
COMP9242 Advanced OS
S2/2016 W08: Real-Time Systems
@GernotHeiser
Incorporating lectures by Stefan Petters

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

Copyright Notice
These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W08

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time System: Definition

 A real-time system is any information processing system which has
to respond to externally generated input stimuli within a finite and
specified period

•  Correctness depends not only on the logical result (function) but also

the time it was delivered

•  Failure to respond is as bad as delivering the wrong result!

COMP9242 S2/2016 W08 4 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time Systems

COMP9242 S2/2016 W08

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

Types of Real-Time Systems
•  Hard real-time systems
•  Weakly-hard real-time systems
•  Firm real-time systems
•  Soft real-time systems
•  Best-effort systems

•  Real-time systems typically deal with deadlines:
–  A deadline is a time instant by which a response has to be completed
–  A deadline is usually specified as relative to an event

o  The relative deadline is the maximum allowable response time
o  Absolute deadline: event time + relative deadline

COMP9242 S2/2016 W08 6 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hard Real-Time Systems
•  Deadline miss is “catastrophic”

–  safety-critical system: failure results in death, severe injury
–  mission-critical system: failure results in massive financial damage

•  Steep and real “cost” function

Deadline

Triggering
Event

Cost

Time

≈ ≈

COMP9242 S2/2016 W08

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

Eg RT Requirements in Industrial Automation

COMP9242 S2/2016 W08

Source: Siemens

8 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time ≠ Real Fast

System Deadline Single Miss Conseq Ultimate Conseq.
Car engine ignition 2.5 ms Catastrophic Engine damage
Industrial robot 5 ms Recoverable? Machinery damage
Air bag 20 ms Catastrophic Injury or death
Aircraft control 50 ms Recoverable Crash
Industrial process 100 ms Recoverable Lost production, plant/

environment damage
Pacemaker 100 ms Recoverable Death

COMP9242 S2/2016 W08

Challenge of real-time systems: Guaranteeing deadlines

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

Typical Execution-Time Profile

Variance may be orders of magnitude!
•  Data-dependent execution path
•  Micro-architectural features: pipelines, caches

COMP9242 S2/2016 W08 10 © 2016 Gernot Heiser. Distributed under CC Attribution License

Weakly-Hard Real-Time Systems
•  Tolerate a (small) fraction of deadline misses

–  Most feedback control systems (including life-supporting ones!)
o  occasionally missed deadline can be compensated at next event
o  system becomes unstable if too many deadlines are missed

–  Typically integrated with other fault tolerance
o  electro-magnetic interference, other hardware issues

Time

Triggering
Event

Deadline
Cost

COMP9242 S2/2016 W08

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

Firm Real-Time Systems
•  Deadline miss makes computation obsolete

–  Typical examples are forecast systems
o  weather forecast
o  trading systems

•  Cost may be loss of revenue (gain)

Time

Triggering
Event

Deadline
Gain

COMP9242 S2/2016 W08 12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Soft Real-Time Systems
•  Deadline miss is undesired but tolerable

–  Frequently results on quality-of-service (QoS) degradation
o  eg audio, video rendering
o  Steep “cost” function

•  Cost of deadline miss may be abstract

Time Triggering
Event

Deadline Cost

Time

Deadline Cost

Tardiness

Bounded
Tardiness

COMP9242 S2/2016 W08

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

Best-Effort Systems
•  No deadlines, timeliness is not part of required operation
•  In reality, there is at least a nuisance factor to excessive duration

–  response time to user input
•  Again, “cost” may be reduced gain

Time

Triggering
Event

Cost

COMP9242 S2/2016 W08 14 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time Operating System (RTOS)

•  Designed to support real-time operation
–  Fast context switches, fast interrupt handling?
–  Yes, but predictable response time is more important

o  “Real time is not real fast”
–  Analysis of worst-case execution time (WCET)

•  Support for scheduling policies appropriate for real time
•  Classical RTOSes very primitive

–  single-mode execution
–  no memory protection
–  essentially a scheduler with a threads package
–  “real-time executive”
–  inherently cooperative

•  Many modern uses require actual OS technology for isolation
–  generally microkernels
–  QNX, Integrity, VXworks, L4 kernels

COMP9242 S2/2016 W08

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

Approaches to Real Time
•  Clock-driven (cyclic)

–  Periodic scheduling
–  Typical for control loops
–  Fixed order of actions, round-robin execution
–  Statically determined (static schedule) if periods are fixed

o  need to know all execution parameters at system configuration time

•  Event-driven
–  Sporadic scheduling
–  Typical for reactive systems (sensors & actuators)
–  Static or dynamic schedules
–  Analysis requires bounds on event arrivals

COMP9242 S2/2016 W08

Emulation on event-
driven system: treat

clock tick as event

Emulation on clock-
driven system: buffer

event (IRQ) until timer tick

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time System Operation
•  Time-triggered

–  Pre-defined temporal relation of events
–  event is not serviced until its defined release time has arrived

•  Event-triggered
–  timer interrupt
–  asynchronous events

•  Rate-based
–  activities get assigned CPU shares (“rates”)

COMP9242 S2/2016 W08

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

Real-Time Task Model
•  Job: unit of work to be executed

–  … resulting from an event or time trigger
•  Task: set of related jobs which provide some system function

–  A task is a sequence of jobs (typically executing same function)
–  Job i+1 of of a task cannot start until job i is completed/aborted

•  Periodic tasks
–  Time-driven and all relevant characteristics known a priori

o  Task t characterized by period Ti, deadline, Di and execution time Ci
o  Applies to all jobs of task

•  Aperiodic tasks
–  Event driven, characteristics are not known a priori

o  Task t characterized by period Ti, deadline Di and arrival distribution

•  Sporadic tasks
–  Aperiodic but with known minimum inter-arrival time Ti
–  treated similarly to periodic task with period Ti

COMP9242 S2/2016 W08 18 © 2016 Gernot Heiser. Distributed under CC Attribution License

Standard Task Model
C: Worst-case computation time (WCET)
T: Period (periodic) or minimum inter-arrival time (sporadic)
D: Deadline (relative, frequently “implicit deadlines” D=T)
J: Release jitter
P: Priority: higher number means higher priority
B: Worst-case blocking time
R: Worst-case response time
U: Utilisation; U=C/T

D

OS terminology:
•  “task” = thread
•  “job” = event-based

activation of thread

COMP9242 S2/2016 W08

Time

Release
Time C

T

J

19 © 2016 Gernot Heiser. Distributed under CC Attribution License

Task Constraints
•  Deadline constraint: must complete before deadline
•  Resource constraints:

–  Shared (R/O), exclusive (W-X) access
–  Energy
–  Precedence constraints:

t1 � t2: t2 execution cannot start until t1 is finished
–  Fault-tolerance requirements

o  eg redundancy

•  Scheduler’s job to ensure that constraints are met!

COMP9242 S2/2016 W08 20 © 2016 Gernot Heiser. Distributed under CC Attribution License

Scheduling
•  Preemptive vs non-preemptive
•  Static (fixed, off-line) vs dynamic (on-line)
•  Clock-driven vs priority-based

–  clock-driven is static, only works for very simple systems
–  priorities can be static (pre-computed and fixed) or dynamic
–  dynamic priority adjustment can be at task-level (each job has fixed

prio) or job-level (jobs change prios)

COMP9242 S2/2016 W08

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

Clock-Driven (Time-Triggered) Scheduling

•  Typically implemented as time “frames”
adding up to “base rate”

•  Advantages
–  fully deterministic
–  “cyclic executive” is trivial
–  minimal overhead

•  Disadvantage:
–  Big latencies if event rate doesn’t match

base rate (hyper-period)
–  Inflexible

t1 t2 t1 t3 t4 t1 t2 t1 t4

Hyper-period

COMP9242 S2/2016 W08

while (true) {
wait_tick();
job_1();
wait_tick();
job_2();
wait_tick();
job_1();
wait_tick();
job_3();
wait_tick();
job_4();

}

22 © 2016 Gernot Heiser. Distributed under CC Attribution License

Synchronous Distributed RT Systems

Sensor µC

Flight
Computer Actuator µC

Can treat like single system if clocks synchronised?
•  Issue clock drift: can only synchronise within

certain accuracy
Sensor µC

Actuator µC

Time-triggered architecture
Idea: use sparse time:
•  Restrict events to

active interval π
•  Separated by silence interval ∆
•  ∆ allows for clock drift and

communications time

Courtesy Hermann Kopetz

COMP9242 S2/2016 W08

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

Non-Preemptive Scheduling
•  Minimises context-switching overhead

–  Significant cost on modern processors (pipelinies, caches)
•  Easy to analyse timeliness
•  Drawbacks:

–  Larger response times for “important” tasks
–  Reduced utilisation, schedulability

o  In many cases cannot produce schedule despite plenty idle time
–  Can’t re-use slack (eg for best-effort)

•  Only used in very simple systems

COMP9242 S2/2016 W08 24 © 2016 Gernot Heiser. Distributed under CC Attribution License

Fixed-Priority Scheduling (FPS)

•  Real-time priorities are absolute:
–  Scheduler always picks highest-priority job

•  Obviously easy to implement, low overhead
•  Drawbacks: inflexible, sub-optimal

–  Cannot schedule some systems which are schedulable preemptively

•  Note: “Fixed” in the sense that system doesn’t change them
–  OS may support dynamic adjustment
–  Requires on-the-fly (re-)admission control

COMP9242 S2/2016 W08

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

Rate-Monotonic Scheduling (RMS)

•  RMS: Standard approach to fixed priority assignment
–  Ti<Tj � Pi>Pj

–  1/T is the “rate” of a task

•  RMS is optimal for fixed priorities

•  Schedulability test: RMS can schedule n tasks with D=T if
 U ≡ ∑ Ci/Ti ≤ n(21/n-1); limn→∞U = log 2

•  If D<T replace by deadline-monotonic scheduling (DMS):
–  Di<Dj � Pi>Pj

•  DMS is also optimal (but schedulability bound is more complex)

n 1 2 3 4 5 10 ∞
U [%] 100 82.8 78.0 75.7 74.3 71.8 69.3

COMP9242 S2/2016 W08 26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Rate-Monotonic Scheduling (RMS)

RMS schedulability condition is sufficient but not necessary

COMP9242 S2/2016 W08

T D P C U [%]
t3 20 20 3 10 50
t2 40 40 2 10 25
t1 80 80 2 20 25

100
blocked 1 preempted 1

2 2

3 3 3 3

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

FPS Example

P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline Release

COMP9242 S2/2016 W08 28 © 2016 Gernot Heiser. Distributed under CC Attribution License

Earliest Deadline First (EDF)
•  Dynamic scheduling policy
•  Job with closest deadline executes
•  Preemptive EDF with D=T is optimal: n jobs can be scheduled iff

U ≡ ∑ Ci/Ti ≤ 1
o  necessary and sufficient condition
o  no easy test if D≠T

COMP9242 S2/2016 W08

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

FPS vs EDF

t3

t2

t1

t3

t2

t1

COMP9242 S2/2016 W08 30 © 2016 Gernot Heiser. Distributed under CC Attribution License

FPS vs EDF

P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 40 40 37.5 0

89.5

t3

t2

t1

Misses
deadline

COMP9242 S2/2016 W08

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

FPS vs EDF

P C T D U [%] release
t1 1 5 20 20 25 5
t2 2 8 30 20 27 12
t3 3 15 40 40 37.5 0

89.5

t3

t2

t1

Misses
deadline

t3

t2

t1 EDF

schedules

COMP9242 S2/2016 W08 32 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overload: FPS

P C T D U [%]
t1 1 5 20 20 25
t2 2 8 30 20 27
t3 3 15 50 50 30

82

t3

t2

t1

P C T D U [%]
t3 3 5 20 20 25
t2 2 12 20 20 60
t1 1 15 50 50 30

115

Old

Old New

COMP9242 S2/2016 W08

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overload: FPS

t3

t2

t1

t3

t2

t1

Old

New

COMP9242 S2/2016 W08 34 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overload: FPS vs EDF

t3

t2

t1

t3

t2

t1

FPS

EDF

COMP9242 S2/2016 W08

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overload: EDF
t3

t2

t1

t3

t2

t1

COMP9242 S2/2016 W08 36 © 2016 Gernot Heiser. Distributed under CC Attribution License

Overload: FPS vs EDF
On overload, (by definition!) lowest-prio jobs miss deadlines

•  Result is well-defined and -understood for FPS
–  Treats highest-prio task as “most important”
–  … but that may not always be appropriate!
–  Under transient overload may miss deadlines of higher-priority tasks

•  Result is unpredictable (seemingly random) for EDF
–  May result in all tasks missing deadlines!
–  Under constant overload will scale back all tasks
–  No concept of task “importance”
–  “EDF behaves badly under overload”
–  Main reason EDF is unpopular in industry

COMP9242 S2/2016 W08

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why Have Overload?
•  Faults (software, EMI, hardware)

•  Incorrect assumptions about environment

•  Optimistic WCET
–  Computing WCET of non-trivial programs is hard, often infeasible!
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
–  WCET often very unlikely and orders of magnitude worse than “normal”

o  Estimation inaccuracies from caches, pipelines, under-specified
hardware…

o  “notrmal” vs “exceptional” operating conditions
o  requires massive over-provisioning

–  Some systems have effectively unbounded execution time
o  e.g. object tracking

COMP9242 S2/2016 W08 38 © 2016 Gernot Heiser. Distributed under CC Attribution License

WCET Analysis

Program
binary

Control
Flow

Graph

Loop
bounds

Micro-
architecture

model

Integer
linear

equations

Infeasible
path info

WCET ILP solver Analysis
tool

Accurate &
sound model of
pipeline, caches

Scalability!

Pessimism!

COMP9242 S2/2016 W08

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 WCET Analysis [Blackham et al ’11, ‘12]

378
99.5

0 100 200 300

Observed
Computed

Pessimism due to
under-specified

hardware

 µs

WCET presently limited by verification practicalities
•  without regard to verification achieved 50 µs
•  10 µs seem achievable
•  BCET ~ 1µs

COMP9242 S2/2016 W08 40 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why Have Overload?
•  Faults (software, EMI, hardware)
•  Incorrect assumptions about environment
•  Optimistic WCET

–  Computing WCET of non-trivial programs is hard, often infeasible!
–  Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
–  WCET often very unlikely and orders of magnitude worse than “normal”

o  thanks to caches, pipelines, under-specified hardware
o  requires massive over-provisioning

Way out?
•  Need explicit notion of importance: criticality
•  Expresses effect of failure on the system mission

–  Catastrophic, hazardous, major, minor, no effect
•  Orthogonal to scheduling priority!

COMP9242 S2/2016 W08

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

Mixed Criticality

•  A mixed-criticality system supports multiple criticalities concurrently
–  Eg in avionics: consolidation of multiple functionalities
–  Driver: space, weight and power (SWaP) limitations (translates into $$$)

COMP9242 S2/2016 W08

Flight control
Highly critical

OS

Autopilot
Less critical

Certification of
critical components
must not depend on
less critical ones!

Higher criticality certification
•  More costly
•  More pessimistic (eg WCET)

42 © 2016 Gernot Heiser. Distributed under CC Attribution License

DO-178B Design Assurance Levels

Criticality,
development,

assurance
cost

HAZARDOUS

MAJOR
T
h
e
i
m
a
g
e
c
a
n
n
o
t

MINOR

No Effect

CATASTROPHIC

The image cannot be
displayed. Your computer
may not have enough
memory to open the image,
or the image may have been
corrupted. Restart your
computer, and then open the
file again. If the red x still
appears, you may have to
delete the image and then
insert it again.

Avionics
safety

standard

COMP9242 S2/2016 W08

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

Mixed Criticality Example

•  high alone has poor utilisation � gain from consolidation
•  high+medium can be scheduled for med-crit WCET
•  high+medium cannot be scheduled for most conservative WCET
•  Idea: schedule under optimistic assumptions

–  Prioritise high if it overruns its medium WCET

Criticality T Uhigh Umed Ulow Uaverage
High 10 50% 20% 20% 0.05%
Medium 1 N/A 60% 20% 2.5%
Low 100 N/A N/A unknown 10%
Total 50% 80% over 12.55%

COMP9242 S2/2016 W08 44 © 2016 Gernot Heiser. Distributed under CC Attribution License

Mixed Criticality Implementation

•  Whenever running low job, ensure no high job misses deadline

•  Switch to critical mode when not assured
–  Various approaches to determine switch
–  eg. zero slack: high job’s deadline = its WCET

•  Criticality-mode actions:
–  FP: temporarily raise all high jobs’ prios above that of all others

o  Simply preempting present job won’t help!
–  EDF: drop all low deadlines earlier than next high deadline

•  Issues:
–  Treatment of low jobs still rather indiscriminate
–  Need to determine when to switch to normal mode, restore prios
–  Switch must be fast – must be allowed for in schedulability analysis!

COMP9242 S2/2016 W08

45 © 2016 Gernot Heiser. Distributed under CC Attribution License

CPU Bandwidth Reservations

•  Idea: Utilisation U = C/T can be seen as required CPU bandwidth
–  Account time use against reservation C
–  Not runnable when reservation exhausted
–  Replenish every T

•  Can support over-committing
–  Reduce low reservations if high reservations fully used

•  Advantages:
–  Allows dealing with jobs with unknown (or untrusted) deadlines
–  Allows integrating sporadic, asynchronous and soft tasks

•  Modelled as a “server” which hands out time to jobs
–  effectively a simple (FIFO) sub-scheduler

COMP9242 S2/2016 W08 46 © 2016 Gernot Heiser. Distributed under CC Attribution License

Constant Bandwidth Server (CBS)
•  Popular theoretical model suitable for EDF [Abeni & Buttazzo ’98]
•  CBS schedules specified bandwidth

–  Server has (Q,T): budget Q = U × T and period T
–  generates appropriate absolute EDF deadlines on the fly
–  when budget goes to zero, new deadline is generated with new budget

–  Hard reservation: Di+1 = Di + T (rate-limits)
–  Soft reservation: Di+1 = t + T (postpone deadline)

–  Schedulability: ∑ Ui ≤ 1

hard
(2,3)

soft
(2,7)

1 1 2 2 3 3

COMP9242 S2/2016 W08

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

OS Support For Mixed Criticality
•  Spatial isolation: for memory protection, certification independence

•  Temporal isolation: enforce CPU time limits
–  WCET or budget

•  Criticality notion:
–  Get out of jail if high overruns optimistic budget
–  Some form of priority/deadline/budget adjustment
–  Must be fast, as the cost of change must be included in analysis!

•  Support for sharing/communication
–  Why?

COMP9242 S2/2016 W08 48 © 2016 Gernot Heiser. Distributed under CC Attribution License

SMACCMcopter Drone

Flight Control Board

H
W

Se
ns

or
s

ARM
M3 Ra

di
o

M
ot

or
s

SW

Co
nt

ro
l

M
on

ito
r

M
is

si
on

Pl

an

Se
ns

or

Fi
lte

rin
g

eChronos RTOS

CA
N

CAN Bus

Mission Board

SW

H
W

C&C
Radio Camera ARM

A15

Image
Processing

Co
m

m
an

d
&

Co

nt
ro

l

Linux VM CA
N

U
SB

tr
us

te
d

un
tr

us
te

d

COMP9242 S2/2016 W08

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

SMACCMcopter Mission Computer Architecture

UART
Rx

UART
Rdy

UART
in

200Hz

UART
out

200Hz

Server

200Hz

CAN
Rx

CAN
Tx

UART
Tx

CAN
200Hz

Server
Event-

triggered
Task

Periodic
Task

Critical
Section

CAN
Rx

CAN
Tx

CAN
200Hz

Gateway
200Hz Lx VM

camera
20Hz

COMP9242 S2/2016 W08 50 © 2016 Gernot Heiser. Distributed under CC Attribution License

Sharing: Critical Sections as Servers

COMP9242 S2/2016 W08

Server2

Client2

Client1

Server1

serv_2() {
 …
 while (1) {

 wait(eap_rq);
 /* critical section */
 signal(eap_ry);
 }

}

serv_1() {
 …
 wait(ep);
 while (1) {
 /* critical section */
 Reply&wayt(ep);

 }
}

client() {
 while (1) {
 …

 call(ep);
 …

 signal(eap_ry);
 …

 wait(eap_rq);
 }

}

Hoare-style monitor

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

Problem: Priority Inversion

•  High-priority job is blocked for a long time by a low-prio job
•  Long wait chain: t1→t4→t3→t2

•  Worst-case blocking time of t1 bounded only by WCET of C2+C3+C4
•  Must find a way to do better!

t4

t3

t2

t1 1 Q Q 1

2

3 3 V V

4 4 V Q Q

Preempted

Blocked!

COMP9242 S2/2016 W08

Critical
Section

52 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Inheritance (“Helping”)
t4

t3

t2

t1 1 Q Q 1

2

3 3 V V

4 4 V Q

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

COMP9242 S2/2016 W08

53 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Inheritance

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

COMP9242 S2/2016 W08 54 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Inheritance

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

t5

t4

t3

t2

t1

4 4 Q

3 3

5 5 V

1 Q 5 1 4

2 V 2 5 5 5

Transitive
Inheritance

COMP9242 S2/2016 W08

55 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Inheritance

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

t5

t4

t3

t2

t1

4 4 Q

3 3

5 5 V

1 Q 5 1 4

2 V 2 5 5 5

Deadlock!

?

COMP9242 S2/2016 W08 56 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Inheritance Protocol (PIP)

•  If t1 blocks on a resource held by t2, and P1>P2, then
–  t2 is temporarily given priority P1
–  when tt releases the resource, its priority reverts to P2

•  Transitive inheritance
–  potentially long blocking chains
–  potential for deadlock

•  Frequently blocks much longer than necessary

Priority Inheritance:
•  Easy to use
•  Potential deadlocks
•  Complex to implement
•  Bad worst-case blocking times

COMP9242 S2/2016 W08

57 © 2016 Gernot Heiser. Distributed under CC Attribution License

Priority Ceiling Protocol (PCP)
•  Purpose: ensure job can block at most once on a resource

–  avoid transitivity, potential for deadlocks
•  Idea: associate a ceiling priority with each resource

–  equal to the highest priority of jobs that may use the resource
–  when job accesses its resource, immediately bump prio to ceiling!

•  Also called:
–  immediate ceiling priority protocol (ICPP)
–  ceiling priority protocol (CPP)
–  stack-based priority-ceiling protocol

o  because it allows running all jobs on the same stack (i.e. thread)
•  Improved version of the original ceiling priority protocol (OCPP)

–  … which is also called the basic priority ceiling protocol
–  Requires global tracking of ceiling prios

COMP9242 S2/2016 W08 58 © 2016 Gernot Heiser. Distributed under CC Attribution License

(Immediate) Priority Ceiling Protocol

t4

t3

t2

t1 1 4 1

2

3 3 4

4 4 4 4

t4

t3

t2

t1 1 Q 4 1

2

3 3 V V

4 4 V Q

PIP

PCP

COMP9242 S2/2016 W08

59 © 2016 Gernot Heiser. Distributed under CC Attribution License

IPCP Implementation
•  Each task must declare all resources at admission time

–  System must maintain list of tasks associated with resource
–  Priority ceiling derived from this list
–  For EDF the “ceiling” is the floor of relative deadlines

•  seL4: “resource declaration” is implicit in capability distribution
–  Using critical section requires cap for server’s request endpoint

COMP9242 S2/2016 W08

Server

Prio PS Client2

Prio P2

Client1

Prio P1

IPCP:
PS = max (P1, P2) + 1

Priority Ceiling:
•  Requires correct

priority configuration
•  Deadlock-free
•  Easy to implement
•  Good worst-case

blocking times

60 © 2016 Gernot Heiser. Distributed under CC Attribution License

Problem With Servers As Threads

Server

Client1

Client2

Running

Running

Shared server has
highest prio, runs as
long as it has work

Has used no time,
Keeps running

Can effectively DoS
same-prio threads!

COMP9242 S2/2016 W08

61 © 2016 Gernot Heiser. Distributed under CC Attribution License

Classical Thread Attributes

•  Priority
•  Time slice

New Thread Attributes

Separate Scheduling Properties from Thread

•  Priority
•  Scheduling context capability

Not
runnable

if null

Not
runnable

if null

Scheduling context object
•  T: period
•  C: budget (≤ T)

C = 2
T = 3

C = 250
T = 1000

Upper bound,
not reservation!

COMP9242 S2/2016 W08

SchedControl capability
conveys right to assign
budgets (i.e. perform
admission control)

Not yet in
mainline!

62 © 2016 Gernot Heiser. Distributed under CC Attribution License

Shared Server with Scheduling Contexts

Server

Running

Running

Server runs on
client’s scheduling

context

Client2

Client1

Client is
charged for

server’s time

Budget expiry
during server
execution?

COMP9242 S2/2016 W08

63 © 2016 Gernot Heiser. Distributed under CC Attribution License

Budget Expiry Options
•  Multi-threaded servers (COMPOSITE [Parmer ‘10])

–  Model allows this
–  Forcing all servers to be thread-safe is policy !

•  Bandwidth inheritance with “helping” (Fiasco [Steinberg ‘10])
–  Ugly dependency chains !
–  Wrong thread charged for recovery cost !

•  Use timeout exceptions to trigger one of several possible actions:
–  Provide emergency budget
–  Cancel operation & roll-back server
–  Change criticality
–  Implement priority inheritance (if you must…)

COMP9242 S2/2016 W08

