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These slides are distributed under the Creative Commons 
Attribution 3.0 License 
 
•  You are free: 

–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows: 

“Courtesy of Gernot Heiser, UNSW Australia” 
 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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Copyright Notice 
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Present Systems are NOT Trustworthy! 

Yet they are expensive: 
•  $1,000 per line of code for 
  “high-assurance” software! 
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Trustworthy Systems Vision 

We will change the practice of designing and 
implementing critical systems, using rigorous 
approaches to achieve true trustworthiness 

Hard 
guarantees on 
safety/security/

reliability 

Suitable for 
real-world 
systems 
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Isolation is Key! 
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Mechanisms 
for enforcing 
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 Trustworthy Microkernel – seL4 

Complex, 
untrusted 
Complex, 
untrusted 

 Policy Layer 
General-
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System-
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Trustworthy Systems Agenda 

1.  Dependable microkernel (seL4) as a rock-solid base 
–  Formal specification of functionality 
–  Proof of functional correctness of implementation 
–  Proof of safety/security properties 

2.  Lift microkernel guarantees  
to whole system 
–  Use kernel correctness and integrity  

to guarantee critical functionality 
–  Ensure correctness of balance of  

trusted computing base 
–  Prove dependability properties of  

complete system 
o  despite 99 % of code untrusted! 
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DONE 
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Requirements for Trustworthy Systems 

Safety                          Security 

Functional 
Correctness 

Availability 

Timeliness 

Termination 

Confident. / 
Info Flow 

Integrity 

Isolation! 
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Integrity 

Abstract 
Model 

C Imple-
mentation 

Confiden-
tiality Availability 

Binary 
code 
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Functional 
correctness 
[SOSP’09] 

Isolation 
properties 

[ITP’11, S&P’13] 

Translation 
correctness 

[PLDI’13] 

Exclusions (at present): 
•  Initialisation 
•  Privileged state & caches 
•  Multicore 
•  Covert timing channels 

Worst-case 
execution time 

[RTSS’11, RTAS’16] 

Provable Security and Safety 
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Proving Functional Correctness 
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Abstract 
Model 

Executable 
Model 

C Imple-
mentation 

Pr
oo

f 
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f Refinement: All 

possible 
implementation 
behaviours are 

captured by model 

Refinement: All 
possible 

implementation 
behaviours are 

captured by model 

117,000 lop 

50,000 lop 
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Proving Functional Correctness 

Abstract 
Model 

Executable 
Model 

C Imple-
mentation 
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Formal Verification Summary 

Kinds of properties proved 
•  Behaviour of C code is fully captured by abstract model 
•  Behaviour of C code is fully captured by executable model 
•  Kernel never fails, behaviour is always well-defined 
•  assertions never fail 
•  will never de-reference null pointer 
•  cannot be subverted by misformed input 

•  All syscalls terminate, reclaiming memory is safe, ... 
•  Well typed references, aligned objects, kernel always mapped… 
•  Access control is decidable 

Did you find bugs? 
•  During (very shallow) testing: 16 
•  During verification: 460 
•  160 in C, ~150 in design, ~150 in spec 
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Can prove further 
properties on 
abstract level! 
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Isolation Goes Deep 
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 High  Low 

TCBs Caps 

PTs 

TCBs Caps 

PTs 

Kernel data 
partitioned 

like user data 
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Multicore 
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Microkernel vs Linux Execution 

10s of ms 10s of ms 

10s of ms 

App 

Kernel Linux 

10s of ms 10s of ms 

10s of ms 

App 

Server 

Microkernel 

Kernel 

0.1µs 
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Cache Line Migration Latencies 

Core 
HW 
context 

HW 
context 

 L1 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

 Main memory 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

10–20 
cycles 

1,000–10,000 
cycles 

Data transfer takes 
much longer than 
code execution! 

COMP9242 S2/2016 W12 



17 © 2016 Gernot Heiser. Distributed under CC Attribution License 

Cost of Locking 
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Locks have a cost –  
significant in a fast microkernel! 
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Multicore Design: Clustered Multikernel 
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Big-Lock Scalability 
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Hardware Faults 
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How About Hardware Faults? 

•  Single-event upset: Random (transient) bit-flips due to cosmic rays, 
natural radioactivity 

•  May break “proved” isolation 
Courtesy Yanyan Shen 
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Redundant Execution 

CPU 0 

seL4 

Secure 
Component Other 

Memory Image 

CPU 1 

seL4 

Secure 
Component Other 

Memory Image 

I/O Dev 

CMP 

Idea: fault-tolerance through redundancy 
•  Compare & vote at kernel entry/exit 
•  Work in progress (Yanyan’s PhD) 
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Side Channels 
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Hardware 

Hypervisor 

Attacker 
OS 

VM1 

Target 
OS 

VM2 

Side Channel Attacks 

Information 
leakage through 

shared hardware, 
e.g. caches 

E.g. 
encryption 

keys 
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Types of Side Channels 

Storage Channels 

•  Use some shared state 
•  Could be inside the OS/

hypervisor 
–  Eg existence of a file 
–  Eg accessibility of an object 

Timing Channels 

•  Observe timing of events 
•  Eg memory access latency 

–  Senses victim’s cache 
footprint 

seL4: The world’s 
only OS proved free of 

storage channels! 

How about 
timing 

channels? 
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Timing Side-Channel Attack in Public Cloud 
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Mitigation: Partition Cache (Colouring) 
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Colouring the System is Easy 

Global Resource Manager 

RAM  
I+D 
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M 

I+D 

Resource Manager 

RM 
I+D 

Resource Manager 

RM 
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Partitions 
restricted to 

coloured memory 

System permanently 
coloured 
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Timing Channel Through Kernel 

L3 Cache 
  Kernel image 

 High (Trojan)  
 
 

int count = 0; 
for( ; ;) { 
     
wait_for_new_system_tick( );  
     if ((count %13) < 5) 
          syscall(…); 
     count++;  
} 

 Low (Spy)  
 
 for( t = 0; t < 100 ; t++) { 

     
wait_for_new_system_tick( ); 
     for (i = 0; i < prob_sets; i++)  
           result[t][i] = 
cache_probe(i) 
} 

Covert Channel 
Kernel 
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Colouring the Kernel 
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Each partition 
has own kernel 

image 

Kernel 
clone!  

I+D 
 
I+D 

Only shared kernel data: 
• Scheduler queue array & bitmap 
• Pointers to current: thread, kernel, 

page table, cap space, FPU state 

34 © 2016 Gernot Heiser. Distributed under CC Attribution License 

Timing Channel Through Kernel 
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L3 Cache 
  Kernel image 

 High (Trojan)  
 
 

int count = 0; 
for( ; ;) { 
     
wait_for_new_system_tick( );  
     if ((count %13) < 5) 
          syscall(…); 
     count++;  
} 

 Low (Spy)  
 
 for( t = 0; t < 100 ; t++) { 

     
wait_for_new_system_tick( ); 
     for (i = 0; i < prob_sets; i++)  
           result[t][i] = 
cache_probe(i) 
} 

 High Kernel  Low Kernel 

Kernel image 
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Cache Covert Channel Through Kernel 
Spy observations with coloured kernel 
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Only self-conflict 
missess, 

no time signal! 
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Tackling Verification Cost 
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Verification Cost Breakdown 
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Haskell design 2 py 
C implementation 2 months 
Debugging/Testing 2 months 
Abstract spec refinement 8 py 
Executable spec refinement 3 py 
Fastpath verification 5 months 
Formal frameworks 9 py 
Total 24 py 
Repeat (estimated) 6 py 
Traditional engineering 4–6 py 

Reusable! 

Abstract 
Spec 

Executable 
Spec 

C Imple-
mentation 

P
ro

of
 

P
ro

of
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Why So Hard for 9,000 LOC? 
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seL4 call 
graph 
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Cost of Assurance 
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Integrity 
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21 py 
4.5 years 

1 py 
4 months 

0 py 
By construction 

4.5 py 

2 py, 1.5 years 
Mostly for tools 

2 py, 1 year 
Mostly for tools 

$400 per line 
of code! 

Estimate repeat 
cost: $200/LOC 
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Microkernel Life-Cycle Cost in Context 

L4 
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Fast! Fast! 

? 

Revolution! 
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Cost of Assurance 

Industry Best Practice:  
•  “High assurance”: $1,000/LOC, no guarantees, unoptimised 
•  Low assurance: $100–200/LOC, 1–5 faults/kLOC, optimised 

State of the Art – seL4: 
–  $400/LOC, 0 faults/kLOC, optimised 

•  Estimate repeat would cost half 
–  that’s about twice the development cost of the predecessor Pistachio! 

•  Aggressive optimisation [APSys’12] 
–  much faster than traditional high-assurance kernels 
–  as fast as best-performing low-assurance kernels 
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What Have We Learnt? 

Formal verification probably didn’t produce a more secure kernel 
•  In reality, traditional separation kernels are probably secure 
But: 
•  We now have certainty 
•  We did it probably at less cost 
 
Real achievement:  
•  Cost-competitive at a scale where traditional approaches still work 
•  Foundation for scaling beyond: 2 ⨉ cheaper, 10 ⨉ bigger! 

How? 
•  Combine theorem proving with  

–  synthesis  
–  domain–specific languages (DSLs) 
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent:	code	and	proof	co-genera<on	
�  Implement	FS	in	high-level	func<onal	language	(and	reason	

about	it)	
�  Generate	efficient	low-level	code	in	C	
�  Automa<cally	prove	correspondence	between	the	two	
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Our	approach 
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l  Cogent:	purely	func<onal	memory-safe	language	

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
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COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate

generate

high-level
proofs

Isabelle/HOL

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent's	cer<fying	compiler	generates	an	C	implementa<on	

In-kernel file system, 
no language run-time and 

no garbage collector 
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Cogent	workflow 
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COGENT compiler
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Cogent	generates	a	specifica<on	and	a	proof	that	links	it	to	the	C	

code	

Cogent	workflow 
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	
l  Prove	high-level	proper<es	about	Cogent-generated	

specifica<ons	using	a	proof	assistant	

COGENT compiler

generated
C code

ADT
library

COGENT code

C code
semantics

COGENT
specification

proof

import

generate
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high-level
proofs
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Cogent	workflow 
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	• We	implemented	two	Linux	FSs:	
�  Ext2:	func<onally	complete	original	spec	

�  No	ACLs,	symlinks	
�  BilbyFs:	custom	flash	file	system	

•  Invoked	from	VFS	via	a	small	C	wrapper,	which:	
�  Uses	a	global	lock	to	prevent	concurrent	

execu<on	of	FS	opera<ons	
�  Handles	VFS	caches	
�  Calls	Cogent	FS	entry	points	

	
•  FSs	interface	with	the	storage	device	via	external	
ADT	func<ons	

Storage
Device

Cogent FS

VFS

C wrapper

Cogent	File	Systems 

COMP9242 S2/2016 W12 



49 © 2016 Gernot Heiser. Distributed under CC Attribution License 

Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	•  Compare	ext2	with	Linux's	na<ve	implementa<on	
�  Hardware:	

l  4	core	i7-6700	running	at	3.1	GHz,	
l  Samsung	HD501JL	7200RPM	500G	SATA	disk	

	
•  Compare	BilbyFs	with	handwricen	C	implementa<on	

�  Hardware:	
l  Mirabox	development	board		
l  Marvell	Armada	370	single-core	1.2	GHz	ARMv7	
processor	

l  1	GiB	of	NAND	flash	

Evaluation 
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
		
		
		
		
		

•  20%	CPU	load	for	Cogent	BilbyFs	vs	15%	for	C	
•  Both	ext2	implementa<ons	have	the	same	CPU	load	
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
	
		
•  Degrada<on	of	a	factor	2	for	Cogent	FSs	

Total time creation read rate
System sec f les/sec kB/sec
C ext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

i

Postmark	on	RAM-disk 
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Cogent:	Verifying	High-Assurance	File	System	Implementa<ons		|	Sidney	Amani	

		
		
		
	
		
•  Degrada<on	of	a	factor	2	for	Cogent	FSs	
	

•  Overhead	is	due	to	two	reasons:	
�  extra	copying	involved	when	conver<ng	in-buffer	directory	

entries	into	Cogent's	internal	data	type	
�  Cogent	compiler	is	overly	reliant	on	C	compiler's	op<miser	to	

convert	automa<cally	C	structs	passed	by	copy	to	pointers	

Total time creation read rate
System sec f les/sec kB/sec
C ext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

i

Postmark	on	RAM-disk 
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Remember: Verification Cost Breakdown 
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8 py 
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Cogent spec 
higher level than 
seL4 exec spec 

Fully automated 
in Cogent 


