
COMP9242 Advanced OS
S2/2016 W09: Microkernel Design & Implementation
@GernotHeiser

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W09

Copyright Notice

3 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Microkernel Principles: Minimality

•  Advantages of resulting small kernel:
–  Easy to implement, port?
–  Easier to optimise
–  Hopefully enables a minimal trusted computing base (TCB)
–  Easier debug, maybe even prove correct?

•  Challenges:
–  API design: generality despite small code base
–  Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack
surface, fewer
failure modes

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [SOSP’95]

4 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Kernel provides no services, only mechanisms
•  Kernel is policy-free

–  Policies limit (good for 90% of cases, disastrous for some)
–  “General” policies lead to bloat, inefficiency

COMP9242 S2/2016 W09

Consequence : User-level Services

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
Server

Device
Driver

Syscall

IPC

Kernel
Mode

User
Mode

IPC
performance

is critical!

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach
[µs]

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach

L4

[µs]

COMP9242 S2/2016 W09

1993 “Microkernel” IPC Performance

115 µs

5 µs

i486 @
50 MHz

Culprit:
Cache
footprint
[SOSP’95]

raw copy

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2013 i7 Haswell (32-bit) 3,400 301 0.09
seL4 2013 ARM11 532 188 0.35
seL4 2013 Cortex A9 1,000 316 0.32

COMP9242 S2/2016 W09

L4 IPC Performance over 20 Years

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

Name Architecture C/C++ asm total kSLOC
Original i486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

COMP9242 S2/2016 W09

Minimality: Source Code Size

8 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

L4 Family Tree

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

Assember

C++

C

Asm+C

C C

Portable

Caps

Verified

C++

9 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

L4 Deployments – in the Billions

10 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Original L4 Design and Implementation
Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

Synchronous IPC
Rich message structure, arbitrary out-of-line messages

Zero-copy register messages
User-mode page-fault handlers

Threads as IPC destinations
IPC timeouts

Hierarchical IPC control
User-mode device drivers

Process hierarchy
Recursive address-space construction

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault

handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

Objective: Minimise cache footprint and TLB misses

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

Design

COMP9242 S2/2016 W09

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Fundamentally, the microkernel must abstract
–  Physical memory: Address spaces
–  CPU: Threads
–  Interrupts/Exceptions

•  Unfettered access to any of these bypasses security
–  No further abstraction needed for devices

o  memory-mapping device registers and interrupt abstraction suffices
o …but some generalised memory abstraction needed for I/O space

•  Above isolates execution units, hence microkernel must also provide
–  Communication (traditionally referred to as IPC)
–  Synchronization

COMP9242 S2/2016 W09

What Mechanisms?

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Kernel provides empty address-space “shell”
–  page faults forwarded to server
–  server provides mapping
–  AS layout is server policy (not kernel)

•  Cost:
–  1 round-trip IPC, plus mapping operation

o  mapping may be side effect of IPC
o  kernel may expose data structure

•  Kernel mechanism: forwarding page-fault exception
•  “External pagers” first appeared in Mach [Rashid et al, ’88]

–  … but were optional (and slow) – in L4 there’s no alternative

COMP9242 S2/2016 W09

Memory: Policy-Free Address-Space
Management

Text Data BSS Stack libc File

Page-fault
server

Map
Exception

Stack Stack

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Minimum address-space abstraction: empty slots for page mappings
–  paging server can fill with mappings

o  virtual address → physical address + permissions
•  Can be

–  page-table–like: array under full user control (traditional L4)
–  TLB-like: cache for mappings which may vanish (OKL4 Microvisor)

o  Less predictable performance – real-time?
•  Main design decision: is source of a mapping a page or a frame?

–  Frame: hardware-like
–  Page: recursive address spaces (original L4 model)

COMP9242 S2/2016 W09

Abstracting Memory: Address Spaces

Map’d
Page

Unm.
Page

15 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Traditional L4: Recursive Address Spaces

Map Grant
Unmap

X

Initial Address Space

Physical Memory

Mappings are
page → page Magic initial AS to

anchor recursion
(map of PM)

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

API complexity: Recursive address-space model
•  Conceptually elegant

–  trivially supports virtualization
•  Drawback: Complex mapping database

–  Kernel needs to track mapping relationship
o  Tear down dependent mappings on unmap

–  Mapping database problems:
o  accounts for 1/4–1/2 of kernel memory use
o  SMP coherence is performance bottleneck

•  NICTA’s L4-embedded, OKL4 removed MDB
–  Map frames rather than pages

o  need separate abstraction for frames / physical memory
o  subsystems no longer virtualizable (even in OKL4 cap model)

•  Properly addressed by seL4’s capability-based model
–  But have cap derivation tree, subject of on-going research

COMP9242 S2/2016 W09

Recursive Address Space Experience

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Can abstract as:
–  kernel-scheduled threads

o  Forces (scheduling) policy into the kernel
–  vCPUs or scheduler activations

o  This essentially virtualizes the timer interrupt through upcall
§  Scheduler activations also upcall for exceptions, blocking etc

o  Multiple vCPUs only for real multiprocessing
•  Threads can be tied to address space or “migrating”

–  Implementation-wise not much of a difference
–  Both need a stack in either domain
–  … but migrating thread requires kernel to provide/cache stacks

•  Tight integration/interdependence with IPC model!

COMP9242 S2/2016 W09

Abstracting Execution

IPC Cross-
AS call

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Can abstract as:
–  Upcall to interrupt/exception handler

o  hardware-like diversion of execution
o  need to save enough state to continue interrupted execution

–  IPC message to handler from magic “hardware thread”
o  OS-like
o  needs separate handler thread ready to receive

•  Page fault traditionally special-cased (separate handler)
–  IPC message to page-fault server rather than exception handler
–  seL4 only has one exception handler endpoint

COMP9242 S2/2016 W09

Abstracting Interrupts and Exceptions

H/W
“Thread”

Handler
Thread

IPC Exception

19 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

L4 IPC

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg)
 …....

Kernel
copy

Rendezvous
model

Kernel executes in sender’s context
•  copies memory data directly to

receiver (single-copy)
•  leaves message registers unchanged

during context switch (zero copy)

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  IPC page faults are nested exceptions ⇒ In-kernel concurrency
–  L4 executes with interrupts disabled for performance, no concurrency

•  Must invoke untrusted usermode page-fault handlers
–  potential for DOSing other thread

•  Timeouts to avoid DOS attacks
–  complexity

COMP9242 S2/2016 W09

“Long” IPC

Receiver address space

Sender address space

Kernel copy
Page fault!

Why have long IPC?
•  POSIX-style APIs

write (fd, buf, nbytes)
•  Usually prefer shared buffers

LONG IPC

ABANDONED

21 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Timeouts

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg) …....

Kernel
copy

Limit IPC
blocking

time

Thread1
Running Blocked

Rcv(NIL_THRD, delay)

 …....
Timed
wait

IPC Timeouts

ABANDONED

in seL4, OKL4

•  No theory/heuristics for
determining timeouts

•  Typically server reply
with zero T.O., else ∞

•  Added complexity
•  Can do timed wait with

timer syscall

22 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Synchronous IPC Issues

Thread1
Running Blocked

Initiate_IO(…,…)

IO_Wait(…,…)
Not

generally
possible

Worker_Th
Running Blocked

IO_Th
Blocked Running

Unblock (IO_Th) Call (IO,msg) …....

Sync(Worker_Th)

Sync(IO_Th) …....

•  Sync IPC forces multi-threaded code or select()!
•  Also poor choice for multi-core

23 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Notifications

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (…)

 …... w = Wait (…)

 ….... Signal (Thr_2, …)

Signal (Thr_2, …) •  Delivers few bits (destructively)
•  Logically array of binary

semaphores
•  Maps well to interrupts, exceptions

multicore, …

Server
Client Driver

IPC Notific. Thread can wait for
IPC and notifications
concurrently

IPC comple-

mented with

notifications

24 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Is IPC Redundant?
Client

Running Blocked
Server

Blocked Running

Call (dest, msg) ReplyWait (src, msg)

 …....

Control
transfer

2 communication
mechanisms:
Minimality
violation?

IPC is a user-controlled context switch
•  only makes sense intra-core
•  fast control transfer
•  mimics migrating threads
•  enables scheduling context donation

Ø  useful for real-time systems

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Direct: Queue senders/messages at receiver
–  Need unique thread IDs
–  Kernel guarantees identity of sender

o  useful for authentication

•  Indirect: Mailbox/port object

–  Just a user-level handle for the
kernel-level queue

–  Extra object type – extra weight?
–  Communication partners are anonymous

o  Need separate mechanism
for authentication

COMP9242 S2/2016 W09

Direct vs Indirect IPC Adressing

Receiver

Sender

Sender

Port

Sender

Sender

Port

Receiver

Receiver

26 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

IPC Destination Naming

IPC

Client Server

Client Server

Load
balancer Workers

Client Server

All IPCs
duplicated!

Original L4
addressed IPC
to threads

Client must do
load balancing?

RPC reply from
wrong thread!

•  Inefficient designs
•  Poor information hiding
•  Covert channels [Shapiro ‘02]

Interpose
transparently? Access

monitor

Thread IDs

replaced by

IPC “endpoints”

(ports)

27 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Endpoints and Notifications

IPC

Client Server

Send

Client Server

Rcv
Endpoint

•  Endpoint queues senders/receivers
•  Does not buffer messages

0x01

0x10

0x30
0x00 0x01 0x11 0x31 •  Notification accumulates bits

•  Does not buffer

Notification

28 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Other Design Issues

IPC

Chief

Clan

IPC outside clan
re-directs to chief

Create

Hierarchical
resource
management

•  Inflexible, clumsy,
inefficient hierarchies!

•  Fundamental problem:
no rights delegation

Hierarchies replaced

by delegatable cap-

based access control

IPC Control: “Clans &
Chiefs”

Process Hierarchy

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

Implementation

COMP9242 S2/2016 W09

30 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Virtual TCB Array

TCB TCB VM

Thread ID

Fast TCB &
stack lookup

TC
B

pr

op
er

K
er

ne
l

st
ac

k
Trades cache for TLB footprint
and virtual address space

Not worthwhile on
modern processors!

31 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Process Kernel: Per-Thread Kernel Stack

TCB
TC

B

pr
op

er

K
er

ne
l

st
ac

k

Get own
TCB base

by masking
stack pointer

•  Not worthwhile on
modern processors!

•  Stacks can dominate
kernel memory use!

•  Reduces TLB footprint at cost
of cache and kernel memory

•  Easier to deal with blocking

32 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Scheduler Optimisation Tricks: Lazy Scheduling

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {

 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);

 }
 }
 return idleThread;
}

•  Frequent blocking/unblocking
in IPC-based systems

•  Many ready-queue
manipulations

Idea: leave blocked
threads in ready
queue, scheduler

cleans up

Call()

Client
Reply_Wait()

Server

BLOCKED BLOCKED

Problem: Unbounded
scheduler execution time!

33 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Scheduler Optimisation Tricks: Lazy Scheduling

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {

 if (thread=head(runQueue[prio]))
 return thread;
 else
 schedDequeue(thread);

 }
 }
 return idleThread;
}

Call()

Client
Reply_Wait()

Server

Idea: Lazy on
unblocking instead

on blocking

Only current thread
needs fixing up at
preemtion time!

BLOCKED

•  Frequent blocking/unblocking
in IPC-based systems

•  Many ready-queue
manipulations

34 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Scheduler Optimisation: Direct Process Switch

•  Sender was running ⇒ had highest prio
•  If receiver prio ≥ sender prio ⇒ run receiver

Idea: Don’t invoke
scheduler if you know

who’ll be chosen

Call()

Client
Reply_Wait()

Server

Implication: Time slice
donation – receiver runs
on sender’s time slice

•  Arguably, sender should donate back if it’s
a server replying to a Call()

•  Hence, always donate on Reply_Wait()

Problem:
•  Accounting (RT systems)
•  Policy

•  Frequent context switches in
IPC-based systems

•  Many scheduler invocations

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Kernel runs with interrupts disabled
–  No concurrency control ⇒ simpler kernel

o  Easier reasoning about correctness
o  Better average-case performance

•  How about long-running system calls?
–  Use strategic premption points
–  (Original) Fiasco has fully preemptible kernel

o  Like commercial microkernels (QNX, Green Hills INTEGRITY)

COMP9242 S2/2016 W09

Speaking of Real Time…

while (!done) {
 process_stuff();
 PSW.IRQ_disable=1;
 PSW.IRQ_disable=0;
}

Limited
concurrency

in kernel!

Lots of
concurrency

in kernel!

36 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Incremental Consistency

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

No concurrency in (single-core) kernel!

•  Consistency
•  Restartability
•  Progress

Good fit for
event kernel!

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

Actions:
1.  Disable EP cap (prevent new messages)
2.  while message queue not empty do
3.  remove head of queue (abort message)
4.  check for pending interrupts
5.  done

COMP9242 S2/2016 W09

Example: Destroying IPC Endpoint

Client1
Server

Client2

IPC
endpoint

Message
queue

38 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Difficult Example: Revoking IPC “Badge”

State to keep across preemptions
•  Badge being removed
•  Point in queue where preempted
•  End of queue at time operation started
•  Thread performing revocation

Need to squeeze into endpoint data structure!

Client1
Server

Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

39 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

IPC Implementation
Simple send (e.g. as part of RPC-like “call”):

1)  Prologue
§  Save minimal state, get args

2)  Identify destination
§  Cap lookup;

get endpoint; check queue
3)  Get receiver TCB

§  Check receiver can still run
§  Check receiver priority is ≥ ours

4)  Mark sender blocked and enqueue
§  Create reply cap & insert in slot

5)  Switch to receiver
§  Leave message registers untouched
§  Nuke reply cap

6)  Epilogue (restore & return)

Running Wait to receive

Running Wait to receive

Wait to receive Running

185 cycles
on ARM11!

“Direct process
switch” without

scheduler invocation!

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Reduces branch-prediction footprint
•  Avoids mispredicts, stalls & flushes
•  Uses ARM instruction predication
•  But: increases slow-path latency

–  should be minimal compared to basic slow-path cost

COMP9242 S2/2016 W09

Fastpath Coding Tricks

slow = cap_get_capType(en_c) != cap_endpoint_cap ||
!cap_endpoint_cap_get_capCanSend(en_c);

if (slow) enter_slow_path();

Common case: 0

Common case: 1

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  FPU context tends to be heavyweight
–  eg 512 bytes FPU state on x86

•  Only few apps use FPU (and those don’t do many syscalls)
–  saving and restoring FPU state on every context switch is wastive!

COMP9242 S2/2016 W09

Lazy FPU Switch

Kernel

current FPU_owner FPU_locked Saved
FPU state

finit

currentcurrent FPU_ownerFPU_owner FPU_locked Saved
FPU state

Saved
FPU state

fld

fcos
fst

finit
fld

sosh()
Standard trick,

not only for
microkernels!

42 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Cache-friendly data structure layout, especially TCBs
–  data likely used together is on same cache line
–  helps best-case and worst-case performance

•  Kernel mappings locked in TLB (using superpages)
–  helps worst-case performance
–  helps establish invariants: page table never walked when in kernel

COMP9242 S2/2016 W09

Other implementation tricks

Avoid RAM
like the
plague!

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Programming languages:
–  original i496 kernel [’95]: all assembler
–  UNSW MIPS and Alpha kernels [’96,’98]: half assembler, half C
–  Fiasco [TUD ’98], Pistachio [’02]: C++ with assembler “fast path”
–  seL4 [‘09], OKL4 [‘09]: all C

•  Lessons:
–  C++ sux: code bloat, no real benefit
–  Changing calling conventions not worthwhile

o  Conversion cost in library stubs and when entering C in kernel
o  Reduced compiler optimization

–  Assembler unnecessary for performance
o  Can write C so compiler will produce near-optimal code
o  C entry from assembler cheap if calling conventions maintained
o  seL4 performance with C-only pastpath as good as other L4 kernels

[Blackham & Heiser ‘12]

COMP9242 S2/2016 W09

Other Lessons Learned from 2nd Generation

C++ ABANDONED

Assembler coding

ABANDONED

44 © 2016 Gernot Heiser. Distributed under CC Attribution License

Lessons and Principles

COMP9242 S2/2016 W09

45 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W09

Original L4 Design and Implementation
Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

Synchronous IPC
Rich message structure, arbitrary out-of-line messages

Zero-copy register messages
User-mode page-fault handlers

Threads as IPC destinations
IPC timeouts

Hierarchical IPC control
User-mode device drivers

Process hierarchy
Recursive address-space construction

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

46 © 2016 Gernot Heiser. Distributed under CC Attribution License

Original L4 design had two major shortcomings

1.  Insufficient/impractical resource control
–  Poor/non-existent control over kernel memory use
–  Inflexible process hierarchies (policy!)
–  Arbitrary limits on number of address spaces and threads (policy!)
–  Poor information hiding (IPC addressed to threads)
–  Insufficient mechanisms for authority delegation

2.  Over-optimised IPC abstraction
IPC mangles:

o  Communication
o  Synchronisation
o  Memory management – sending mappings
o  Scheduling – time-slice donation

COMP9242 S2/2016 W09

Reflecting on Changes

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

Design Principles

•  Fully delegatable access control
•  All resource management is subject to user-defined policies

–  Applies to kernel resources too!
•  Suitable for formal verification

–  Requires small size, avoid complex constructs
•  Performance on par with best-performing L4 kernels

–  Prerequisite for real-world deployment!
•  Suitability for real-time use

–  Important for safety-critical systems

COMP9242 S2/2016 W09

48 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Verification scales poorly ⇒ small size (LOC and API)
•  Conceptual complexity hurts ⇒ KISS
•  Global invariants are expensive ⇒ KISS
•  Concurrency difficult to reason about ⇒ single-threaded kernel

Largely in line with traditional L4 approach!

Main restriction presently is not passing pointers to stack variables

COMP9242 S2/2016 W09

(Informal) Requirements for Formal Verification

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

Fundamental Abstractions

•  Capabilities as opaque names and access tokens
–  All kernel operations are cap invokations (except Yield())

•  IPC:
–  Synchronous (blocking) message passing
–  Endpoint objects implemented as message queues

o  Send: get receiver TCB from endpoint or enqueue self
o  Receive: obtain sender’s TCB from endpoint or enqueue self

•  Notifications:
–  Arrays of binary semaphores for lightweight synchronisation

•  Other APIs:
–  Send()/Receive() to/from virtual kernel endpoint
–  Can interpose operations by substituting actual endpoint

•  Fully user-controlled memory management

COMP9242 S2/2016 W09

seL4’s main
conceptual

novelty!

50 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remember: Memory Management

COMP9242 S2/2016 W09

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager

RM
Data

Resource Manager

RM
Data

Addr
Space

Addr
Space

Addr
Space

Addr
Space

RM

RM
Data

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

Delegation
can be
revoked

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remaining Conceptual Issues

Time management
•  Present scheduling model is ad-hoc and insufficient

–  fixed-prio round-robin forces policy
–  not sufficient for some classes of real-time systems (time triggered)
–  no real support for hierarchical real-time scheduling
–  lack of an elegant resource management model for time

•  Scheduling contexts de-couple scheduling from IPC cleanly
–  Passive servers transfer scheduling-context

o  No scheduling needed
o  Migrating-threads model (without the stack allocation policy)
o  No artificial concurrency

–  Active servers have own scheduling context
o  Independently scheduled with well-defined effect

COMP9242 S2/2016 W09

52 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remaining Conceptual Issues

Multicore Model:
•  What is the right kernel design that scales up and down
•  What is the role of IPC in multicore

–  Does cross-core IPC make any sense?
–  How does the RT scheduling model work on multicore?

COMP9242 S2/2016 W09

In progress –
details Week 12

53 © 2016 Gernot Heiser. Distributed under CC Attribution License

Other Open Questions

•  Time and space overhead of mapping operations
–  Model is not really tested on truly dynamic systems
–  Presently no support for superpages or batching mappings
–  Needs thorough, in-depth evaluation and playing with tradeoffs

•  Interrupt handling model
–  Presently handler needs two syscalls

o  Acknowledging interrupt
o  Waiting for next interrupt

–  Keeps wait() implementation fast and simple, but may not be optimal
–  Needs thorough, in-depth evaluation and playing with tradeoffs

COMP9242 S2/2016 W09

Summer/thesis
topics!

54 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Minimality is excellent driver of design decisions
–  L4 kernels have become simpler over time
–  Policy-mechanism separation (user-mode page-fault handlers)
–  Device drivers really belong to user level
–  Minimality is key enabler for formal verification!

•  IPC speed still matters
–  But not everywhere, premature optimisation is wasteful
–  Compilers have got so much better
–  Verification does not compromise performance
–  Verification invariants can help improve speed! [Shi, OOPSLA’13]

•  Capabilities are the way to go

COMP9242 S2/2016 W09

Lessons From 20 Years of L4

•  Details changed, but principles remained
•  Microkernels rock! (If done right!)

