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Motivation

Memory is a crucial component of computer systems
" |ncreasing sizes required due to application demands
= Large DRAMs required even in small systems

" |mage and audio processing, streaming data, ...

New non-functional criteria relevant in addition to performance
= Power/energy consumption, fault tolerance, security, ...
= Multi-criterial optimizations required

No longer “as good as possible”
= Rather try to be as good as possible under given constraints
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Lost in Abstractions... é-mH
Memory abstractions are lossy L
= For C, memory is just an array of bytes! "G

J
d

+ CPU Microcode

Memory allocation is a distributed task

= Global data —linker

= |ocal (stack) data — compiler/OS (stack init)
= Heap data — runtime/0OS

Can we give programmers more control over
memory allocation?

= ...while requiring as little detail knowledge ‘l’
about the hardware as possible M
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The Memory Hierarchy

100 Byte 1 ns
The further from the CPU:
= |ncreasing size 10 kB@S ns
" Decreasing speed
wois "
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Non-functional properties
of memories (1)
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non-functional properties of a system

= Average, best, and worst case ;é:olémlé”* \@@xx
performance, throughput and latencies 5 e

= Power and energy consumption

= Reliability and security

normalized total energy
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Non-functional properties depend 20

on many parameters of memory, e.g.
= Cache architecture

= Memory type

= Alignment and aliasing of data ) I I[1|1|
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Non-functional properties
of memories (2)

Impact of memory size and refresh on energy consumption
"= Growing share of energy consumption and latency
due to requirements of DRAM refresh

DRAM device trends. Both speed and size increase with each DDR generation.
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DRAM evolution and non-functional properties [3]
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Non-functional properties
of memories (3)

Impact of memory technology on system security

= Rowhammer security attack: unintended side effect in
dynamic random-access memory (DRAM) [12]

= Causes memory cells to leak their charges and interact

electrically between themselves
= possibly leaking the contents of nearby memory rows that were not
addressed in the original memory access

Row Hammer

SeoeeOemmeN
Volt ted| )
applied to & row of ﬂ! ﬂ! D BO8S6=

memory cells

Cells lose charge by
= repeated nearby electro-
magnetic field, causing a
coupled bit

Security critical information

allocated in these bits can be

Electromagnetic o ‘
modified even when direct

field induced by -
applied voltage B ﬂ D g ﬂ D D ﬂ B access to the bits is prohibited!
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Cost
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Trends in Memory Reliability

Shrinking structure sizes and reduced supply voltages
= Increased memory error rates, new error types (multiple bit errors)

Traditional HW-based FT approaches

= more hardware for error detection and correction required (e.g., ECC)
Profitability ends if cost(additional HW) > gain(new technology)
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Reliability cost

I Cost per transistor

ﬁ

Scaling still
profitable

N
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Product cost -

Reliability cost

Cost per transistor

Source: Austin [7]

Silicon process technology (gate length)
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Research Projects Related to Memory

FEHLER (2010-2016) [8,9,10]

= Introduce flexible memory fault tolerance to embedded systems

= Statically classify relevance of data objects on application level

= Only correct fatal errors, handle errors with impact on QoS (Silent Data
Corruption, SDC) on a best-effort basis to conserve runtime, energy, etc.

= Joint work with Andreas Heinig, Florian Schmoll and Peter Marwedel

RAMpage (2011-2013) [5,6]

Automatic detection of permanent memory errors at runtime on Linux
= Live remapping of affected memory pages, handling of affected processes
= Increase system life- and uptime of systems
= Ecological impact: continue to use devices with soldered RAM
= Joint work with Horst Schirmeier, Ingo Korb and Jens Neuhalfen
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FEHLER High-Level View
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= Compiler
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= QOperating system
" Error-Resilient

" |Implements error
handling

Runtime
Conditions

Application

Operating System

Platform including
unreliable components

Compile time 1 Runtime
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FEHLER Compiler-OS Interaction
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FEHLER Use Cases

= H.264 video decoder
= ca. 3500 LoC ANSI-C

= ARM926 simulation and
real HW platform

= Assess error impact using QoS
analysis tool

= Decoding with errors (upper left)
and correctly decoded video
frame (upper right)

= Compared using various metrics
(lower half)

= Example: low error injection rate

= Few visible error impacts

=  Metrics indicate many more that
are not discernible

Beyond Microkernels
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Frame errors - AE: 25240 (22.408 %)
1 Mean squared error (mse): 132,593
Peak signal to noise ratio (psnr): 26.906

Overall errors: 41352853 (63.626 %)
Overall errors - AE: 26756390 ( 41.168 %)

O 9 QofﬂineV_
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FEHLER Results

= H.264 video decoder, different videos & resolutions
= No application crashes due to hardware errors!
= Significant amount of memory can remain unprotected:

- Memory size of Memory size of
reliable data unreliable data
176 x 144 90 kB (55%) 74 kB (45%)

352 x 288 223 kB (43%) 297 kB (57%)
1280 x 720 1585 kB (37%) 2 700 kB (63%)

= QoS impact of uncorrected errors: ¥ em
Injection into unreliable memory 240 errors | s
Average PSNR of frames with errors 40.89 dB 50.57 dB

Beyond Microkernels 13



é ~_ HOCHSCHULE COBURG

Beyond FEHLER:
Enable Software Control of Memory

= Can we build an architecture covering multiple use cases?
= |dea: use on-chip scratchpad memories (SPM/TCM)

= SPM =small, fast, energy-efficient
on-chip static RAM (SRAM)
= Hard(er) to extract information
= QOptional: reduced overhead for
protection against bit flips
= Only store protected information
in external DRAM
= e.g.using
software-based
ECC & encryption

14
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Software-Defined Memory

= Applications can only access SPM RAM directly
= All other memory accesses are intercepted by the microkernel

= No full MMU available on small
controllers (e.g. Cortex-M)
= No VM address translation!
= Memory Protection Unit (MPU) only
allows to define access permissions
for a small number of segments

éeyond Microkernels 15
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ARM Cortex-M MPU

= MPU defines segments of
RAM accessible to tasks

= All other accesses cause
a memory protection

exception ARM s for

= MPU configuration OS kernel
ety
on the fly sk

task

. B
(e.g. during a et

task switch) .

MPU configuration
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Software-Defined Memory:
Protection Problems

= Applications can only access SPM RAM directly
= SPM is treated like a (software-controlled) cache

" Problem:

= Applications are not expected to handle SPM contents

directly and require more RAM than available in SPM
* ,Real” DRAM memory addresses used by compiler

= However, the MPU does not perform address translation
= Two solution approaches:

= Rewrite addresses on the fly

= Use additional level of indirection

Beyond Microkernels 17
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Software-Defined Memory:
Instruction rewriting

= Global variable in DRAM
address space main: ldr r@, =0x80000000
= Direct access prohibited by

MPU % ~ B

papapaaanaas
AR 2 8 SRR
IRRARRARRARE

-Il'1r‘JL! " i
mpu_handler: 4-* ‘."
<&
*
addr cached ’0"
in SPM? ‘.’
Load faulted ""
addr to SPM I R 0x30000000 .
*
& decode 3 X
*
Simulate faulted o m
insn while | R 0x10000000
replacing addr | .."
1dr |re, =0x14000000) o 0X00000000 i
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Challenges of
Software-Defined Memory

= Rewriting or indirection?
= Indirection uses pointers to pointers
=> Easy to adapt accesses, no exception once ,fixed”,
= Runtime overhead for every load/store instruction
= Compiler backend modifications required
= Instruction rewriting faults all load/store accesses to DRAM
= Cost of exception handling + rewriting
= Memory management service in microkernel
= Requires efficient control of SPM contents
= Relation to (embedded) garbage collectors?
= Performs encoding/encryption & decoding/decryption in
software => efficient implementation?
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Conclusion

= Memory properties used for allocation and data flow
= Tight control of memory behavior helps to reduce
hardware overhead and improve reliability
= Similar handling of additional non-functional properties
= E.g., refresh [3], allocation of rows, power-save modes

= Basic design principle
= Perform as much analysis work as possible at compile time
= Pass relevant meta data to runtime components
= Optimize at runtime while considering additional

constraints
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