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Microkernels: Reducing the Trusted 
Computing Base
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• Idea of microkernel:

• Flexible, minimal platform

• Mechanisms, not policies

• OS functionality provided by usermode servers

• Servers invoked by kernel-provided message-
passing mechanism (IPC)

• Goes back to Nucleus [Brinch Hansen’70]

IPC performance
is critical!
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Monolithic vs Microkernel OS Evolution

Monolithic OS

• New features add code kernel

• New policies add code kernel

• Kernel complexity grows

Microkernel OS

• Features add usermode code 

• Policies replace usermode code

• Kernel complexity is stable
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1993 “Microkernel”: IPC Performance
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Microkernel Principle: Minimality

• Advantages of resulting small kernel:

– Easy to implement, port?

– Easier to optimise

– Hopefully enables a minimal trusted computing base
– Easier debug, maybe even prove correct?

• Challenges:

– API design: generality despite small code base

– Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack 
surface, fewer 
failure modes

A concept is tolerated inside the microkernel only if 
moving it outside the kernel, i.e. permitting competing 
implementations, would prevent the implementation of 
the system’s required functionality. [SOSP’95]
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Microkernel Evolution

IPC, MMU abstr.
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L4: 25 Years High Performance Microkernels
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Issues With 2G Microkernels

• L4 solved microkernel performance [Härtig et al, SOSP’97]

• Left a number of security issues unsolved

• Problem: ad-hoc approach to protection and resource management
• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ limited flexibility, performance issues
• Unprincipled management of time

• Addressed by seL4

• Designed to support safety- and security-critical systems
• Principled time management (MCS branch)
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The seL4 Microkernel
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Principles

• Single protection mechanism: capabilities
• Now also for time [Lyons et al, EuroSys’18]

• All resource-management policy at user level
• Painful to use

• Need to provide standard memory-management library
• Results in L4-like programming model

• Suitable for formal verification
• Proof of implementation correctness

• Attempted since ‘70s
• Finally achieved by L4.verified project 

at NICTA [Klein et al, SOSP’09]
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Concepts

• Capabilities (Caps)
• mediate access

• Kernel objects:
• Threads (thread-control blocks: TCBs)
• Address spaces (page table objects: PDs, PTs)
• Endpoints (IPC)
• Notifications
• Capability spaces (CNodes)
• Frames
• Interrupt objects (architecture specific)
• Untyped memory

• System calls:
• Call, Reply&Wait (and one-way variants)
• Yield
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What Are (Object) Capabilities?

Any system call is invoking a capability:

err = cap.method( args );

Obj reference

Access rights

Capability = Access Token:

Prima-facie evidence of privilege

Eg. read, write, 
send, execute…

Capabilities provide:
• Fine-grained access control
• Reasoning about information flow

Object

Eg. thread, 
address space
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seL4 Capabilities

• Stored in cap space (CSpace)
• Kernel object made up of CNodes
• each an array of cap “slots”

• Inaccessible to userland
• But referred to by pointers into CSpace (slot addresses)

• These CSpace addresses are called CPTRs
• Caps convey specific privilege (access rights)

• Read, Write, Execute, Grant (cap transfer) 
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Capabilities

• Main operations on caps:
• Invoke: perform operation on object referred to by cap

• Possible operations depend on object type
• Copy/Mint/Grant: create copy of cap with same/lesser privilege

• Move/Mutate: transfer to different address with same/lesser privilege

• Delete: invalidate slot (cleans up object if this is the only cap to it)

• Revoke: delete any derived (eg. copied or minted) caps
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Cross-Address-Space Invocation (IPC)

Fundamental microkernel operation

• Kernel provides no services, only mechanisms
• OS services provided by (protected) user-level server processes

• invoked by IPC

seL4

Client
Server

IPC

send receive

• seL4 IPC uses a handshake through endpoints:
• Transfer points without storage capacity
• Message must be transferred instantly

• Single-copy user ➞ user by kernel
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seL4 IPC: Cross-Domain Invocation

seL4

Client

…
err = server.f( args );
…

Server

f( args ) {
…

}

IPC

seL4 IPC is not:
• A mechanism for shipping data
• A synchronisation mechanism

seL4 IPC is:
• A protected procedure call
• A user-controlled context switch
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IPC: Endpoints

• Threads must rendez-vous
• One side blocks until the

other is ready
• Implicit synchronisation

• Message copied from sender’s to receiver’s message registers
• Message is combination of caps and data words 

• Presently max 121 words (484B, incl message “tag”)
• Should never use anywhere near that much!

….... 

Client
Running Blocked

Server
Blocked Running

Call (ep_cap, …)

while (true) {

…

ReplyRecv (…)

}….... 
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Endpoints are Message Queues

Kernel

• EP has no sense of direction

• May queue senders or receivers

• never both at the same time!

• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2

EP

Further callers of 
same direction 
queue behind
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Server Invocation & Return

• Asymmetric relationship: 
• Server widely accessible, clients not

• How can server reply back to 
client (distinguish between them)?

• Client can pass (session) reply cap in first request
• server needs to maintain session state

• forces stateful server design

• seL4 solution: Kernel provides single-use reply cap
• only for Call operation

• allows server to reply to client

• cannot be copied/minted/re-used but can be moved

• one-shot (automatically destroyed after first use)
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Client1
Server Client2

MCS kernel 
removes 

the magic
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Call Semantics

Client

Call(srv, args)

process

Client Server

Server

ep=ReplyRecv(ep,&args)

process
ep=ReplyRecv(ep,&args)

Kernel

mint reply cap

deliver to server

deliver to client
destroy reply cap
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Stateful Servers: Identifying Clients

• Server must respond to correct client
• Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client

• endpoints are lightweight (16 B)

• but requires mechanism to wait on a set of EPs (like select)

• Instead, seL4 allows to individually mark (“badge”) caps to same EP

• server provides individually badged (session) caps to clients

• separate endpoints for opening session, further invocations

• server tags client state with badge

• kernel delivers badge to receiver on invocation of badged caps
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Client1 Server
Client1 state

Client2 Client2 state
Args
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IPC Mechanics: Virtual Registers
• Like physical registers, virtual registers are thread state

• context-switched by kernel
• implemented as physical registers or thread-local memory

• Message registers
• contain message transferred in IPC
• architecture-dependent subset mapped to physical registers

• 4 on ARM & x64, 2 on ia32
• library interface hides details

• 1st transferred word is special, contains message tag
• API MR[0] refers to next word (not the tag!)

• Reply cap
• overwritten by next receive!
• can move to CSpace with cspace_save_reply_cap()
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Better model in 
“MCS” branch –

merge soon
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IPC Operations Summary

• Call (ep_cap, …)
• Atomic: guarantees caller is ready to receive reply
• Generates reply cap on-the-fly

• ReplyRecv (ep_cap, …)
• Consumes reply cap

• Send (ep_cap, …), Recv (ep_cap, …), Reply(…)
• For initialisation and exception handling

• needs Write, Read permission, respectively

• NBSend (ep_cap, …)
• Polling send, message lost if receiver not ready

No failure notification where this reveals info on other entities!
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Need error 
handling 
protocol !
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Notifications

• Logically, a Notification is an array of binary semaphores
• Multiple signalling, select-like wait
• Not a message-passing IPC operation!

• Implemented by 
data word in Notification

• Send OR-s sender’s 
cap badge to data word

• Receiver can poll or wait

• waiting returns and 
clears data word

• polling just returns 
data word
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….... 

Thread1

Running Blocked
Thread2

Blocked Running

w = Poll (not_cap, …)

…... w = Wait (not_cap,…)    
….... Signal (not_cap, …)

Signal (not_cap, …)
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Receiving from EP and Notification

• Example: file system
• synchronous (RPC-style) client protocol
• asynchronous notifications from driver

• Could have separate threads waiting on endpoints
• forces multi-threaded server, concurrency control

• Alternative: allow single thread to wait on both events
• Notification is bound to thread with TCB_BindNotification()

• thread waits on Endpoint

• Notification delivered as if caller had been waiting on Notification

Server
Client Driver

Server with synchronous 
and asynchronous interface


