiser

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

Copyright Notice
These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W05

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overview
•  Performance
•  Benchmarking
•  Profiling
•  Performance analysis

COMP9242 S2/2016 W05

4 © 2016 Gernot Heiser. Distributed under CC Attribution License

Purpose of Performance Evaluation
Research:
•  Establish performance advantages/drawbacks of an approach

–  may investigate performance limits
–  should investigate tradeoffs

Development:
•  Ensure product meets performance objectives

–  new features must not unduly impact performance of existing features
–  quality assurance

Purchasing:
•  Ensure proposed solution meets requirements

–  avoid buying snake oil
•  Identify best of several competing products

Different objectives may require different approaches
•  Unclear objectives will lead to unclear results

COMP9242 S2/2016 W05

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

What Performance?

•  Cold cache vs hot cache
–  hot-cache figures are easy to produce and reproduce

o  but are they meaningful?
•  Best case vs average case vs worst case

–  best-case figures are nice — but are they useful?
–  average case — what defines the “average”?
–  expected case — what defines it?
–  worst case — is it really “worst” or just bad? Does it matter?

•  What does “performance” mean?
–  is there an absolute measure?
–  can it be compared? With what?
–  Benchmarking

Note: Always analyse performance before optimising!
•  Ensure that you focus on the bottlenecks, they may be non-obvious!

COMP9242 S2/2016 W05

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overview
•  Performance
•  Benchmarking
•  Profiling
•  Performance analysis

COMP9242 S2/2016 W05

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

Benchmarking in Research

•  Generally one of two objectives:
–  Show new approach improves performance

o  Must satisfy progressive and conservative criteria:
§  Progressive: significant improvements of important aspect
§  Conservative: no significant degradation elsewhere

–  Show otherwise attractive approach does not undermine performance

•  Requirement: objectivity/fairness
–  Selection of baseline
–  Inclusion of relevant alternatives
–  Fair evaluation of alternatives

•  Requirement: analysis/explanation of results
–  Model of system, incorporating relevant parameters
–  Hypothesis of behaviour
–  Results must support hypothesis

COMP9242 S2/2016 W05

8 © 2016 Gernot Heiser. Distributed under CC Attribution License

Lies, Damned Lies, Benchmarks
•  Micro- vs macro-benchmarks
•  Synthetic vs “real-world”
•  Benchmark suites, use of subsets
•  Completeness of results
•  Significance of results
•  Baseline for comparison
•  Benchmarking ethics
•  What is good — analysing the results

COMP9242 S2/2016 W05

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

Micro- vs Macro-Benchmarks
•  Macro-benchmarks

–  Use realistic workloads
–  Measure real-life system performance (hopefully)

•  Micro-benchmarks
–  Exercise particular operation, e.g. single system call
–  Good for analysing performance / narrowing down down bottlenecks

o  critical operation is slower than expected
o  critical operation performed more frequently than expected
o  operation is unexpectedly critical (because it's too slow)

COMP9242 S2/2016 W05

10 © 2016 Gernot Heiser. Distributed under CC Attribution License

Micro- vs Macro-Benchmarks
Benchmarking Crime: Micro-benchmarks only
•  Pretend micro-benchmarks represent overall system performance

Real performance can generally not be assessed with micro-benchmarks
•  Exceptions:

–  Focus is on improving particular operation known to be critical
–  There is an established base line

Note: My macro-benchmark is your micro-benchmark
•  Depends on the level on which you are operating
•  Eg: lmbench

–  … is a Linux micro-benchmark suite
–  … is a hypervsior macro-benchmark

COMP9242 S2/2016 W05

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

Synthetic vs “Real-world” Benchmarks
•  Real-world benchmarks:

–  real code taken from real problems
o  Livermore loops, SPEC, EEMBC, …

–  execution traces taken from real problems
–  distributions taken from real use

o  file sizes, network packet arrivals and sizes
–  Caution: representative for one scenario doesn't mean for every scenario!

o  may not provide complete coverage of relevant data space
o  may be biased

•  Synthetic benchmarks
–  created to simulate certain scenarios
–  tend to use random data, or extreme data
–  may represent unrealistic workloads
–  may stress or omit pathological cases

COMP9242 S2/2016 W05

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Standard vs Ad-Hoc Benchmarks
Why use ad-hoc benchmarks?
•  There may not be a suitable standard

–  Eg lack of standardised multi-tasking workloads
•  Cannot run standard benchmarks

–  Limitations of experimental system
–  Resource-constrained embedded system

Why not use ad-hoc benchmarks?
•  Not comparable to other work
•  Poor reproducibility

Facit: Use ad-hoc BMs only if you have no choice!
•  Justify your approach carefully
•  Document your benchmarks well (for reproducibility!)

COMP9242 S2/2016 W05

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

Benchmark Suites
•  Widely used (and abused!)
•  Collection of individual benchmarks, aiming to cover all of relevant

data space
•  Examples: SPEC CPU{92|95|2000|2006}

–  Originally aimed at evaluating processor performance
–  Heavily used by computer architects
–  Widely (ab)used for other purposes
–  Integer and floating-point suite
–  Some short, some long-running
–  Range of behaviours from memory-intensive to CPU-intensive

o  behaviour changes over time, as memory systems change
o  need to keep increasing working sets to ensure significant memory

loads

COMP9242 S2/2016 W05

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

Obtaining an Overall Score for a BM Suite
•  How can we get a single figure of merit for the whole suite?
•  Example: comparing 3 systems on suite of 2 BMs

Benchmark System X System Y System Z
1 20 10 40
2 40 80 20
Total 60 90 60

Benchmark System X System Y System Z
1 20 10 40
2 40 80 20
Total 60 90 60
Mean 30 45 30

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 1.00 10 0.50 40 2.00
2 40 1.00 80 2.00 20 0.50
Mean 30 1.00 45 1.25 30 1.25

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00
2 40 0.50 80 1.00 20 0.25
Mean 30 1.25 45 1.00 30 2.13

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00
2 40 0.50 80 1.00 20 0.25
Geom. mean 1.00 1.00 1.00

Arithmetic mean is meaningless for relative numbers

Normalise to
System X

Normalise to
System Y

Geometric
mean?

Does the
mean make

sense?

Invariant
under

normalisation!

Arithmetic mean is meaningless for relative numbers

Rule: arithmetic mean for raw numbers,
geometric mean for normalised! [Fleming & Wallace, ‘86]

COMP9242 S2/2016 W05

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

Benchmark Suite Abuse
Benchmarking Crime: Select subset of suite
•  Introduces bias

–  Point of suite is to cover a range of behaviour
–  Be wary of “typical results”, “representative subset”

•  Sometimes unavoidable
–  some don't build on non-standard system or fail at run time
–  some may be too big for a particular system

o  eg, don't have file system and run from RAM disk...
•  Treat with extreme care!

–  can only draw limited conclusion from results
–  cannot compare with (complete) published results
–  need to provide convincing explanation why only subset

Other SPEC crimes include use for multiprocessor scalability
–  run multiple SPECs on different CPUs
–  what does this prove?

COMP9242 S2/2016 W05

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

Partial Data

•  Frequently seen in I/O benchmarks:
–  Throughput is degraded by 10%

o  “Our super-reliable stack only adds 10% overhead”

–  Why is throughput degraded?
o  latency too high
o  CPU saturated?

–  Also, changes to drivers or I/O subsystem may affect scheduling
o  interrupt coalescence: do more with fewer interrupts

–  Throughput on its own is useless!

Almost certainly
not true!

COMP9242 S2/2016 W05

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

Throughput Degradation

•  Scenario: Network driver or protocol stack
–  New driver reduces throughput by 10% — why?
–  Compare:

o  100 Mb/s, 100% CPU vs 90 Mb/s, 100% CPU
o  100 Mb/s, 20% CPU vs 90 Mb/s, 40% CPU

–  Correct figure of merit is processing cost per unit of data
o  Proportional to CPU load divided by throughput

–  Correct overhead calculation:
o  10 µs/kb vs 11 µs/kb: 10% overhead
o  2 µs/kb vs 4.4 µs/kb: 120% overhead

Benchmarking crime: Show throughput degradation only
•  … and pretend this represents total overhead

CPU
limited

Latency
limited

COMP9242 S2/2016 W05

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overview
•  Performance
•  Benchmarking
•  Profiling
•  Performance analysis

COMP9242 S2/2016 W05

19 © 2016 Gernot Heiser. Distributed under CC Attribution License

Profiling
•  Run-time collection of execution statistics

–  invasive (requires some degree of instrumentation)
o  unless use hardware debugging tools or cycle-accurate simulators

–  therefore affects the execution it's trying to analyse
–  good profiling approaches minimise this interference

•  Identify parts of system where optimisation provides most benefit
•  Complementary to microbenchmarks
•  Example: gprof

–  compiles tracing into code, to record call graph
–  uses statistical sampling:

o  on each timer tick record program counter
o  post execution translate this into execution-time share

COMP9242 S2/2016 W05

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

Gprof example output
 Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 7208 0.00 0.00 open
 16.67 0.03 0.01 244 0.04 0.12 offtime
 16.67 0.04 0.01 8 1.25 1.25 memccpy
 16.67 0.05 0.01 7 1.43 1.43 write
 16.67 0.06 0.01 mcount
 0.00 0.06 0.00 236 0.00 0.00 tzset
 0.00 0.06 0.00 192 0.00 0.00 tolower
 0.00 0.06 0.00 47 0.00 0.00 strlen
 0.00 0.06 0.00 45 0.00 0.00 strchr
 0.00 0.06 0.00 1 0.00 50.00 main
 0.00 0.06 0.00 1 0.00 0.00 memcpy
 0.00 0.06 0.00 1 0.00 10.11 print
 0.00 0.06 0.00 1 0.00 0.00 profil
 0.00 0.06 0.00 1 0.00 50.00 report

Source: http://sourceware.org/binutils/docs-2.19/gprof

COMP9242 S2/2016 W05

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

Gprof example output (2)
 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

 index % time self children called name
 <spontaneous>
 [1] 100.0 0.00 0.05 start [1]
 0.00 0.05 1/1 main [2]
 0.00 0.00 1/2 on_exit [28]
 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]
 [2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

 0.00 0.05 1/1 main [2]
 [3] 100.0 0.00 0.05 1 report [3]
 0.00 0.03 8/8 timelocal [6]
 0.00 0.01 1/1 print [9]
 0.00 0.01 9/9 fgets [12]

Source: http://sourceware.org/binutils/docs-2.19/gprof

COMP9242 S2/2016 W05

22 © 2016 Gernot Heiser. Distributed under CC Attribution License

Profiling
•  Run-time collection of execution statistics

–  invasive (requires some degree of instrumentation)
–  therefore affects the execution it's trying to analyse
–  good profiling approaches minimise this interference

•  Identify parts of system where optimisation provides most benefit
•  Complementary to microbenchmarks
•  Example: gprof

–  compiles tracing into code, to record call graph
–  uses statistical sampling:

o  on each timer tick record program counter
o  post execution translate this into execution-time share

•  Example: oprof
–  collects hardware performance-counter readings
–  works for kernel and apps
–  minimal overhead

COMP9242 S2/2016 W05

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

oprof example output

Performance counter used

Profiler Profiler

Count Percentage

$ opreport --exclude-dependent
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a ...
 450385 75.6634 cc1plus
 60213 10.1156 lyx
 29313 4.9245 XFree86
 11633 1.9543 as
 10204 1.7142 oprofiled
 7289 1.2245 vmlinux
 7066 1.1871 bash
 6417 1.0780 oprofile
 6397 1.0747 vim
 3027 0.5085 wineserver
 1165 0.1957 kdeinit
 832 0.1398 wine

...

Source: http://oprofile.sourceforge.net/examples/

COMP9242 S2/2016 W05

24 © 2016 Gernot Heiser. Distributed under CC Attribution License

oprof example output

$ opreport
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a ...
 506605 54.0125 cc1plus
 450385 88.9026 cc1plus
 28201 5.5667 libc-2.3.2.so
 27194 5.3679 vmlinux
 677 0.1336 uhci_hcd
 …
 163209 17.4008 lyx
 60213 36.8932 lyx
 23881 14.6322 libc-2.3.2.so
 21968 13.4600 libstdc++.so.5.0.1
 13676 8.3794 libpthread-0.10.so
 12988 7.9579 libfreetype.so.6.3.1
 10375 6.3569 vmlinux
 …

Source: http://oprofile.sourceforge.net/examples/

Drilldown of top
consumers

COMP9242 S2/2016 W05

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

Performance Monitoring Unit (PMU)
•  Collects certain events at run time
•  Typically supports many events, small number of event counters

–  Events refer to hardware (micro-architectural) features
o  Typically relating to instruction pipeline or memory hierarchy
o  Dozens or hundreds

–  Counter can be bound to a particular event
o  Via some configuration register
o  Typically 2–4
o  OS can sample counters
o  Counters can trigger exception on exceeding threshold

COMP9242 S2/2016 W05

26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Event Examples (ARM11)

Ev # Definition Ev # Definition Ev # Definition

0x00 I-cache miss 0x0b D-cache miss 0x22 …

0x01 Instr. buffer stall 0x0c D-cache writeback 0x23 Funct. call

0x02 Data depend. stall 0x0d PC changed by SW 0x24 Funct. return

0x03 Instr. micro-TLB miss 0x0f Main TLB miss 0x25 Funct. ret. predict

0x04 Data micro-TLB miss 0x10 Ext data access 0x26 Funct. ret. mispred

0x05 Branch executed 0x11 Load-store unit stall 0x30 …

0x06 Branch mispredicted 0x12 Write-buffer drained 0x38 …

0x07 Instr executed 0x13 Cycles FIRQ disabled 0xff Cycle counter

0x09 D-cache acc cachable 0x14 Cycles IRQ disabled

0x0a D-cache access any 0x20 …

COMP9242 S2/2016 W05

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overview
•  Performance
•  Benchmarking
•  Profiling
•  Performance analysis

COMP9242 S2/2016 W05

28 © 2016 Gernot Heiser. Distributed under CC Attribution License

Significance of Measurements
All measurements are subject to random errors
•  Standard scientific approach: Many iterations, collect statistics
•  Rarely done in systems work — why?
•  Computer systems tend to be highly deterministic

–  Repeated measurements often give identical results
–  Main exception are experiments involving WANs

•  However, it is dangerous to rely on this without checking!
–  Sometimes “random” fluctuations indicate hidden parameters

Benchmarking crime: results with no indication of significance

Non-criminal approach:
•  Show at least standard deviation of your measurements
•  … or state explicitly it was below a certain value throughout
•  Admit results are insignificant unless well-separated std deviations

COMP9242 S2/2016 W05

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Bare-minimum statistics:
•  At minimum report the mean (µ) and standard deviation (σ)

–  Don't believe any effect that is less than a standard deviation
o  10.2±1.5 is not significantly different from 11.5

–  Be highly suspicious if it is less than two standard deviations
o  10.2±0.8 may not be different from 11.5

•  Be very suspicious if reproducibility is poor (i.e. σ is not small)
–  Exception: non-local networks

•  Distrust standard deviations of small iteration counts
–  standard deviations are meaningless for small number of runs
–  … but ok if effect ≫ σ
–  The proper way to check significance of differences is Student's t-test!

COMP9242 S2/2016 W05

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Bare-minimum stats are sometimes insufficient
•  Eg: Old: µ = 3.1 sec, New: µ = 3 sec

Max = 17.6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Max = 5.8

Cumulative
distribution

function (CDF)

µ = 3.0

µ = 3.1
Distribution

Function

COMP9242 S2/2016 W05

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Obtaining meaningful execution times:
•  Make sure execution times are long enough

–  What is the granularity of your time measurements?
–  make sure the effect you're looking for is much bigger
–  many repetitions won't help if your effect is dominated by clock resolution
–  do many repetitions in a tight loop if necessary

COMP9242 S2/2016 W05

32 © 2016 Gernot Heiser. Distributed under CC Attribution License

Example: gzip from SPEC CPU2000
Observations?
•  First iteration is special

•  20 Hz clock
–  will not be able to

observe any effects
that account for less
than 0.1 sec

Lesson?
•  Need a mental model of the system

–  Here: repeated runs should give the same result
•  Find reason (hidden parameters) if results do not comply!

Cache
warmup

Clock
resolution

COMP9242 S2/2016 W05

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Noisy data:
•  Sometimes it isn't feasible to get a “clean” system

–  e.g. running apps on a “standard configuration”
–  this can lead to very noisy results, large standard deviations

Possible ways out:
•  Ignoring lowest and highest result
•  Taking the floor of results

–  makes only sense if you're looking for minimum
o  but beware of difference-taking!

Both of these are dangerous, use with great care!
•  Only if you know what you are doing

–  need to give a convincing explanation of why this is justified
•  Only if you explicitly state what you've done in your paper/report

COMP9242 S2/2016 W05

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Check outputs!
•  Benchmarks must check results are correct!

–  Sometimes things are very fast because no work is done!
–  Beware of compiler optimisations, implementation bugs

•  Sometimes checking all results is infeasible
–  eg takes too long, checking dominates effect you're looking for
–  check at least some runs
–  run same setup with checks en/disabled

COMP9242 S2/2016 W05

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Vary inputs!
•  Easy to produce low standard deviations by using identical runs

–  but this is often not representative
–  can lead to unrealistic caching effects

o  especially in benchmarks involving I/O
o  disks are notorious for this

§  controllers do caching, pre-fetching etc out of control of OS
•  Good ways to achieve variations:

–  time stamps for randomising inputs (but see below!)
–  varying order:

o  forward vs backward
o  sequential with increasing strides
o  random access

–  best is to use combinations of the above, to ensure that results are sane

COMP9242 S2/2016 W05

36 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Ensure runs are comparable and reproducible:
•  Avoid true randomness!

–  tends to lead to different execution paths or data access patterns
–  makes results non-reproducible
–  makes impossible to fairly compare results across implementations!
–  exceptions exist

o  crypto algorithms are designed for input-independent execution paths
•  Pseudo-random is good for benchmarking

–  reproducible sequence of “random” inputs
o  capture sequence and replay for each run
o  use pseudo-random generator with same seed

COMP9242 S2/2016 W05

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Environment
•  Ensure system is quiescent

–  to the degree possible, turn off any unneeded functionality
o  run Unix systems in single-user mode
o  turn off wireless, disconnect networks, put disk to sleep, etc

–  Be aware of self-interference
o  eg logging benchmark results may wake up disk...

•  Start different runs from the same system state (where possible)
–  back-to-back processes may not find the system in the same state

COMP9242 S2/2016 W05

38 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-World Example
Benchmark:
•  300.twolf from SPEC CPU2000 suite

Platform:
•  Dell Latitude D600

–  Pentium M @ 1.8GHz
–  32KiB L1 cache, 8-way
–  1MiB L2 cache, 8-way
–  DDR memory @ effective 266MHz

•  Linux kernel version 2.6.24

Methodology:
•  Multiple identical runs for statistics...

COMP9242 S2/2016 W05

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

twolf on Linux: What's going on?

20% performance
difference
between

“identical” runs!

Performance
counters are your

friends!

Subtract 221
cycles (123ns)
for each cache

miss

COMP9242 S2/2016 W05

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

twolf on Linux: Lessons?
•  Pointer to problem was standard deviation

–  σ for “twolf” was much higher than normal for SPEC programs
•  Standard deviation did not conform to mental model

–  Shows the value of verifying that model holds
–  Correcting model improved results dramatically

•  Shows danger of assuming reproducibility without checking!

Conclusion: Always collect and analyse standard deviations!

COMP9242 S2/2016 W05

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Vary only one thing at a time!
•  Typical example: used a combination of techniques to improve system

–  what can you learn from a 20% overall improvement?
•  Need to run sequence of evaluations, looking at individual changes

–  identify contribution and relevance
–  understand how they combine to an overall effect

o  they may enhance or counter-balance each other
–  make sure you understand what's going on!!!!

Record all configurations and data!
•  May have overlooked something at first
•  May develop better model later

–  could be much faster to re-analyse existing data than re-run all
benchmarks

COMP9242 S2/2016 W05

42 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Measure as directly as possible:
•  Eg, when looking at effects of pinning TLB entries

–  don't just look at overall execution time (combination of many things)
–  use performance counter to compare

o  TLB misses
o  cache misses (from page table reloads)
o  ...

•  Cannot always measure directly
–  eg, actual TLB-miss cost not known

o  extrapolate by artificially reducing TLB size
o  eg by pinning useless entries

COMP9242 S2/2016 W05

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Avoid incorrect conclusions from pathological cases
•  Typical cases:

–  sequential access optimised by underlying hardware/disk controller...
–  potentially massive differences between sequentially up/down

o  pre-fetching by processor, disk cache
–  random access may be an unrealistic scenario that destroys performance

o  for file systems
–  powers of two may be particularly good or particularly bad for strides

o  often good for cache utilisation
§  minimise number of cache lines used

o  often bad for cache utilisation
§  maximise cache conflicts

–  similarly just-off powers (2n-1, 2n+1)
•  What is “pathological” depends a lot on what you're measuring

–  e.g. caching in underlying hardware

COMP9242 S2/2016 W05

44 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Use a model
•  You need a (mental or explicit) model of the behaviour of your system

–  benchmarking should aim to support or disprove that model
–  need to think about this in selecting data, evaluating results
–  eg: I/O performance dependent on FS layout, caching in controller...
–  cache sizes (HW & SW caches)
–  buffer sizes vs cache size

•  Model should tell you roughly what to expect
–  you should understand that a 2ns cache miss penalty can't be right

COMP9242 S2/2016 W05

45 © 2016 Gernot Heiser. Distributed under CC Attribution License

Example: Memory Copy

L1 cache (32KiB)

Pipelining,
loop overhead

L2 cache (1MiB)

COMP9242 S2/2016 W05

46 © 2016 Gernot Heiser. Distributed under CC Attribution License

How to Measure and Compare Performance
Understand your results!
•  Results you don't understand will almost certainly hide a problem

–  Never publish results you don't understand
o  chances are the reviewers understand them, and will reject the paper
o  maybe worse: someone at the conference does it

§  this will make you look like an idiot

Of course, if this
happens you are an

idiot!

COMP9242 S2/2016 W05

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

Loop and Timing Overhead
Ensure that measuring overhead does not affect results:
•  Cost of accessing clock may be significant
•  Loop overhead may be significant
•  Stub overhead may be significant

Approaches:
•  May iterations in tight loop
•  Measure and eliminate timer overhead
•  Measure and eliminate loop overhead
•  Eliminate effect of any instrumentation code

COMP9242 S2/2016 W05

48 © 2016 Gernot Heiser. Distributed under CC Attribution License

Eliminating Overhead
t0 = time();
for (i=0; i<MAX; i++) {
 asm(nop);
}
t1 = time();
for (i=0; i<MAX; i++) {
 asm(syscall);
}
t2 = time();
printf(“Cost is %dus\n”, (t2-2*t1+t0)*1000000/MAX);

Beware of compiler optimizations!

COMP9242 S2/2016 W05

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

Relative vs Absolute Data
From a real paper (IEEE CCNC’09):
•  No data other than this figure
•  No figure caption
•  Only explanation in text:

–  “The L4 overhead compared to VLX ranges from
a 2x to 20x factor depending on the Linux
system call benchmark”

•  No definition of “overhead factor”
•  No native Linux data

Benchmarking crime: Relative numbers only
•  Makes it impossible to check whether results make sense
•  How hard did they try to get the competitor system to perform?

–  Eg, did they run it with default build parameters (debugging enabled)?

COMP9242 S2/2016 W05

50 © 2016 Gernot Heiser. Distributed under CC Attribution License

Example: Scaling database load

Scales well, right?

Data Range

Looking a bit further:

COMP9242 S2/2016 W05

32-core
machine

Benchmarking crime: Selective data set hiding deficiencies

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

Benchmarking Ethics
•  Do compare with published competitor data, but…

–  Ensure comparable setup
o  Same hardware (or convincing argument why it doesn’t matter)

–  You may be looking at an aspect the competitor didn't focus on
o  eg: they designed for large NUMA, you optimise for embedded

•  Be ultra-careful when benchmarking competitor’s system yourself
–  Are you sure you're running the competitor system optimally?

o  you could have the system mis-configured (eg debugging enabled)
o  Do your results match their (published or else) data?

–  Make sure you understand exactly what is going on!
o  Eg use profiling/tracing to understand source of difference
o  Explain it!

Benchmarking crime: Unethical benchmarking of competitor

•  Lack of care is unethical too!

COMP9242 S2/2016 W05

52 © 2016 Gernot Heiser. Distributed under CC Attribution License

Other Ways to Cheat With Benchmarks
•  Benchmark-specific optimisations

–  Recognise particular benchmark, insert BM-specific hand-optimised code
–  Popular with compiler-writers, rarely an issue in OS area
–  Pioneered for smartphone performance by Samsung

http://bgr.com/2014/03/05/samsung-benchmark-cheating-ends/

•  Benchmarking simulated system
–  … with simulation simplifications matching model assumptions
–  GIGO

•  Uniprocessor benchmarks to “measure” multicore scalability
–  … by running multiple copies of benchmark on different cores

•  CPU-intensive benchmark to “measure” networking performance

I’ve seen all of these BM crimes!

COMP9242 S2/2016 W05

53 © 2016 Gernot Heiser. Distributed under CC Attribution License

What Is “Good”?
•  Easy if there are established and published benchmarks

–  Eg your improved algorithm beats best published Linux data by x%
–  But are you sure that it doesn't lead to worse performance elsewhere?

o  important to run complete benchmark suites
o  think of everything that could be adversely effected, and measure!

•  Tricky if no published standard
–  Can run competitor/incumbent

o  eg run lmbench, kernel compile etc on your modified Linux and
standard Linux

o  but be very careful to avoid running the competitor sub-optimally!
–  Establish performance limits

o  ie compare against optimal scenario
o  establish hardware limits on performance
o  micro-benchmarks or profiling can be highly valuable here!

COMP9242 S2/2016 W05

54 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-World Example: Virtualization Overhead
•  Symbian null-syscall microbenchmark:

–  native: 0.24µs, virtualized (on OKL4): 0.79µs
–  230% overhead

•  ARM11 processor runs at 368 MHz:
–  Native: 0.24µs = 93 cy
–  Virtualized: 0.79µs = 292 cy
–  Overhead: 0.55µs = 199 cy
–  Cache-miss penalty ≈ 20 cy

•  Model:
–  native: 2 mode switches, 0 context switches, 1 x save+restore state
–  virtualized: 4 mode switches, 2 context switches, 3 x save+restore state

Good or
bad?

Expected
overhead?

COMP9242 S2/2016 W05

55 © 2016 Gernot Heiser. Distributed under CC Attribution License

Performance Counters are Your Friends!

Counter Native Virtualized Difference

Branch miss-pred 1 1 0

D-cache miss 0 0 0

I-cache miss 0 1 1

D-µTLB miss 0 0 0

I-µTLB miss 0 0 0

Main-TLB miss 0 0 0

Instructions 30 125 95
D-stall cycles 0 27 27

I-stall cycles 0 45 45

Total Cycles 93 292 199

Good or
bad?

COMP9242 S2/2016 W05

56 © 2016 Gernot Heiser. Distributed under CC Attribution License

More of the Same...

Benchmark Native Virtualized

Context switch [1/s] 615046 444504

Create/close [µs] 11 15

Suspend [10ns] 81 154

Benchmark Native Virtualized Difference Overhead
Context switch [µs] 1.63 2.25 0.62 39%
Create/close [µs] 11 15 4 36%
Suspend [µs] 0.81 1.54 0.73 90%

First step:
improve

representation!

Benchmark Native Virt. Diff [µs] Diff [cy] # sysc Cy/sysc
Context switch [µs] 1.63 2.25 0.62 230 1 230
Create/close [µs] 11 15 4 1472 2 736
Suspend [µs] 0.81 1.54 0.73 269 1 269

Second step:
overheads in
appropriate

units!

Further Analysis shows
guest dis-&enables

IRQs 22 times!

COMP9242 S2/2016 W05

57 © 2016 Gernot Heiser. Distributed under CC Attribution License

Yet Another One...

Note: these are purely user-level operations!

•  What's going on?

Benchmark Native [µs] Virt. [µs] Overhead

TDes16_Num0 1.2900 1.2936 0.28%

TDes16_RadixHex1 0.7110 0.7129 0.27%

TDes16_RadixDecimal2 1.2338 1.2373 0.28%

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28%

TDes16_Num_RadixBinary4 1.0088 1.0116 0.27%

TDesC16_Compare5 0.9621 0.9647 0.27%

TDesC16_CompareF7 1.9392 1.9444 0.27%
TdesC16_MatchF9 1.1060 1.1090 0.27%

Benchmark Native [µs] Virt. [µs] Overhead Per tick

TDes16_Num0 1.2900 1.2936 0.28% 2.8 µs

TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 µs

TDes16_RadixDecimal2 1.2338 1.2373 0.28% 2.8 µs

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 µs

TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 µs

TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 µs

TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 µs
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 µs

Timer interrupt
virtualization
overhead!

Good or
bad?

COMP9242 S2/2016 W05

58 © 2016 Gernot Heiser. Distributed under CC Attribution License

Lessons Learned
•  Ensure stable results

–  repeat for good statistics
–  investigate source of apparent randomness

•  Have a model of what you expect
–  investigate if behaviour is different
–  unexplained effects are likely to indicate problems — don't ignore them!

•  Tools are your friends
–  performance counters
–  simulators
–  traces
–  spreadsheets

Annotated list of benchmarking crimes: http://www.gernot-heiser.org/

COMP9242 S2/2016 W05

