School of Computer Science & Engineering
COMP9242 Advanced Operating Systems .

UNSW | a5 Wl 7Y V N/
SYDNEY University \\L\
N] / V
Q
2019 T2 Week 01a N
Introduction: Microkernels and selL4 =
@GernotHeiser i

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

You are free:
« to share—to copy, distribute and transmit the work
* to remix—to adapt the work

under the following conditions:

« Attribution: You must attribute the work (but not in any way that suggests that the
author endorses you or your use of the work) as follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License

VVVVVV

Microkernels: Reducing the Trusted
Computing Base

* |dea of microkernel:
IPC performance Flexible, minimal platform
el Mechanisms, not policies
OS functionality provided by usermode servers

Servers invoked by kernel-provided message-
passing mechanism (IPC)

Goes back to Nucleus [Brinch Hansen’70]

Application

Syscall
User
Mode Device
Application Driver
Kernel
Mode

IPC, virtual memory \Ipc

2 COMP9242 2019T2 WO01a © Gernot Heiser 2019 — CC Attribution License

Monolithic vs Microkernel OS Evolution

Monolithic OS Microkernel OS

* New features add code kernel » Features add usermode code

* New policies add code kernel Policies replace usermode code
« Kernel complexity grows » Kernel complexity is stable

User

Vode « Adaptable

 Dependable
Highly optimised

Syscall = Application

VFS

20.000 IPC, file system Application
, Kernel

kSLOC Scheduler, virtual memory /ode

Niec 10 kSLOC

Device drivers, dispatcher IPC, virtual memory

3 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

4

1993 “Microkernel”: IPC Performance

[us]

400 Mach
i486 @
300 50 MHz
115 ps 200
Culprit: Cache
footprint 5 us L4
[Liedtke’95] raw copy
0 2000 4000 6000
Message Length [B]
COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

Microkernel Principle: Minimality

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [SOSP’95]

Advantages of resulting small kernel: Limited by arch-
— Easy to implement, port? specific micro-
: . optimisations
— FEasier to optimise
— Hopefully enables a minimal frusted computing base
— Easier debug, maybe even prove correct?

Small attack
« Challenges: surface, fewer
— API design: generality despite small code base failure modes

— Kernel design and implementation for high performance

5 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

Microkernel Evolution

First generation Second generation Third generation
Mach ['87], QNX, Chorus L4 [95], PikeOS, Integrity selL4 [09]
Memory Objects
Low-level FS
. Memory-
Swapping mangrr?’/c
Devices library
Kernel memory Kernel memory
Scheduling Scheduling
180 syscalls, 100 kSLOC ~7 syscalls, ~10 kSLOC ~3 syscalls, ~10 kSLOC
100 us IPC ~1 us IPC 0.1 us IPC
Capabilities

Design for isolation

© Gernot Heiser 2019 — CC Attribution License :a UNSW

YYYYYY

L4: 25 Years High Performance Microkernels

First L4 kernel
with capabilities

IOS secure

enclave

API Inheritance

5 L4-embed. OKL4 Microvisor

Code Inheritance

%

L4/MIPS

N
OKL4 pKernel l

°® Qualcomm

modem chips

L4/Alpha
£B--0re

UNSW/NICTA
| UNSWINICTA | T
GMD/IBM/Karlsruhe
NOVA

ke |
P4 PikeOS]

[Commercial Clone]

Codezero

Pistachio

93 94 95 96 97 98 99 oo ' 01 02 03 04 05 06 07 08 09 10 11 12 13

7 COMP9242 201972 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

Issues With 2G Microkernels

L4 solved microkernel performance [Hartig et al, SOSP’97]

« Left a number of security issues unsolved

* Problem: ad-hoc approach to protection and resource management
» Global thread name space = covert channels [Shapiro’03]
» Threads as IPC targets = insufficient encapsulation

 Single kernel memory pool = DoS attacks
* No delegation of authority = limited flexibility, performance issues

* Unprincipled management of time

« Addressed by sel 4

» Designed to support safety- and security-critical systems
* Principled time management (MCS branch)

8 COMP9242 2019T2 WO01a

The selL4 Microkernel

COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

)

)

Principles

« Single protection mechanism: capabilities
« Now also for time [Lyons et al, EuroSys’18]

 All resource-management policy at user level
 Painful to use

* Need to provide standard memory-management library

« Results in L4-like programming model

 Suitable for formal verification
 Proof of implementation correctness
 Attempted since 70s

 Finally achieved by L4.verified project
at NICTA [Klein et al, SOSP’09]

10 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

@ 2.4 Concepts
« Capabilities (Caps) m

* mediate access 3

» Kernel objects:
» Threads (thread-control blocks: TCBs)
« Address spaces (page table objects: PDs, PTs)
« Endpoints (IPC)
* Notifications
» Capability spaces (CNodes) . — ~

* Frames § o
* Interrupt objects (architectuie specific) F

» Untyped memory

« System calls:
« Call, Reply&Wait (and one-way variants)

* Yield

11 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

@24 What Are (Object) Capabilities?

Access rights

12 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License :,: UNSW

ssssss

Cw» selL4 Capabilities

 Stored in cap space (CSpace) O / @"W%\
« Kernel object made up of CNodes
« each an array of cap “slots” %

* Inaccessible to userland
 But referred to by pointers into CSpace (slot addresses)
* These CSpace addresses are called CPTRs

« Caps convey specific privilege (access rights)
* Read, Write, Execute, Grant (cap transfer)

b~

13 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

G w» Capabilities

* Main operations on caps:
« Invoke. perform operation on object referred to by cap
» Possible operations depend on object type
« Copyl Mint!/ Grant. create copy of cap with same/lesser privilege
« Movel Mutate. transfer to different address with same/lesser privilege
 Delete. invalidate slot (cleans up object if this is the only cap to it)
« Revoke. delete any derived (eg. copied or minted) caps

14 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License

VVVVVV

@ Cross-Address-Space Invocation (IPC)

Fundamental microkernel operation

« Kernel provides no services, only mechanisms
« OS services provided by (protected) user-level server processes

* invoked by IPC
Client “

» selL4 IPC uses a handshake through endpoints:
 Transfer points without storage capacity

« Message must be transferred instantly .
_ send receive
 Single-copy user = user by kernel

15 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License {«:

vvvvvv

” selL4 |IPC: Cross-Domain Invocation

Server

f(args) {
}

16 COMP9242 2019T2 WO01a © Gernot Heiser 2019 — CC Attribution License

@) 1Pc: Endpoints

Client Server
Running Blocked Blocked Running
while (true) {

ReplyRecv (...)

* Threads must rendez-vous Call (ep_cap, I) @@ I 3

* One side blocks until the }
other is ready 3

* Implicit synchronisation

* Message copied from sender’s to receiver’'s message regqgisters
» Message is combination of caps and data words
« Presently max 121 words (484B, incl message “tag”)
« Should never use anywhere near that much!

17 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

@ Endpoints are Message Queues

Client, 3
= o
Client,

e 8

Server

Kernel e

TCB, TCB,

)" ——

« EP has no sense of direction

« May queue senders or receivers
* never both at the same time!

« Communication needs 2 EPs!

18 COMP9242 2019T2 WO01a © Gernot Heiser 2019 — CC Attribution License H UNSW

YYYYYY

@ Server Invocation & Return

« Asymmetric relationship:
« Server widely accessible, clients not

« How can server reply back to
client (distinguish between them)?

« Client can pass (session) reply cap in first request
* server needs to maintain session state
« forces stateful server design

 selL4 solution: Kernel provides single-use reply cap
« only for Call operation
» allows server to reply to client
« cannot be copied/minted/re-used but can be movede©
« one-shot (automatically destroyed after first use)

Client;

19 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License {«:

Client,

MCS kernel
removes
the magic

vvvvvv

@ Server
oo

Client Kernel Server

ep=ReplyRecv(ep,8args)
Call(srv, args) » mint reply cap

deliver to server —s process

deliver to client «<—ep=ReplyRecv(ep,8&args)

process < destroy reply cap

20 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License

@ Stateful Servers: Identifying Clients

« Server must respond to correct client Client,

« Ensured by reply cap o =
» Must associate request Client,

Server

Client, state |
Client, state \ /

with correct state

» Could use separate EP per client

« endpoints are lightweight (16 B)
 but requires mechanism to wait on a set of EPs (like select)

* Instead, sel4 allows to individually mark (“badge”) caps to same EP

 server provides individually badged (session) caps to clients

« separate endpoints for opening session, further invocations
 server tags client state with badge
» kernel delivers badge to receiver on invocation of badged caps

21 COMP9242 2019T2 WO01a © Gernot Heiser 2019 — CC Attribution License {«: UNSW

VVVVVV

@@ IPC Mechanics: Virtual Registers

* Like physical registers, virtual registers are thread state
 context-switched by kernel
« Iimplemented as physical registers or thread-local memory

* Message registers
« contain message transferred in IPC
« architecture-dependent subset mapped to physical registers
4 on ARM & x64, 2 on ia32
* library interface hides details
« 18t transferred word is special, contains message tag

« API MR]O] refers to next word (not the tag!) Better model in
* Reply cap “MCS” branch —
» overwritten by next receive! merge soon

« can move to CSpace with cspace_save_reply_capy)

22 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

@@ IPC Operations Summary

23

 Call (ep_cap, ...)
» Afomic: guarantees caller is ready to receive reply
« Generates reply cap on-the-fly

* ReplyRecv (ep_cap, ...)
« Consumes reply cap
* Send (ep_cap, ...), Recv (ep_cap, ...), Reply(...)

* For initialisation and exception handling Nheae:dﬁggbr
* needs Write, Read permission, respectively protocol !

« NBSend (ep_cap, ...)
 Polling send, message lost if receiver not ready

No failure notification where this reveals info on other entities!

COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

FF ? Notifications

* Logically, a Notification is an array of binary semaphores

» Multiple signalling, select-like wait
« Not a message-passing IPC operation!

* Implemented by Thread, Thread,
data word in Notification Running Blocked Blocked Running

 Send OR-s sender’s
cap badge to data word

« Receiver can poll or wait

 waiting returns and
clears data word

. Sg![lellnvgvél;g treturns Signal (not_cap, ...) rr ?

w = Poll (not_cap, ...)

Signal (not_cap, ...

-/

24 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

@% Receiving from EP and Notification
Client @ m Driver

« Example: file system [Server with synchronous }

 synchronous (RPC-style) client protocol and asynchronous interface
« asynchronous naotifications from driver

« Could have separate threads waiting on endpoints
« forces multi-threaded server, concurrency control

* Alternative: allow single thread to wait on both events
* Notification is bound to thread with TCB_BindNotification()
 thread waits on Endpoint
* Notification delivered as if caller had been waiting on Notification

25 COMP9242 2019T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

