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Motivation

Memory is a crucial component of computer systems
§ Increasing sizes required due to application demands
§ Large DRAMs required even in small systems

§ Image and audio processing, streaming data, …

New non-functional criteria relevant in addition to performance
§ Power/energy consumption, fault tolerance, security, …
§ Multi-criterial optimizations required

No longer “as good as possible”
§ Rather try to be as good as possible under given constraints
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Virtualization
Hypervisor

Lost in Abstractions...

Memory abstractions are lossy
§ For C, memory is just an array of bytes!

Memory allocation is a distributed task
§ Global data – linker
§ Local (stack) data – compiler/OS (stack init)
§ Heap data – runtime/OS

Can we give programmers more control over
memory allocation?
§ ...while requiring as little detail knowledge

about the hardware as possible
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The Memory Hierarchy
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Non-functional properties
of memories (1)
Memory has a large influence on 
non-functional properties of a system
§ Average, best, and worst case

performance, throughput and latencies
§ Power and energy consumption
§ Reliability and security

Non-functional properties depend
on many parameters of memory, e.g.
§ Cache architecture
§ Memory type
§ Alignment and aliasing of data
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Figure 3.13: Sequential Read and Write, NPAD=1
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Figure 3.14: Advantage of Larger L2/L3 Caches
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Figure 3.15: Sequential vs Random Read, NPAD=0

too large for the respective last level cache and the main
memory gets heavily involved.

As expected, the larger the last level cache is the longer
the curve stays at the low level corresponding to the L2
access costs. The important part to notice is the perfor-
mance advantage this provides. The second processor
(which is slightly older) can perform the work on the
working set of 220 bytes twice as fast as the first proces-
sor. All thanks to the increased last level cache size. The
Core2 processor with its 4M L2 performs even better.

For a random workload this might not mean that much.
But if the workload can be tailored to the size of the last
level cache the program performance can be increased
quite dramatically. This is why it sometimes is worth-
while to spend the extra money for a processor with a
larger cache.

Single Threaded Random Access We have seen that
the processor is able to hide most of the main memory
and even L2 access latency by prefetching cache lines
into L2 and L1d. This can work well only when the mem-
ory access is predictable, though.

If the access pattern is unpredictable or random the situa-
tion is quite different. Figure 3.15 compares the per-list-
element times for the sequential access (same as in Fig-
ure 3.10) with the times when the list elements are ran-
domly distributed in the working set. The order is deter-
mined by the linked list which is randomized. There is no
way for the processor to reliably prefetch data. This can
only work by chance if elements which are used shortly
after one another are also close to each other in memory.

There are two important points to note in Figure 3.15.
The first is the large number of cycles needed for grow-
ing working set sizes. The machine makes it possible
to access the main memory in 200-300 cycles but here
we reach 450 cycles and more. We have seen this phe-
nomenon before (compare Figure 3.11). The automatic
prefetching is actually working to a disadvantage here.

The second interesting point is that the curve is not flat-
tening at various plateaus as it has been for the sequen-
tial access cases. The curve keeps on rising. To explain
this we can measure the L2 access of the program for
the various working set sizes. The result can be seen in
Figure 3.16 and Table 3.2.

The figure shows that, when the working set size is larger
than the L2 size, the cache miss ratio (L2 accesses / L2
misses) starts to grow. The curve has a similar form to
the one in Figure 3.15: it rises quickly, declines slightly,
and starts to rise again. There is a strong correlation with
the cycles per list element graph. The L2 miss rate will
grow until it eventually reaches close to 100%. Given a
large enough working set (and RAM) the probability that
any of the randomly picked cache lines is in L2 or is in
the process of being loaded can be reduced arbitrarily.
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L1 cache size
L2 cache size

Lines Proportion Total Annotated Endorse-
Application Description Error metric of code FP decls. decls. ments
FFT

Scientific kernels from the
SciMark2 benchmark

Mean entry difference 168 38.2% 85 33% 2
SOR Mean entry difference 36 55.2% 28 25% 0
MonteCarlo Normalized difference 59 22.9% 15 20% 1
SparseMatMult Mean normalized difference 38 39.7% 29 14% 0
LU Mean entry difference 283 31.4% 150 23% 3

ZXing Smartphone bar code decoder 1 if incorrect, 0 if correct 26171 1.7% 11506 4% 247
jMonkeyEngine Mobile/desktop game engine Fraction of correct decisions

normalized to 0.5
5962 44.3% 2104 19% 63

ImageJ Raster image manipulation Mean pixel difference 156 0.0% 118 34% 18
Raytracer 3D image renderer Mean pixel difference 174 68.4% 92 33% 10

Table 3. Applications used in our evaluation, application-specific metrics for quality of service, and metrics of annotation density. “Proportion
FP” indicates the percentage of dynamic arithmetic instructions observed that were floating-point (as opposed to integer) operations.
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Figure 3. Proportion of approximate storage and computation in
each benchmark. For storage (SRAM and DRAM) measurements,
the bars show the fraction of byte-seconds used in storing approxi-
mate data. For functional unit operations, we show the fraction of
dynamic operations that were executed approximately.

Three of the authors ported the applications used in our eval-
uation. In every case, we were unfamiliar with the codebase be-
forehand, so our annotations did not depend on extensive domain
knowledge. The annotations were not labor intensive.

QoS metrics. For each application, we measure the degradation
in output quality of approximate executions with respect to the
precise executions. To do so, we define application-specific quality
of service (QoS) metrics. Defining our own ad-hoc QoS metrics
is necessary to compare output degradation across applications. A
number of similar studies of application-level tolerance to transient
faults have also taken this approach [3, 8, 19, 21, 25, 35]. The third
column in Table 3 shows our metric for each application.

Output error ranges from 0 (indicating output identical to the
precise version) to 1 (indicating completely meaningless output). For
applications that produce lists of numbers (e.g., SparseMatMult’s
output matrix), we compute the error as the mean entry-wise
difference between the pristine output and the degraded output. Each
numerical difference is limited by 1, so if an entry in the output is
NaN, that entry contributes an error of 1. For benchmarks where the
output is not numeric (i.e., ZXing, which outputs a string), the error
is 0 when the output is correct and 1 otherwise.

6.1 Energy Savings
Figure 3 divides the execution of each benchmark into DRAM
storage, SRAM storage, integer operations, and FP operations and
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Figure 4. Estimated CPU/memory system energy consumed for
each benchmark. The bar labeled “B” represents the baseline
value: the energy consumption for the program running without
approximation. The numbered bars correspond to the Mild, Medium,
and Aggressive configurations in Table 2.

shows what fraction of each was approximated. For many of the
FP-centric applications we simulated, including the jMonkeyEngine
and Raytracer as well as most of the SciMark applications, nearly
all of the floating point operations were approximate. This reflects
the inherent imprecision of FP representations; many FP-dominated
algorithms are inherently resilient to rounding effects. The same
applications typically exhibit very little or no approximate integer
operations. The frequency of loop induction variable increments
and other precise control-flow code limits our ability to approximate
integer computation. ImageJ is the only exception with a significant
fraction of integer approximation; this is because it uses integers to
represent pixel values, which are amenable to approximation.

DRAM and SRAM approximation is measured in byte-seconds.
The data shows that both storage types are frequently used in
approximate mode. Many applications have DRAM approximation
rates of 80% or higher; it is common to store large data structures
(often arrays) that can tolerate approximation. MonteCarlo and
jMonkeyEngine, in contrast, have very little approximate DRAM
data; this is because both applications keep their principal data in
local variables (i.e., on the stack).

The results depicted assume approximation at the granularity
of a 64-byte cache line. As Section 4.1 discusses, this reduces the
number of object fields that can be stored approximately. The impact
of this constraint on our results is small, in part because much of
the approximate data is in large arrays. Finer-grain approximate
memory could yield a higher proportion of approximate storage.

[1]

[2]
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Non-functional properties
of memories (2)
Impact of memory size and refresh on energy consumption
§ Growing share of energy consumption and latency

due to requirements of DRAM refresh
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DRAM evolution and non-functional properties [3]
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Non-functional properties
of memories (3)
Impact of memory technology on system security
§ Rowhammer security attack: unintended side effect in 

dynamic random-access memory (DRAM) [12]

§ Causes memory cells to leak their charges and interact
electrically between themselves
§ possibly leaking the contents of nearby memory rows that were not 

addressed in the original memory access
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Security critical information
allocated in these bits can be
modified even when direct

access to the bits is prohibited!
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Trends in Memory Reliability

§ Shrinking structure sizes and reduced supply voltages
⇒ Increased memory error rates, new error types (multiple bit errors)

§ Traditional HW-based FT approaches
⇒ more hardware for error detection and correction required (e.g., ECC)

§ Profitability ends if cost(additional HW) > gain(new technology)
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design solutions such as SoCs, which feature

multiple complex hardware and software com-

ponents connected by a diverse set of interfaces.

Today, most, if not all, complex system designs

are released containing latent bugs, which

sometimes become evident after a design

reaches the market.

Ultimately, these challenges threaten the continued

scaling of silicon fabrication technologies. A primary

goal of transistor scaling is to reduce the cost of

electronic devices. As devices scale to smaller

geometries, however, they become less reliable,

necessitating the inclusion of reliability mechanisms.

Reliability costs range from service and replacement to

built-in solutions entailing area and design resources.

These costs are increasing at technology nodes with

higher natural failure rates, which require more robust

and finer-grained reliability techniques. As Figure 1a

shows, the financial impact of reliability infrastructures

will eventually make CMOS-based silicon scaling

economically unfeasible. Figure 1a shows current cost

trends of transistor fabrication and built-in or service-

based reliability solutions. Figure 1b shows how low-

cost built-in reliability techniques can lower the overall

cost of silicon products.

Toward reliable silicon fabrics
One key GSRC research area is resilient-system

design. The research group at work on this topic is

investigating the problem broadly, from quantifying

functional and physical reliability threats to develop-

ing customizable, extensible, and cost-effective design

methodologies. At the core of the effort is the

investigation of solutions incorporating vertically

integrated technologies that draw from circuit, micro-

architecture, and software innovations and are appli-

cable to both processors and heterogeneous front

ends. We strive to develop flexible solutions that are

easily adaptable to different applications and system

domains, and that are extendible to other reliability

issues such as software defects.

Deploying resiliency mechanisms is often a chal-

lenge, especially if they are being deployed before the

onset of the failures they target. Too often, designers

perceive the reliability infrastructure as a burdensome

tax to be paid only as a last resort in accomplishing

dependability goals. However, if designers can lever-

age a resiliency mechanism to further enhance system

value, the additional benefits it brings can offset its

cost and burden. Recent GSRC reliability projects,

including the Razor and Algorithmic Noise Tolerance

projects,1,2 leverage resiliency to lessen power de-

mands. Likewise, the Reliability and Security Engine

project is developing a processor-level framework that

provides security guarantees along with transparent

application-specific reliability.3

0
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Figure 1. Silicon process technology trends. The inherent

variability and high-failure rates of transistors in near-future

technology nodes will demand high-cost reliability service

and solutions, bringing the production of digital electronic

devices in traditional silicon designs to unacceptable costs

(a). The development of new low-cost, resilient designs will

make further transistor scaling economically viable,

extending the lifespan of CMOS-based silicon (b). In (a),

reliability cost = failure rate 3 (replacement costs and area

and design costs of defect-tolerant mechanisms). In (b)

reliability cost = failure rate 3 low-cost built-in defect-

tolerant mechanisms.
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Research Projects Related to Memory

FEHLER (2010–2016) [8,9,10]

§ Introduce flexible memory fault tolerance to embedded systems
§ Statically classify relevance of data objects on application level
§ Only correct fatal errors, handle errors with impact on QoS (Silent Data 

Corruption, SDC) on a best-effort basis to conserve runtime, energy, etc.
§ Joint work with Andreas Heinig, Florian Schmoll and Peter Marwedel

RAMpage (2011–2013) [5,6]
§ Automatic detection of permanent memory errors at runtime on Linux
§ Live remapping of affected memory pages, handling of affected processes
§ Increase system life- and uptime of systems
§ Ecological impact: continue to use devices with soldered RAM
§ Joint work with Horst Schirmeier, Ingo Korb and Jens Neuhalfen
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FEHLER High-Level View
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FEHLER Compiler-OS Interaction
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§ Impact of errors
§ Urgency of error correction
§ Feasible correction methods
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FEHLER Use Cases

§ H.264 video decoder
§ ca. 3500 LoC ANSI-C

§ ARM926 simulation and
real HW platform

§ Assess error impact using QoS
analysis tool

§ Decoding with errors (upper left) 
and correctly decoded video
frame (upper right)

§ Compared using various metrics
(lower half)

§ Example: low error injection rate
§ Few visible error impacts
§ Metrics indicate many more that

are not discernible
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FEHLER Results
§ H.264 video decoder, different videos & resolutions
§ No application crashes due to hardware errors!
§ Significant amount of memory can remain unprotected:

Beyond Microkernels 

Resolution Memory size of 
reliable data

Memory size of 
unreliable data

176 x 144 90 kB (55%) 74 kB (45%)

352 x 288 223 kB (43%) 297 kB (57%)

1280 x 720   1 585 kB (37%) 2 700 kB (63%)

Injection into unreliable memory 240 errors / s 80 errors / s

Average PSNR of frames with errors 40.89 dB 50.57 dB

§ QoS impact of uncorrected errors:
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DRAM

Beyond FEHLER: 
Enable Software Control of Memory
§ Can we build an architecture covering multiple use cases?
§ Idea: use on-chip scratchpad memories (SPM/TCM) 
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§ SPM = small, fast, energy-efficient
on-chip static RAM (SRAM)
§ Hard(er) to extract information
§ Optional: reduced overhead for

protection against bit flips
§ Only store protected information

in external DRAM
§ e.g. using

software-based
ECC & encryption
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DRAM

Software-Defined Memory

§ Applications can only access SPM RAM directly
§ All other memory accesses are intercepted by the microkernel
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Data
Path

R
E
G
S

SPM

§ No full MMU available on small
controllers (e.g. Cortex-M)
§ No VM address translation!

§ Memory Protection Unit (MPU) only
allows to define access permissions
for a small number of segments

Con
trol
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ARM Cortex-M MPU

Beyond Microkernels 

§ MPU defines segments of
RAM accessible to tasks

§ All other accesses cause
a memory protection
exception

§ MPU configuration
can be changed
on the fly
(e.g. during a
task switch)
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Software-Defined Memory:
Protection Problems
§ Applications can only access SPM RAM directly
§ SPM is treated like a (software-controlled) cache

§ Problem: 
§ Applications are not expected to handle SPM contents

directly and require more RAM than available in SPM
§ „Real“ DRAM memory addresses used by compiler

§ However, the MPU does not perform address translation
§ Two solution approaches:

§ Rewrite addresses on the fly
§ Use additional level of indirection
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Software-Defined Memory:
Instruction rewriting
§ Global variable in DRAM 

address space
§ Direct access prohibited by

MPU
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SPM

DRAM
mpu_handler:

Flash

SPM SRAM

External DRAM

0x00000000

0x10000000

0x80000000

main: ldr r0, =0x80000000

Faulted
addr cached

in SPM?
Load faulted
addr to SPM

& decode
Simulate faulted

insn while
replacing addr

ldr r0, =0x14000000
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Challenges of
Software-Defined Memory
§ Rewriting or indirection?

§ Indirection uses pointers to pointers
=> Easy to adapt accesses, no exception once „fixed“, 
§ Runtime overhead for every load/store instruction
§ Compiler backend modifications required

§ Instruction rewriting faults all load/store accesses to DRAM
§ Cost of exception handling + rewriting

§ Memory management service in microkernel
§ Requires efficient control of SPM contents

§ Relation to (embedded) garbage collectors?
§ Performs encoding/encryption & decoding/decryption in

software => efficient implementation?
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Conclusion

§ Memory properties used for allocation and data flow
§ Tight control of memory behavior helps to reduce

hardware overhead and improve reliability
§ Similar handling of additional non-functional properties

§ E.g., refresh [3], allocation of rows, power-save modes

§ Basic design principle
§ Perform as much analysis work as possible at compile time
§ Pass relevant meta data to runtime components
§ Optimize at runtime while considering additional 

constraints
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