
COMP9242 Advanced OS
S2/2016 W12: Local Systems Research
@GernotHeiser

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W12

Copyright Notice

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

Present Systems are NOT Trustworthy!

Yet they are expensive:
•  $1,000 per line of code for
 “high-assurance” software!

COMP9242 S2/2016 W12 4 © 2016 Gernot Heiser. Distributed under CC Attribution License

Trustworthy Systems Vision

We will change the practice of designing and
implementing critical systems, using rigorous
approaches to achieve true trustworthiness

Hard
guarantees on
safety/security/

reliability

Suitable for
real-world
systems

COMP9242 S2/2016 W12

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

Isolation is Key!

COMP9242 S2/2016 W12

 Processor

 Linux
 Server

Legacy App.
Legacy App.

 Legacy
 Apps

 Trusted
 Service

 Sensitive
 App

Identify, minimise and
isolate critical
components! Critical,

trusted

Mechanisms
for enforcing

isolation

 Trustworthy Microkernel – seL4

Complex,
untrusted
Complex,
untrusted

 Policy Layer
General-
purpose

System-
specific,
simple!

Defines
access
rights

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

Trustworthy Systems Agenda

1.  Dependable microkernel (seL4) as a rock-solid base
–  Formal specification of functionality
–  Proof of functional correctness of implementation
–  Proof of safety/security properties

2.  Lift microkernel guarantees
to whole system
–  Use kernel correctness and integrity

to guarantee critical functionality
–  Ensure correctness of balance of

trusted computing base
–  Prove dependability properties of

complete system
o  despite 99 % of code untrusted!

COMP9242 S2/2016 W12

DONE

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

Requirements for Trustworthy Systems

Safety Security

Functional
Correctness

Availability

Timeliness

Termination

Confident. /
Info Flow

Integrity

Isolation!

COMP9242 S2/2016 W12 8 © 2016 Gernot Heiser. Distributed under CC Attribution License

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation
properties

[ITP’11, S&P’13]

Translation
correctness

[PLDI’13]

Exclusions (at present):
•  Initialisation
•  Privileged state & caches
•  Multicore
•  Covert timing channels

Worst-case
execution time

[RTSS’11, RTAS’16]

Provable Security and Safety

COMP9242 S2/2016 W12

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

Proving Functional Correctness

COMP9242 S2/2016 W12

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f Refinement: All

possible
implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

117,000 lop

50,000 lop

10 © 2016 Gernot Heiser. Distributed under CC Attribution License

Pr
oo

f
Pr

oo
f

Proving Functional Correctness

Abstract
Model

Executable
Model

C Imple-
mentation

COMP9242 S2/2016 W12

11 © 2016 Gernot Heiser. Distributed under CC Attribution License
COMP9242

S2/2016 W12

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Formal Verification Summary

Kinds of properties proved
•  Behaviour of C code is fully captured by abstract model
•  Behaviour of C code is fully captured by executable model
•  Kernel never fails, behaviour is always well-defined
•  assertions never fail
•  will never de-reference null pointer
•  cannot be subverted by misformed input

•  All syscalls terminate, reclaiming memory is safe, ...
•  Well typed references, aligned objects, kernel always mapped…
•  Access control is decidable

Did you find bugs?
•  During (very shallow) testing: 16
•  During verification: 460
•  160 in C, ~150 in design, ~150 in spec

COMP9242 S2/2016 W12

Can prove further
properties on
abstract level!

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

Isolation Goes Deep

COMP9242 S2/2016 W12

 High Low

TCBs Caps

PTs

TCBs Caps

PTs

Kernel data
partitioned

like user data

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

Multicore

COMP9242 S2/2016 W12

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

Microkernel vs Linux Execution

10s of ms 10s of ms

10s of ms

App

Kernel Linux

10s of ms 10s of ms

10s of ms

App

Server

Microkernel

Kernel

0.1µs

COMP9242 S2/2016 W12 16 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Line Migration Latencies

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

 Main memory

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

Core
HW
context

HW
context

 L1 cache

10–20
cycles

1,000–10,000
cycles

Data transfer takes
much longer than
code execution!

COMP9242 S2/2016 W12

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cost of Locking

COMP9242 S2/2016 W12

Locks have a cost –
significant in a fast microkernel!

 100

 200

 300

 400

 500

 600

no
ne

C
LH

fin
e

R
T
M

C
yc

le
s

4
2

4

4
3

6

5
0

8

4
9

6

X86 (Haswell)

n
o
n
e

C
L
H

fi
n
e

3
1

6

3
9

0

5
4

8

ARM A9

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

Multicore Design: Clustered Multikernel

COMP9242 S2/2016 W12

Core
HW
context

HW
context

 L1 cache

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

 Main memory

Core
HW
context

HW
context

 L1 cache

 L2/L3 cache

Core
HW
context

HW
context

 L1 cache

 Kernel

User
thread

User
thread

User
thread

User
thread

 Kernel

User
thread

User
thread

User
thread

User
thread

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

Virtu-
al
CPU

 NUMA-aware Linux

19 © 2016 Gernot Heiser. Distributed under CC Attribution License

Big-Lock Scalability

COMP9242 S2/2016 W12

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40

S
p

e
e

d
u

p

Cores

500
1000
2000
4000
8000

Cycles between
system calls

Very high

Extreme

Un-
realistic

Size of
cluster

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hardware Faults

COMP9242 S2/2016 W12

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

How About Hardware Faults?

•  Single-event upset: Random (transient) bit-flips due to cosmic rays,
natural radioactivity

•  May break “proved” isolation
Courtesy Yanyan Shen

COMP9242 S2/2016 W12 22 © 2016 Gernot Heiser. Distributed under CC Attribution License

Redundant Execution

CPU 0

seL4

Secure
Component Other

Memory Image

CPU 1

seL4

Secure
Component Other

Memory Image

I/O Dev

CMP

Idea: fault-tolerance through redundancy
•  Compare & vote at kernel entry/exit
•  Work in progress (Yanyan’s PhD)

COMP9242 S2/2016 W12

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

Side Channels

COMP9242 S2/2016 W12 24 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hardware

Hypervisor

Attacker
OS

VM1

Target
OS

VM2

Side Channel Attacks

Information
leakage through

shared hardware,
e.g. caches

E.g.
encryption

keys

COMP9242 S2/2016 W12

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

Types of Side Channels

Storage Channels

•  Use some shared state
•  Could be inside the OS/

hypervisor
–  Eg existence of a file
–  Eg accessibility of an object

Timing Channels

•  Observe timing of events
•  Eg memory access latency

–  Senses victim’s cache
footprint

seL4: The world’s
only OS proved free of

storage channels!

How about
timing

channels?

COMP9242 S2/2016 W12 26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Timing Side-Channel Attack in Public Cloud

 High
(Victim)

 Low
(Attacker)

L3 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

Core Core

Side Channel

COMP9242 S2/2016 W12

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

Time slots

C
ac

he
 s

et
s

pr
ob

ed

C
ac

he

m
is

se
s

Analysing Memory Access Latency

Trace reveals
encryption key

COMP9242 S2/2016 W12 28 © 2016 Gernot Heiser. Distributed under CC Attribution License

Mitigation: Partition Cache (Colouring)

 High
(Victim)

 Low
(Attacker)

L3 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

Core Core

Side Channel

COMP9242 S2/2016 W12

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

Colouring the System is Easy

Global Resource Manager

RAM
I+D

GR
M

I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Partitions
restricted to

coloured memory

System permanently
coloured

COMP9242 S2/2016 W12 30 © 2016 Gernot Heiser. Distributed under CC Attribution License

Time slots

C
ac

he
 s

et
s

pr
ob

ed

C
ac

he

m
is

se
s

Analysing Memory Access Latency
Coloured System

Trace reveals
No information

COMP9242 S2/2016 W12

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

Timing Channel Through Kernel

L3 Cache
 Kernel image

 High (Trojan)

int count = 0;
for(; ;) {

wait_for_new_system_tick();
 if ((count %13) < 5)
 syscall(…);
 count++;
}

 Low (Spy)

 for(t = 0; t < 100 ; t++) {

wait_for_new_system_tick();
 for (i = 0; i < prob_sets; i++)
 result[t][i] =
cache_probe(i)
}

Covert Channel
Kernel

COMP9242 S2/2016 W12 32 © 2016 Gernot Heiser. Distributed under CC Attribution License

Ti
ck

s
(m

s)

Cache sets
probed

C
ac

he
 m

is
se

s

Cache Covert Channel Through Kernel
Spy observations

Misses on sets
used by kernel

for trojan syscalls

COMP9242 S2/2016 W12

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

Colouring the Kernel

COMP9242 S2/2016 W12

Global Resource Manager

RAM
I+D

GR
M

I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition
has own kernel

image

Kernel
clone!

I+D

I+D

Only shared kernel data:
• Scheduler queue array & bitmap
• Pointers to current: thread, kernel,

page table, cap space, FPU state

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

Timing Channel Through Kernel

COMP9242 S2/2016 W12

L3 Cache
 Kernel image

 High (Trojan)

int count = 0;
for(; ;) {

wait_for_new_system_tick();
 if ((count %13) < 5)
 syscall(…);
 count++;
}

 Low (Spy)

 for(t = 0; t < 100 ; t++) {

wait_for_new_system_tick();
 for (i = 0; i < prob_sets; i++)
 result[t][i] =
cache_probe(i)
}

 High Kernel Low Kernel

Kernel image

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

Ti
ck

s
(m

s)

Cache sets
probed

C
ac

he
 m

is
se

s
Cache Covert Channel Through Kernel
Spy observations with coloured kernel

COMP9242 S2/2016 W12

Only self-conflict
missess,

no time signal!

36 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W12

Tackling Verification Cost

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

Verification Cost Breakdown

COMP9242 S2/2016 W12

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Repeat (estimated) 6 py
Traditional engineering 4–6 py

Reusable!

Abstract
Spec

Executable
Spec

C Imple-
mentation

P
ro

of

P
ro

of

38 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why So Hard for 9,000 LOC?

COMP9242 S2/2016 W12

seL4 call
graph

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cost of Assurance

COMP9242 S2/2016 W12

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

21 py
4.5 years

1 py
4 months

0 py
By construction

4.5 py

2 py, 1.5 years
Mostly for tools

2 py, 1 year
Mostly for tools

$400 per line
of code!

Estimate repeat
cost: $200/LOC

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

Microkernel Life-Cycle Cost in Context

L4
Pistachio

$100

seL4
$400

Green Hills
Integrity
$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000 750 500 250 100

Slow!

Fast! Fast!

?

Revolution!

COMP9242 S2/2016 W12

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cost of Assurance

Industry Best Practice:
•  “High assurance”: $1,000/LOC, no guarantees, unoptimised
•  Low assurance: $100–200/LOC, 1–5 faults/kLOC, optimised

State of the Art – seL4:
–  $400/LOC, 0 faults/kLOC, optimised

•  Estimate repeat would cost half
–  that’s about twice the development cost of the predecessor Pistachio!

•  Aggressive optimisation [APSys’12]
–  much faster than traditional high-assurance kernels
–  as fast as best-performing low-assurance kernels

COMP9242 S2/2016 W12 42 © 2016 Gernot Heiser. Distributed under CC Attribution License

What Have We Learnt?

Formal verification probably didn’t produce a more secure kernel
•  In reality, traditional separation kernels are probably secure
But:
•  We now have certainty
•  We did it probably at less cost

Real achievement:
•  Cost-competitive at a scale where traditional approaches still work
•  Foundation for scaling beyond: 2 ⨉ cheaper, 10 ⨉ bigger!

How?
•  Combine theorem proving with

–  synthesis
–  domain–specific languages (DSLs)

COMP9242 S2/2016 W12

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent:	code	and	proof	co-genera<on	
�  Implement	FS	in	high-level	func<onal	language	(and	reason	

about	it)	
�  Generate	efficient	low-level	code	in	C	
�  Automa<cally	prove	correspondence	between	the	two	

COMP9242 S2/2016 W12

Our	approach

44 © 2016 Gernot Heiser. Distributed under CC Attribution License

l  Cogent:	purely	func<onal	memory-safe	language	

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

COMP9242 S2/2016 W12

Cogent Workflow

45 © 2016 Gernot Heiser. Distributed under CC Attribution License

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent's	cer<fying	compiler	generates	an	C	implementa<on	

In-kernel file system,
no language run-time and

no garbage collector

COMP9242 S2/2016 W12

Cogent	workflow

46 © 2016 Gernot Heiser. Distributed under CC Attribution License

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent	generates	a	specifica<on	and	a	proof	that	links	it	to	the	C	

code	

Cogent	workflow

COMP9242 S2/2016 W12

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Prove	high-level	proper<es	about	Cogent-generated	

specifica<ons	using	a	proof	assistant	

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent	workflow

COMP9242 S2/2016 W12 48 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	• We	implemented	two	Linux	FSs:	
�  Ext2:	func<onally	complete	original	spec	

�  No	ACLs,	symlinks	
�  BilbyFs:	custom	flash	file	system	

•  Invoked	from	VFS	via	a	small	C	wrapper,	which:	
�  Uses	a	global	lock	to	prevent	concurrent	

execu<on	of	FS	opera<ons	
�  Handles	VFS	caches	
�  Calls	Cogent	FS	entry	points	

	
•  FSs	interface	with	the	storage	device	via	external	
ADT	func<ons	

Storage
Device

Cogent FS

VFS

C wrapper

Cogent	File	Systems

COMP9242 S2/2016 W12

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	•  Compare	ext2	with	Linux's	na<ve	implementa<on	
�  Hardware:	

l  4	core	i7-6700	running	at	3.1	GHz,	
l  Samsung	HD501JL	7200RPM	500G	SATA	disk	

	
•  Compare	BilbyFs	with	handwricen	C	implementa<on	

�  Hardware:	
l  Mirabox	development	board		
l  Marvell	Armada	370	single-core	1.2	GHz	ARMv7	
processor	

l  1	GiB	of	NAND	flash	

Evaluation

COMP9242 S2/2016 W12 50 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
		
		
		
		
		

•  20%	CPU	load	for	Cogent	BilbyFs	vs	15%	for	C	
•  Both	ext2	implementa<ons	have	the	same	CPU	load	

 0
 20
 40
 60
 80

 64 256 1024 4096
File size (KiB)

Th
ro

ug
hp

ut
 (M

iB
/s

)

Linux ext2
Cogent ext2

 500

 600

Th
ro

ug
hp

ut
 (M

iB
/s

)

C BilbyFs
Cogent BilbyFs

IOZone	random	4k	writes

COMP9242 S2/2016 W12

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
	
		
•  Degrada<on	of	a	factor	2	for	Cogent	FSs	

Total time creation read rate
System sec f les/sec kB/sec
C ext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

i

Postmark	on	RAM-disk

COMP9242 S2/2016 W12 52 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
	
		
•  Degrada<on	of	a	factor	2	for	Cogent	FSs	
	

•  Overhead	is	due	to	two	reasons:	
�  extra	copying	involved	when	conver<ng	in-buffer	directory	

entries	into	Cogent's	internal	data	type	
�  Cogent	compiler	is	overly	reliant	on	C	compiler's	op<miser	to	

convert	automa<cally	C	structs	passed	by	copy	to	pointers	

Total time creation read rate
System sec f les/sec kB/sec
C ext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

i

Postmark	on	RAM-disk

COMP9242 S2/2016 W12

53 © 2016 Gernot Heiser. Distributed under CC Attribution License

Remember: Verification Cost Breakdown

COMP9242 S2/2016 W12

Abstract
Spec

Executable
Spec

C Imple-
mentation

P
ro

of

P
ro

of

8 py

3 py

Cogent spec
higher level than
seL4 exec spec

Fully automated
in Cogent

