
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2019 T2 Week 06a
Security Fundamentals
@GernotHeiser
Incorporating material from Toby Murray

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License

• You are free:
• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2019T2 W06a: Security Fundamentals

© Gernot Heiser 2019 – CC Attribution License

What is Security?

2 COMP9242 2019T2 W06a: Security Fundamentals

Different things to different people:

© Gernot Heiser 2019 – CC Attribution License

Computer Security
Protecting my interests (that are under computer control) from threats
• Inherently subjective

• Different people have different interests
• Different people face different threats

• Don’t expect one-size-fits-all solutions
• Grandma doesn’t need an air gap
• Windows insufficient for protecting

TOP SECRET (TS) classified data
on an Internet-connected machine

3 COMP9242 2019T2 W06a: Security Fundamentals

Security claims only make sense
• wrt defined objectives
• while identifying threats
• and identifying secure states

© Gernot Heiser 2019 – CC Attribution License

Other things are getting worse:
• OS kernel sizes keep growing
• Fast growth in attacker capabilities
• Slow growth in defensive capabilities

State of OS Security
• Traditionally:

• Has not kept pace with evolving user demographics
• Focused on e.g. Defence and Enterprise

• Has not kept pace with evolving threats
• Much security work is reactive rather than proactive

4 COMP9242 2019T2 W06a: Security Fundamentals

Some things are getting better:
• more systematic hardening of OSes
• Better security models in smartphones

compared to desktops

© Gernot Heiser 2019 – CC Attribution License

OS Security
• What is the role of the OS for security?
• Minimum:

• provide mechanisms to allow the construction of secure systems
• that are capable of securely implementing the intended

users’/administrators’ policies
• while ensuring these mechanisms cannot be subverted

5 COMP9242 2019T2 W06a: Security Fundamentals

© Gernot Heiser 2019 – CC Attribution License

Good Security Mechanisms
• Are widely applicable
• Support general security principles
• Are easy to use correctly and securely
• Do not hinder non-security priorities (e.g. productivity, generativity)

• Principle of “do not pay for what you don’t need”

6 COMP9242 2019T2 W06a: Security Fundamentals

Good mechanisms lend themselves to
correct implementation and verification!

© Gernot Heiser 2019 – CC Attribution License

Security Design Principles
Saltzer & Schroeder [SOSP ’73, CACM ’74]
• Economy of mechanism – KISS
• Fail-safe defaults – as in any good engineering
• Complete mediation – check everything
• Open design – not security by obscurity
• Separation of privilege – defence in depth
• Least privilege – aka principle of least authority (POLA)
• Least common mechanism – minimise sharing
• Psychological acceptability – if it’s hard to use it won’t be

7 COMP9242 2019T2 W06a: Security Fundamentals

© Gernot Heiser 2019 – CC Attribution License

Common OS Security Mechanisms
• Access Control Systems

• control what each process can access
• Authentication Systems

• confirm the identity on whose behalf a process is running
• Logging

• for audit, detection, forensics and recovery
• Filesystem Encryption
• Credential Management
• Automatic Updates

8 COMP9242 2019T2 W06a: Security Fundamentals

Fundamental
mechanism

© Gernot Heiser 2019 – CC Attribution License

read

Security Policies
• Define what should be protected, and from whom

• Often in terms of common security goals (CIA properties):
• Confidentiality

• X should not be learnt by Low
• Integrity

• Y should not be tampered with by Low
• Availability

• Z should not be made unavailable to High by Low

9 COMP9242 2019T2 W06a: Security Fundamentals

High

XY Z

Low

write

© Gernot Heiser 2019 – CC Attribution License

Security vs Safety

10 COMP9242 2019T2 W06a: Security Fundamentals

SecuritySafety
Availability

Timeliness Confidentiality

Integrity

Fundamentally, OS-level
security & safety enforcement

is about isolation

© Gernot Heiser 2019 – CC Attribution License

Policy vs Mechanism
• Policies accompany mechanisms:

• access control policy
• who can access what?

• authentication policy
• is password sufficient to authenticate TS access?

• Policy often restricts the applicable mechanisms
• One person’s policy is another’s mechanism

11 COMP9242 2019T2 W06a: Security Fundamentals

© Gernot Heiser 2019 – CC Attribution License

Assumptions
• All policies and mechanisms operate under certain assumptions

• e.g. TS-cleared users can be trusted not to write TS data into the
UNCLASS window

• Problem: implicit or poorly understood assumption

12 COMP9242 2019T2 W06a: Security Fundamentals

Good assumptions are
• clearly identified
• verifiable!

© Gernot Heiser 2019 – CC Attribution License

Risk Management
• Comes down to risk management

• There is no absolute security, what risks we are willing to tolerate?
• Cost & likelihood of violation vs. cost of prevention
• Gain vs cost for attacker

• Actions:
• mitigate – using security mechanisms
• transfer – e.g. by buying insurance

13 COMP9242 2019T2 W06a: Security Fundamentals

Good security policy will
identify appropriate action,
based on risk assessment

© Gernot Heiser 2019 – CC Attribution License

Trust
• Systems always have trusted entites

• whose misbehaviour can cause insecurity
• hardware, OS, sysadmin ...

• Secure systems require the TCB to be trustworthy

• achieved through assurance and verification
• shows that the TCB is unlikely to misbehave

• Minimising the TCB is key for ensuring correct behaviour

14 COMP9242 2019T2 W06a: Security Fundamentals

Trusted computing base (TCB):
The set of all trusted entities

© Gernot Heiser 2019 – CC Attribution License

Assurance and Formal Verification
• Assurance:

• systematic evaluation and testing
• essentially an intensive and onerous form of quality assurance

• Formal verification:
• mathematical proof

• Certification: independent examination
• confirming that the assurance or verification was done right

15 COMP9242 2019T2 W06a: Security Fundamentals

Assurance and formal verification
aim to establish correctness of
• mechanism design
• mechanism implementation

© Gernot Heiser 2019 – CC Attribution License

Covert Channels
• Information flow not controlled by security mechanisms

• Confidentiality requires absence of all such channels
• Storage Channel: Attribute of shared resource used as channel

• Controllable by access control
• Timing Channel: Temporal order of shared resource accesses

• Outside of access-control system
• Much more difficult to control and analyse

• Other physical channels:
• Power draw
• Temperature (fan speed)
• Electromagnetic emanation
• Acoustic emanation

16 COMP9242 2019T2 W06a: Security Fundamentals

void leak(secret){
if (secret) {

create (“/tmp/true”);
} else {

create (“/tmp/false”);
}

}

© Gernot Heiser 2019 – CC Attribution License

Covert Timing Channels
• Created by shared resource whose effect on timing can be monitored

• network bandwidth, CPU load, memory latency ...
• Requires access to a time source

• Anything that allows processes to synchronise
• Generally any relative occurrence of two event

• Critical issue is channel bandwidth
• low bandwidth limits damage

• why DRM ignores low bandwidth channels
• beware of amplification

• e.g. leaking passwords, encryption keys etc.

17 COMP9242 2019T2 W06a: Security Fundamentals

Typical timing channels:
• Measure server response times
• Measure own progress

© Gernot Heiser 2019 – CC Attribution License

Covert Channels vs Side Channels

18 COMP9242 2019T2 W06a: Security Fundamentals

AttackerTrojan

• Trojan intentionally creates signal
through targeted resource use

• Worst-case bandwidth

Covert Channel

Victim Attacker

• Attacker uses signal created
by victim’s innocent operations

• Much lower bandwidth

Side Channel

© Gernot Heiser 2019 – CC Attribution License

Summary of Introduction
• Security is very subjective, needs well-defined objectives
• OS security:

• provide good security mechanisms
• that support users’ policies

• Security depends on establishing trustworthiness of trusted entities
• TCB: set of all such entities

• should be as small as possible
• Main approaches: assurance and verification

19 COMP9242 2019T2 W06a: Security Fundamentals

The OS is necessarily
part of the TCB

© Gernot Heiser 2019 – CC Attribution License

Access-Control Principles

20 COMP9242 2019T2 W06a: Security Fundamentals © Gernot Heiser 2019 – CC Attribution License

Access Control
Who can access what in which ways
• The “who” are called subjects (or agents)

• e.g. users, processes etc.
• The “what” are called objects

• e.g. individual files, sockets, processes etc.
• includes all subjects

• The “ways” are called permissions
• e.g. read, write, execute etc.
• are usually specific to each kind of object
• include those meta-permissions that allow modification of the

protection state
• e.g. own

21 COMP9242 2019T2 W06a: Security Fundamentals

High

XY Z

Low

write

© Gernot Heiser 2019 – CC Attribution License

Access Control Mechanisms & Policies
• Access Control Policy

• Specifies allowed accesses
• And how these can change over time

• Access Control Mechanism
• Used to implement the policy

• Certain mechanisms lend themselves to certain kinds of policies
• Some policies cannot be expressed using your OS’s mechanisms

22 COMP9242 2019T2 W06a: Security Fundamentals © Gernot Heiser 2019 – CC Attribution License

Protection State: Access-Control Matrix

23 COMP9242 2019T2 W06a: Security Fundamentals

Obj1 Obj2 Obj3 Subj2

Subj1 R RW send

Subj2 RX control

Subj3 RW
RWX
own

recv

Subjects are
also objects

Defines system’s protection state at a
particular time instance [Lampson ‘71]

© Gernot Heiser 2019 – CC Attribution License

Representing Protection State

24 COMP9242 2019T2 W06a: Security Fundamentals

Obj1 Obj2 Obj3 Subj2

Subj1 R RW send

Subj2 RX control

Subj3 RW
RWX
own

recv

Storing full matrix too inefficient
• huge but sparse
• highly dynamic

Store by row
or by column

Obj1
Subj1: R
Subj3: RW

Access-control
list (ACL)

Subj3
Obj1: RW
Obj3: RWX, own
Subj2: recv

Capability list
(Clist)

Defines subject’s
protection domain

Capability

© Gernot Heiser 2019 – CC Attribution License

Access Control Lists (ACLs)
• Subjects usually aggregated into classes

• e.g. UNIX: owner, group, everyone
• more general lists in Windows, recent Linux
• Can have negative rights

eg. to overwrite group rights
• Meta-permissions (e.g. own)

• control class membership
• allow modifying the ACL

25 COMP9242 2019T2 W06a: Security Fundamentals

Obj1
Subj1: R
Subj3: RW

Used by all mainstream OSes

© Gernot Heiser 2019 – CC Attribution License

Capability-Based Access Contol

26 COMP9242 2019T2 W06a: Security Fundamentals

Any system call is invoking a capability:
err = cap.method(args);

Obj reference
Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Capabilities provide:
• Fine-grained access control
• Reasoning about information flow

Object

Subj3
Obj1: RW
Obj3: RWX, own
Subj2: recv

Used in very few commercial systems:
• IBM System/38→AS/400→i-Series
• KeyKOS [Bomberger et al, 1992]

© Gernot Heiser 2019 – CC Attribution License

Capabilities: Implementations
• Capabilities must be unforgeable

• Traditionally protected by hardware (tagged memory), eg System-38
• Can be copied etc like data
• eg IBM System/38, Hydra, Cheri

• On conventional hardware, either:
• Stored as ordinary user-level data, but unguessable due to sparseness

• contains password or secure hash: PCS [Anderson’86], Mungi
• “sparse” capabilies

• Privileged kernel data
• referred to by user programs by index/address
• eg Mach [Accetta’86], EROS [Shapiro’99], seL4, Unix file descriptors
• “partitioned” or “segregated” capabilities

27 COMP9242 2019T2 W06a: Security Fundamentals

tag word word word word

© Gernot Heiser 2019 – CC Attribution License

ACLs & Capabilities – Duals?
• In theory dual representations of access control matrix
• Practical differences:

• Naming and namespaces
• Ambient authority
• Deputies

• Evolution of protection state
• Forking
• Auditing of protection state

28 COMP9242 2019T2 W06a: Security Fundamentals © Gernot Heiser 2019 – CC Attribution License

Duals: Naming and Name Spaces
• ACLs:

• objects referenced by name
• e.g. open(“/etc/passwd”,O_RDONLY)

• require a subject (class) namespace
• e.g. UNIX users and groups

• Capabilities:
• objects referenced by capability
• no further namespace required
• cannot even name object without access

29 COMP9242 2019T2 W06a: Security Fundamentals

© Gernot Heiser 2019 – CC Attribution License

Duals: Confused Deputy

30 COMP9242 2019T2 W06a: Security Fundamentals

Subject

Alice gcc Log fileRWX

Deputy

alice$ gcc –o LogFile source.c
static char* log = “/var/gcc/log”;
int gcc (char *src, *dest) {

int s = open (src, RDONLY);
int l = open (log, APPEND);
int d = open (dest, WRONLY);
…
write (dest, …);

}
Clobber log!

• ACLs separate naming and permissions
• Deputy depends on ambient authority

• Uses own authority for access

Confused-deputy problem
is unsolvable with ACLs!

Unix:
• Log file is group admin
• Alice not member of admin
• gcc is set-UID admin

© Gernot Heiser 2019 – CC Attribution License

Duals: Confused Deputy

31 COMP9242 2019T2 W06a: Security Fundamentals

Subject

Alice gcc Log fileRWX

Deputy

alice$ gcc –o LogFile source.c
static cap_t log = <cap>;
int gcc (cap_t src, dest) {

fd_t s = open (src, RDONLY);
fd_t l = open (log, APPEND);
df_t d = open (dest, WRONLY);
…
write (d, …);

}

Cap system:
• gcc holds w cap for log file
• Alice holds r cap for source,

w cap for destination
• Alice holds no cap for log file

Open fails!

• Caps are both names and permissions
• Presentation is explicit, not ambient
• Can’t name something if don’t have access!

Capabilities avoid
confused deputies

© Gernot Heiser 2019 – CC Attribution License

Duals: Evolution of Protection State
ACLs: Protection state changes by modifying ACLs
• Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

• Fundamental properties enable reasoning about information flow:
• A can send message to B only if A holds cap to B
• A can obtain access to C only if it receives message with cap to C

• Right to delegate may also be controlled by capabilities, e.g.:
• A can delegate to B only if A has a delegable capability to B
• A can delegate X to B only if it has grant authority on X

32 COMP9242 2019T2 W06a: Security Fundamentals © Gernot Heiser 2019 – CC Attribution License

Duals: Process Creation
• What permissions should children get?
• ACLs: depends on the child’s subject

• UNIX etc.: child inherits parent’s subject
• Inherits all of the parent’s permissions
• Any program you run inherits all of your authority

• Opposite of least privilege!
• Capabilities: child has no caps by default

• Parent gets a capability to the child upon fork
• Used to delegate explicitly the necessary authority
• Defaults to least privilege

33 COMP9242 2019T2 W06a: Security Fundamentals

Parent

XY Z

Child

XY Z

Spawn()

Child

Spawn()

ACL
system

Cap
system

© Gernot Heiser 2019 – CC Attribution License

Duals: Auditing of Protection State
• Who has permission to access a particular object (right now)?

• ACLs: Just look at the ACL
• Caps: hard to determine with sparse or tagged caps, or for partitioned

• What objects a can particular subject access (right now)?
• Capabilities: Just look at its capabilities
• ACLs: may be impossible to determine without full scan

34 COMP9242 2019T2 W06a: Security Fundamentals

“Who can access my stuff?”
vs

“How much damage can C do?”

© Gernot Heiser 2019 – CC Attribution License

Interposing Access

35 COMP9242 2019T2 W06a: Security Fundamentals

Caps are opaque object references (pure names)

• Holder cannot tell which object a cap references nor the authority
• Supports transparent interposition (virtualisation)

A
B

invoke

ref B

“B”

ref Bref “B”

Usage:
• API virtualisation
• Security monitor

– Security policy enforcement
– Info flow tracing
– Packet filtering…

• Secure logging
• Debugging
• Lazy object creation

© Gernot Heiser 2019 – CC Attribution License

Server
Client

Example: Lazy Object Construction

36 COMP9242 2019T2 W06a: Security Fundamentals

obj1
obj2
obj3

obj1.meth(args);
…
ob1.meth(args);

obj() {
= create…

substitute cap
}

meth() {
perf operation

}

© Gernot Heiser 2019 – CC Attribution License

Duals: Satzer & Schroeder Principles

37 COMP9242 2019T2 W06a: Security Fundamentals

Security Principle ACLs Capabilities

Economy of Mechanism Dubious Yes!
Fail-safe defaults Generally not Yes!
Complete mediation Yes (if properly done) Yes (if properly done)
Open design Neutral Neutral
Separation of privilege No Doable
Least privilege No Yes
Least common mechanism No Yes, but…
Psychological acceptability Neutral Neutral

© Gernot Heiser 2019 – CC Attribution License

Mandatory vs Discretionar Access Control
Discretionary Access Control (DAC):

• Users can make access control decisions
• Delegate their access to other users etc.

Mandatory Access Control (MAC):
• System enforces administrator-defined policy
• Users can only make access control decisions subject to mandatory policy
• Can prevent untrusted applications from causing damage
• Traditionally used in national security environments

38 COMP9242 2019T2 W06a: Security Fundamentals

Can I stop my
browser leaking

secrets?

© Gernot Heiser 2019 – CC Attribution License

Bell & LaPadula (BLP) Model [1966]
• MAC Policy/Mechanism

• Formalises national security classifications
• Every object assigned a classification

• e.g. TS, S, C, U
• orthogonal security compartments

• Support need-to-know

• Classifications ordered in a lattice
• e.g. TS > S > C > U

• Every subject assigned a clearance
• Highest classification they’re allowed to learn

39 COMP9242 2019T2 W06a: Security Fundamentals

Un-
classified

Confi-
dential

Sec-
ret

TS

© Gernot Heiser 2019 – CC Attribution License

Trend to
over-classify

BLP: Rules
• Simple Security Property (“no read up”):

• s can read o iff clearance(s) >= class(o)
• s-cleared subject can read U,C,S but not TS
• standard confidentiality

• ★-Property (“no write down”):
• s can write o iff clearance(s) <= class(o)
• S-cleared subject can write TS,S, but not C,U
• to prevent accidental or malicious

leakage of data to lower levels
• In practice need exceptions

• allow trusted entity to write down
• de-classify

40 COMP9242 2019T2 W06a: Security Fundamentals

UNCLASS

CONF

S

TS

Re
ad

W
rite

E.g.
logging

© Gernot Heiser 2019 – CC Attribution License

MAC With Caps

41 COMP9242 2019T2 W06a: Security Fundamentals

A
B

send(B, cap)

divert

Monitor

interpose_transfer(cap) {
if (A.clear > B.clear) {

c = mint(cap, -r);
send(B,c);

} else if (a.clear < b.clear) {
c = mint(cap, -w);
send(B,c);

} else {
send(B,cap);

}
}

© Gernot Heiser 2019 – CC Attribution License

Bibra Integrity Model
• Bell-LaPadula enforces confidentiality

• Biba: Its dual, enforces integrity

• Objects now carry integrity classification
• Subjects labelled by lowest level of data

each subject is allowed to learn
• BLP order is inverted:

• s can read o iff clearance(s) <= class(o)
• s can write o iff clearance(s) >= class(o)

42 COMP9242 2019T2 W06a: Security Fundamentals

Low

Hi

Re
ad

W
rite

© Gernot Heiser 2019 – CC Attribution License

Confidentiality + Integrity
• BLP+Bibra allows no information flow across classes
• Practicality requires weakening

• Assume high-classified subject to
treat low-integrity info responsibly

• Allow read-down
• Strong *-Property (“matching writes only”):

• s can write o iff clearance(s) = class(o)
• Eg for logging, high reads low data and logs

43 COMP9242 2019T2 W06a: Security Fundamentals

UNCLASS

CONF

S

TS

Re
ad

W
rite

© Gernot Heiser 2019 – CC Attribution License

Boebert’s Attack

44 COMP9242 2019T2 W06a: Security Fundamentals

Low Low Obj: lo

High High Obj: hi

RW

R

R

rw_l.write(rw_l)

lo_rw

lo_r
hi_r

lo_rw

l_r.read()

lo_rw

RW

★-Property
violated!

“On the inability of an
unmodified capability

machine to enforce the ★-
property” [Boebert’84]

Works where caps
are indistinguishable

from data (HW &
sparse caps)

Takeaway: Need
mechanism to limit
cap propagation:
take-grant model

© Gernot Heiser 2019 – CC Attribution License

Decidability

45 COMP9242 2019T2 W06a: Security Fundamentals

Safety: Given initial safe state s,
system will never reach unsafe state s’

Decidability: AC system is
decidable if safety can aways

be computationally determined

Equivalent to halting problem
[Harrison, Ruzzo, Ullman ‘75]

• Most capability systems are decidable
• Unclear for many common ACL systems

© Gernot Heiser 2019 – CC Attribution License

Summary: AC Principles
• ACLs and Capabilities:

• Capabilities tend to better support least privilege
• But ACLs can be better for auditing

• MAC good for global security requirements
• Not all mechanisms can enforce all policies

• e.g. ★-property with sparse or HW capabilities
• AC systems should be decidable so we can reason about security

46 COMP9242 2019T2 W06a: Security Fundamentals

