
2019 T2 Week 01a

Introduction: Microkernels and seL4

@GernotHeiser

School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice

These slides are distributed under the

Creative Commons Attribution 3.0 License

You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

under the following conditions:

• Attribution: You must attribute the work (but not in any way that suggests that the
author endorses you or your use of the work) as follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2019T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Microkernels: Reducing the Trusted
Computing Base

2 COMP9242 2019T2 W01a

• Idea of microkernel:

• Flexible, minimal platform

• Mechanisms, not policies

• OS functionality provided by usermode servers

• Servers invoked by kernel-provided message-
passing mechanism (IPC)

• Goes back to Nucleus [Brinch Hansen’70]

IPC performance
is critical!

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

© Gernot Heiser 2019 – CC Attribution License

Monolithic vs Microkernel OS Evolution

Monolithic OS

• New features add code kernel

• New policies add code kernel

• Kernel complexity grows

Microkernel OS

• Features add usermode code

• Policies replace usermode code

• Kernel complexity is stable

3 COMP9242 2019T2 W01a

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

ApplicationSyscall

Hardware

IPC, virtual memory

Application

NW
Protoc
Stack

File
ServerDevice

Driver

IPC

Kernel
Mode

User
Mode

10 kSLOC

20,000

kSLOC

• Adaptable
• Dependable
• Highly optimised

© Gernot Heiser 2019 – CC Attribution License

1993 “Microkernel”: IPC Performance

4 COMP9242 2019T2 W01a

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac

[µ

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac

L

[µ

115 µs

5 µs

i486 @
50 MHz

Culprit: Cache
footprint
[Liedtke’95]

L4

raw copy

Mach

[µs]

© Gernot Heiser 2019 – CC Attribution License

Microkernel Principle: Minimality

• Advantages of resulting small kernel:

– Easy to implement, port?

– Easier to optimise

– Hopefully enables a minimal trusted computing base
– Easier debug, maybe even prove correct?

• Challenges:

– API design: generality despite small code base

– Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack
surface, fewer
failure modes

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [SOSP’95]

COMP9242 2019T2 W01a5

© Gernot Heiser 2019 – CC Attribution License

Microkernel Evolution

IPC, MMU abstr.

Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

IPC, MMU abstr.

Scheduling

Memory-
mangmt
library

IPC, MMU abstr.

Scheduling

Kernel memory

First generation

Mach [’87], QNX, Chorus

Third generation

seL4 [’09]

Second generation

L4 [’95], PikeOS, Integrity

~3 syscalls, ~10 kSLOC

0.1 µs IPC

Capabilities
Design for isolation

180 syscalls, 100 kSLOC

100 µs IPC

~7 syscalls, ~10 kSLOC

~ 1 µs IPC

© Gernot Heiser 2019 – CC Attribution License

L4: 25 Years High Performance Microkernels

7 COMP9242 2019T2 W01a

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA

GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

iOS secure
enclave

First L4 kernel
with capabilities

Qualcomm
modem chips

© Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels

• L4 solved microkernel performance [Härtig et al, SOSP’97]

• Left a number of security issues unsolved

• Problem: ad-hoc approach to protection and resource management
• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ limited flexibility, performance issues
• Unprincipled management of time

• Addressed by seL4

• Designed to support safety- and security-critical systems
• Principled time management (MCS branch)

8 COMP9242 2019T2 W01a © Gernot Heiser 2019 – CC Attribution License

The seL4 Microkernel

9 COMP9242 2019T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Principles

• Single protection mechanism: capabilities
• Now also for time [Lyons et al, EuroSys’18]

• All resource-management policy at user level
• Painful to use

• Need to provide standard memory-management library
• Results in L4-like programming model

• Suitable for formal verification
• Proof of implementation correctness

• Attempted since ‘70s
• Finally achieved by L4.verified project

at NICTA [Klein et al, SOSP’09]

10 COMP9242 2019T2 W01a © Gernot Heiser 2019 – CC Attribution License

Concepts

• Capabilities (Caps)
• mediate access

• Kernel objects:
• Threads (thread-control blocks: TCBs)
• Address spaces (page table objects: PDs, PTs)
• Endpoints (IPC)
• Notifications
• Capability spaces (CNodes)
• Frames
• Interrupt objects (architecture specific)
• Untyped memory

• System calls:
• Call, Reply&Wait (and one-way variants)
• Yield

11 COMP9242 2019T2 W01a

© Gernot Heiser 2019 – CC Attribution License 12 COMP9242 2019T2 W01a

What Are (Object) Capabilities?

Any system call is invoking a capability:

err = cap.method(args);

Obj reference

Access rights

Capability = Access Token:

Prima-facie evidence of privilege

Eg. read, write,
send, execute…

Capabilities provide:
• Fine-grained access control
• Reasoning about information flow

Object

Eg. thread,
address space

© Gernot Heiser 2019 – CC Attribution License

seL4 Capabilities

• Stored in cap space (CSpace)
• Kernel object made up of CNodes
• each an array of cap “slots”

• Inaccessible to userland
• But referred to by pointers into CSpace (slot addresses)

• These CSpace addresses are called CPTRs
• Caps convey specific privilege (access rights)

• Read, Write, Execute, Grant (cap transfer)

13 COMP9242 2019T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Capabilities

• Main operations on caps:
• Invoke: perform operation on object referred to by cap

• Possible operations depend on object type
• Copy/Mint/Grant: create copy of cap with same/lesser privilege

• Move/Mutate: transfer to different address with same/lesser privilege

• Delete: invalidate slot (cleans up object if this is the only cap to it)

• Revoke: delete any derived (eg. copied or minted) caps

14 COMP9242 2019T2 W01a © Gernot Heiser 2019 – CC Attribution License 15 COMP9242 2019T2 W01a

Cross-Address-Space Invocation (IPC)

Fundamental microkernel operation

• Kernel provides no services, only mechanisms
• OS services provided by (protected) user-level server processes

• invoked by IPC

seL4

Client
Server

IPC

send receive

• seL4 IPC uses a handshake through endpoints:
• Transfer points without storage capacity
• Message must be transferred instantly

• Single-copy user ➞ user by kernel

© Gernot Heiser 2019 – CC Attribution License 16 COMP9242 2019T2 W01a

seL4 IPC: Cross-Domain Invocation

seL4

Client

…
err = server.f(args);
…

Server

f(args) {
…

}

IPC

seL4 IPC is not:
• A mechanism for shipping data
• A synchronisation mechanism

seL4 IPC is:
• A protected procedure call
• A user-controlled context switch

© Gernot Heiser 2019 – CC Attribution License 17 COMP9242 2019T2 W01a

IPC: Endpoints

• Threads must rendez-vous
• One side blocks until the

other is ready
• Implicit synchronisation

• Message copied from sender’s to receiver’s message registers
• Message is combination of caps and data words

• Presently max 121 words (484B, incl message “tag”)
• Should never use anywhere near that much!

…....

Client
Running Blocked

Server
Blocked Running

Call (ep_cap, …)

while (true) {

…

ReplyRecv (…)

}…....

© Gernot Heiser 2019 – CC Attribution License 18 COMP9242 2019T2 W01a

Endpoints are Message Queues

Kernel

• EP has no sense of direction

• May queue senders or receivers

• never both at the same time!

• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2

EP

Further callers of
same direction
queue behind

© Gernot Heiser 2019 – CC Attribution License

Server Invocation & Return

• Asymmetric relationship:
• Server widely accessible, clients not

• How can server reply back to
client (distinguish between them)?

• Client can pass (session) reply cap in first request
• server needs to maintain session state

• forces stateful server design

• seL4 solution: Kernel provides single-use reply cap
• only for Call operation

• allows server to reply to client

• cannot be copied/minted/re-used but can be moved

• one-shot (automatically destroyed after first use)

19 COMP9242 2019T2 W01a

Client1
Server Client2

MCS kernel
removes

the magic

© Gernot Heiser 2019 – CC Attribution License 20 COMP9242 2019T2 W01a

Call Semantics

Client

Call(srv, args)

process

Client Server

Server

ep=ReplyRecv(ep,&args)

process
ep=ReplyRecv(ep,&args)

Kernel

mint reply cap

deliver to server

deliver to client
destroy reply cap

© Gernot Heiser 2019 – CC Attribution License

Stateful Servers: Identifying Clients

• Server must respond to correct client
• Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client

• endpoints are lightweight (16 B)

• but requires mechanism to wait on a set of EPs (like select)

• Instead, seL4 allows to individually mark (“badge”) caps to same EP

• server provides individually badged (session) caps to clients

• separate endpoints for opening session, further invocations

• server tags client state with badge

• kernel delivers badge to receiver on invocation of badged caps

21 COMP9242 2019T2 W01a

Client1 Server
Client1 state

Client2 Client2 state
Args

© Gernot Heiser 2019 – CC Attribution License

IPC Mechanics: Virtual Registers
• Like physical registers, virtual registers are thread state

• context-switched by kernel
• implemented as physical registers or thread-local memory

• Message registers
• contain message transferred in IPC
• architecture-dependent subset mapped to physical registers

• 4 on ARM & x64, 2 on ia32
• library interface hides details

• 1st transferred word is special, contains message tag
• API MR[0] refers to next word (not the tag!)

• Reply cap
• overwritten by next receive!
• can move to CSpace with cspace_save_reply_cap()

22 COMP9242 2019T2 W01a

Better model in
“MCS” branch –

merge soon

© Gernot Heiser 2019 – CC Attribution License

IPC Operations Summary

• Call (ep_cap, …)
• Atomic: guarantees caller is ready to receive reply
• Generates reply cap on-the-fly

• ReplyRecv (ep_cap, …)
• Consumes reply cap

• Send (ep_cap, …), Recv (ep_cap, …), Reply(…)
• For initialisation and exception handling

• needs Write, Read permission, respectively

• NBSend (ep_cap, …)
• Polling send, message lost if receiver not ready

No failure notification where this reveals info on other entities!

23 COMP9242 2019T2 W01a

Need error
handling
protocol !

© Gernot Heiser 2019 – CC Attribution License

Notifications

• Logically, a Notification is an array of binary semaphores
• Multiple signalling, select-like wait
• Not a message-passing IPC operation!

• Implemented by
data word in Notification

• Send OR-s sender’s
cap badge to data word

• Receiver can poll or wait

• waiting returns and
clears data word

• polling just returns
data word

24 COMP9242 2019T2 W01a

…....

Thread1

Running Blocked
Thread2

Blocked Running

w = Poll (not_cap, …)

…... w = Wait (not_cap,…)
….... Signal (not_cap, …)

Signal (not_cap, …)

© Gernot Heiser 2019 – CC Attribution License 25 COMP9242 2019T2 W01a

Receiving from EP and Notification

• Example: file system
• synchronous (RPC-style) client protocol
• asynchronous notifications from driver

• Could have separate threads waiting on endpoints
• forces multi-threaded server, concurrency control

• Alternative: allow single thread to wait on both events
• Notification is bound to thread with TCB_BindNotification()

• thread waits on Endpoint

• Notification delivered as if caller had been waiting on Notification

Server
Client Driver

Server with synchronous
and asynchronous interface

