é HOCHSCHULE COBURG

Beyond Microkernels —
Hardware Abstraction and
Virtualization for Specific Use Cases

Prof. Dr. Michael Engel
Hochschule Coburg
Fakultat Elektrotechnik und Informatik
Labor fur Mikrocomputer und Digitale Signalverarbeitung

é ~_ HOCHSCHULE COBURG

Motivation

Memory is a crucial component of computer systems
" |ncreasing sizes required due to application demands
= Large DRAMs required even in small systems

" |mage and audio processing, streaming data, ...

New non-functional criteria relevant in addition to performance
= Power/energy consumption, fault tolerance, security, ...
= Multi-criterial optimizations required

No longer “as good as possible”
= Rather try to be as good as possible under given constraints

é HOCHSCHULE COBURG

Lost in Abstractions... é-mH
Memory abstractions are lossy L
= For C, memory is just an array of bytes! "G

J
d

+ CPU Microcode

Memory allocation is a distributed task

= Global data —linker

= |ocal (stack) data — compiler/OS (stack init)
= Heap data — runtime/0OS

Can we give programmers more control over
memory allocation?

= ...while requiring as little detail knowledge ‘l’
about the hardware as possible M

Beyond Microkernels

é HOCHSCHULE COBURG

The Memory Hierarchy

100 Byte 1 ns
The further from the CPU:
= |ncreasing size 10 kB@S ns
" Decreasing speed
wois "

Beyond Microkernels 4

é ~_ HOCHSCHULE COBURG

Non-functional properties
of memories (1)

B DRAM B SRAM [O Integer [0 FP
100% —

IS e il

non-functional properties of a system

= Average, best, and worst case ;é:olémlé”* \@@xx
performance, throughput and latencies 5 e

= Power and energy consumption

= Reliability and security

normalized total energy

L2 cache size

30 L1 cachfe size

25

Non-functional properties depend 20

on many parameters of memory, e.g.
= Cache architecture

= Memory type

= Alignment and aliasing of data) I I[1|1|

210 213 216 219 222 225 228

15

Cycles/List Element

Beyond Microkernels Working Set Size (Bytes) 5

é ~_ HOCHSCHULE COBURG

Non-functional properties
of memories (2)

Impact of memory size and refresh on energy consumption
"= Growing share of energy consumption and latency
due to requirements of DRAM refresh

DRAM device trends. Both speed and size increase with each DDR generation.

300 Oref Ord/wr @act/pre Bbg 40% - Wipc Oavg lat
— € 35% -
2 250 1 Energy contribution as device size increases 2
= S 30% - IPC and average latency impact of refresh
0 200 g with increasing device size
a I 25% 9
o

§ 150 - E‘ 20% -
s Q
o .
% 100 4 % 15%
& S 10% -
o
L i t

0 0% -

1Gb] 2Gb | 16Gb [32Gb
mix1 libquantum

DRAM evolution and non-functional properties [3]

Beyond Microkernels 6

é HOCHSCHULE COBURG

Non-functional properties
of memories (3)

Impact of memory technology on system security

= Rowhammer security attack: unintended side effect in
dynamic random-access memory (DRAM) [12]

= Causes memory cells to leak their charges and interact

electrically between themselves
= possibly leaking the contents of nearby memory rows that were not
addressed in the original memory access

Row Hammer

SeoeeOemmeN
Volt ted|)
applied to & row of ﬂ! ﬂ! D BO8S6=

memory cells

Cells lose charge by
= repeated nearby electro-
magnetic field, causing a
coupled bit

Security critical information

allocated in these bits can be

Electromagnetic o ‘
modified even when direct

field induced by -
applied voltage B ﬂ D g ﬂ D D ﬂ B access to the bits is prohibited!

Beyond Microkernels 7

Cost

é ~_ HOCHSCHULE COBURG

Trends in Memory Reliability

Shrinking structure sizes and reduced supply voltages
= Increased memory error rates, new error types (multiple bit errors)

Traditional HW-based FT approaches

= more hardware for error detection and correction required (e.g., ECC)
Profitability ends if cost(additional HW) > gain(new technology)

X
* \O<\g .
L) O N
.. Product _\(\g o e .
L
*._ ocost | < ’i\\(&b\ o
S Q\ .® e

Reliability cost

I Cost per transistor

ﬁ

Scaling still
profitable

N
...

Product cost -

Reliability cost

Cost per transistor

Source: Austin [7]

Silicon process technology (gate length)

Beyond Microkernels

Silicon process technology (gate length)

é ~_ HOCHSCHULE COBURG

Research Projects Related to Memory

FEHLER (2010-2016) [8,9,10]

= Introduce flexible memory fault tolerance to embedded systems

= Statically classify relevance of data objects on application level

= Only correct fatal errors, handle errors with impact on QoS (Silent Data
Corruption, SDC) on a best-effort basis to conserve runtime, energy, etc.

= Joint work with Andreas Heinig, Florian Schmoll and Peter Marwedel

RAMpage (2011-2013) [5,6]

Automatic detection of permanent memory errors at runtime on Linux
= Live remapping of affected memory pages, handling of affected processes
= Increase system life- and uptime of systems
= Ecological impact: continue to use devices with soldered RAM
= Joint work with Horst Schirmeier, Ingo Korb and Jens Neuhalfen

Beyond Microkernels 9

FEHLER High-Level View

Annotated

source
code

= Compiler

Timing
Analysis

= Source code analysis

= Creates classification

A 4

ExeCLitabIe
L

Classifi-

L
catjon

l

I

l

é HOCHSCHULE COBURG

= QOperating system
" Error-Resilient

" |Implements error
handling

Runtime
Conditions

Application

Operating System

Platform including
unreliable components

Compile time 1 Runtime

Beyond Microkernels 10

é HOCHSCHULE COBURG

FEHLER Compiler-OS Interaction

*
01101101010110110110101101010101 *

environment > keep EDAC running

P popiication knowledge YRR
: : D E£€: E correction Application
provided by annotations R~ methods
=3
Impact of errors = £ .
M : (1 =) . s h d I
Urgency of error correction & 3 corection error correction
. . . (8]
Feasible correction methods : &= -
: a 0s component
liabl : E’ affected or recovery
unreliable int j; : o 2
reliable int control; a no
. . a EDAC
Propagation of annotations : affected Recover
. - checkpoint or
and inference of error classes : ? reset
(\ E nrerruprtr -
reliable int y = control; % - naraware
E "‘ -:/”.- T A)
Encoding of classificiation “,...!-" Paravirtualization-based microkernel

10110110101101101010110101101011

Beyond Microkernels 11

FEHLER Use Cases

= H.264 video decoder
= ca. 3500 LoC ANSI-C

= ARM926 simulation and
real HW platform

= Assess error impact using QoS
analysis tool

= Decoding with errors (upper left)
and correctly decoded video
frame (upper right)

= Compared using various metrics
(lower half)

= Example: low error injection rate

= Few visible error impacts

= Metrics indicate many more that
are not discernible

Beyond Microkernels

é HOCHSCHULE COBURG

Frame errors - AE: 25240 (22.408 %)
1 Mean squared error (mse): 132,593
Peak signal to noise ratio (psnr): 26.906

Overall errors: 41352853 (63.626 %)
Overall errors - AE: 26756390 (41.168 %)

O 9 QofﬂineV_

12

é ~_ HOCHSCHULE COBURG

FEHLER Results

= H.264 video decoder, different videos & resolutions
= No application crashes due to hardware errors!
= Significant amount of memory can remain unprotected:

- Memory size of Memory size of
reliable data unreliable data
176 x 144 90 kB (55%) 74 kB (45%)

352 x 288 223 kB (43%) 297 kB (57%)
1280 x 720 1585 kB (37%) 2 700 kB (63%)

= QoS impact of uncorrected errors: ¥ em
Injection into unreliable memory 240 errors | s
Average PSNR of frames with errors 40.89 dB 50.57 dB

Beyond Microkernels 13

é ~_ HOCHSCHULE COBURG

Beyond FEHLER:
Enable Software Control of Memory

= Can we build an architecture covering multiple use cases?
= |dea: use on-chip scratchpad memories (SPM/TCM)

= SPM =small, fast, energy-efficient
on-chip static RAM (SRAM)
= Hard(er) to extract information
= QOptional: reduced overhead for
protection against bit flips
= Only store protected information
in external DRAM
= e.g.using
software-based
ECC & encryption

14

RERRRRRRAAE

éeyond Microkernels

é ~_ HOCHSCHULE COBURG

Software-Defined Memory

= Applications can only access SPM RAM directly
= All other memory accesses are intercepted by the microkernel

= No full MMU available on small
controllers (e.g. Cortex-M)
= No VM address translation!
= Memory Protection Unit (MPU) only
allows to define access permissions
for a small number of segments

éeyond Microkernels 15

é HOCHSCHULE COBURG

ARM Cortex-M MPU

= MPU defines segments of
RAM accessible to tasks

= All other accesses cause
a memory protection

exception ARM s for

= MPU configuration OS kernel
ety
on the fly sk

task

. B
(e.g. during a et

task switch) .

MPU configuration

Beyond Microkernels 16

é ~_ HOCHSCHULE COBURG

Software-Defined Memory:
Protection Problems

= Applications can only access SPM RAM directly
= SPM is treated like a (software-controlled) cache

" Problem:

= Applications are not expected to handle SPM contents

directly and require more RAM than available in SPM
* ,Real” DRAM memory addresses used by compiler

= However, the MPU does not perform address translation
= Two solution approaches:

= Rewrite addresses on the fly

= Use additional level of indirection

Beyond Microkernels 17

é HOCHSCHULE COBURG

Software-Defined Memory:
Instruction rewriting

= Global variable in DRAM
address space main: ldr r@, =0x80000000
= Direct access prohibited by

MPU % ~ B

papapaaanaas
AR 2 8 SRR
IRRARRARRARE

-Il'1r‘JL! " i
mpu_handler: 4-* ‘."
<&
*
addr cached ’0"
in SPM? ‘.’
Load faulted ""
addr to SPM I R 0x30000000 .
*
& decode 3 X
*
Simulate faulted o m
insn while | R 0x10000000
replacing addr | .."
1dr |re, =0x14000000) o 0X00000000 i

Beyond Microkernels 18

é ~_ HOCHSCHULE COBURG

Challenges of
Software-Defined Memory

= Rewriting or indirection?
= Indirection uses pointers to pointers
=> Easy to adapt accesses, no exception once ,fixed”,
= Runtime overhead for every load/store instruction
= Compiler backend modifications required
= Instruction rewriting faults all load/store accesses to DRAM
= Cost of exception handling + rewriting
= Memory management service in microkernel
= Requires efficient control of SPM contents
= Relation to (embedded) garbage collectors?
= Performs encoding/encryption & decoding/decryption in
software => efficient implementation?

Beyond Microkernels 19

é ~_ HOCHSCHULE COBURG

Conclusion

= Memory properties used for allocation and data flow
= Tight control of memory behavior helps to reduce
hardware overhead and improve reliability
= Similar handling of additional non-functional properties
= E.g., refresh [3], allocation of rows, power-save modes

= Basic design principle
= Perform as much analysis work as possible at compile time
= Pass relevant meta data to runtime components
= Optimize at runtime while considering additional

constraints

Beyond Microkernels 20

é ~_ HOCHSCHULE COBURG

References

[1] U. Drepper, What Every Programmer Should Know About Memory, RedHat Inc., 2007

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel, Scratchpad memory: design alternative for cache
on-chip memory in embedded systems, Proceedings of the tenth international symposium on
hardware/software codesign, 2002

[3] I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, B. Jacob, DRAM Refresh Mechanisms, Penalties, and Trade-Offs,
IEEE Transactions on Computers Vol. 65, pp. 108-121, 2016

[5] H. Schirmeier, J. Neuhalfen, I. Korb, O. Spinczyk, M. Engel, Rampage: Graceful degradation management for
memory errors in commodity linux servers, PRDC 2011

[6] H. Schirmeier, I. Korb, O. Spinczyk, M. Engel, Efficient online memory error assessment and circumvention for
Linux with RAMpage, International Journal of Critical Computer-Based Systems 17 4 (3), 227-247

[7] D. Austin et al., Reliable Systems on Unreliable Fabrics, IEEE Design&Test 2008

[8] F. Schmoll et al., Improving the Fault Resilience of an H.264 Decoder using Static Analysis Methods,
ACM TECS, 2013

[9] A. Heinig et al., Classification-based Improvement of Application Robustness and QoS in Probabilistic
Computer Systems, ARCS’12 Best Paper Award

[10] A. Heinig et al., Using Application Knowledge to Improve Embedded Systems Dependability, HotDep 2011

[11] D. Cordes, M. Engel, O. Neugebauer, P. Marwedel, Automatic extraction of pipeline parallelism for embedded
heterogeneous multi-core platforms, CASES 2013

[12] Y. Kim et al., Flipping bits in memory without accessing them: an experimental study of DRAM disturbance
errors, ISCA’14

Beyond Microkernels 21

