
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2020 T2 Week 01a
Introduction: Microkernels and seL4
@GernotHeiser

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Microkernels: Reducing the Trusted Computing Base

2 COMP9242 2020T2 W01a

• Idea of microkernel:
• Flexible, minimal platform
• Mechanisms, not policies
• OS functionality provided by usermode servers
• Servers invoked by kernel-provided message-

passing mechanism (IPC)
• Goes back to Nucleus [Brinch Hansen’70]

IPC performance
is critical!

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

© Gernot Heiser 2019 – CC Attribution License

Monolithic vs Microkernel OS Evolution
Monolithic OS
• New features add code kernel
• New policies add code kernel
• Kernel complexity grows

Microkernel OS
• Features add usermode code
• Policies replace usermode code
• Kernel complexity is stable

3 COMP9242 2020T2 W01a

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

ApplicationSyscall

Hardware

IPC, virtual memory

Application

NW
Protoc
Stack

File
ServerDevice

Driver

IPC

Kernel
Mode

User
Mode

10 kSLOC

20,000
kSLOC

• Adaptable
• Dependable
• Highly optimised

© Gernot Heiser 2019 – CC Attribution License

1993 “Microkernel”: IPC Performance

4 COMP9242 2020T2 W01a

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac
[µ

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac

L

[µ

115 µs

5 µs

i486 @
50 MHz

L4

raw copy

Mach
[µs]

Culprit:
Cache footprint
[Liedtke’95]

© Gernot Heiser 2019 – CC Attribution License

Microkernel Principle: Minimality

• Advantages of resulting small kernel:
– Easy to implement, port?
– Easier to optimise
– Hopefully enables a minimal trusted computing base
– Easier debug, maybe even prove correct?

• Challenges:
– API design: generality despite small code base
– Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack
surface, fewer
failure modes

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [SOSP’95]

COMP9242 2020T2 W01a5

© Gernot Heiser 2019 – CC Attribution License

Microkernel Evolution

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

IPC, MMU abstr.
Scheduling

Kernel memory

First generation
Mach [’87], QNX, Chorus

Third generation
seL4 [’09]

Second generation
L4 [’95], PikeOS, Integrity

~3 syscalls, ~10 kSLOC
0.1 µs IPC
Capabilities
Design for isolation

180 syscalls, 100 kSLOC
100 µs IPC

~7 syscalls, ~10 kSLOC
~ 1 µs IPC

COMP9242 2020T2 W01a6

© Gernot Heiser 2019 – CC Attribution License

L4: 25 Years High Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

iOS secure
enclave

First L4 kernel
with capabilities

Qualcomm
modem chips

COMP9242 2020T2 W01a7

© Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]
• Left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ impacts flexibility, performance
• Unprincipled management of time

• Addressed by seL4
• Designed to support safety- and security-critical systems
• Principled time management (new MCS configuration)

8 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

The seL4 Microkernel

9 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Principles
• Single protection mechanism: capabilities

• Now also for time: MCS configuration [Lyons et al, EuroSys’18]
• All resource-management policy at user level

• Painful to use
• Need to provide standard memory-management library

• Results in L4-like programming model
• Suitable for formal verification

• Proof of implementation correctness
• Attempted since ‘70s
• Finally achieved by L4.verified project

at NICTA [Klein et al, SOSP’09]

10 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License 11 COMP9242 2020T2 W01a

Concepts in a Slide
• Capabilities (Caps): reference kernel objects
• 10 kernel object types:

• Threads (thread-control blocks: TCBs)
• Scheduling contexts (SCs)
• Address spaces (page table objects: PDs, PTs)
• Endpoints (IPC)
• Reply objects (ROs)
• Notifications
• Capability spaces (CNodes)
• Frames
• Interrupt objects (architecture specific)
• Untyped memory

• System calls:
• Call(), ReplyRecv() (and one-way variants)
• Yield()

© Gernot Heiser 2019 – CC Attribution License

Not a Concept: Hardware Abstraction
Why?
• Hardware abstraction violates minimality
• Hardware abstraction introduces policy

True microkernel:
• Minimal wrapper of hardware, just enough to safely multiplex
• “CPU driver” [Charles Gray]
• Similarities with Exokernels [Engeler ’95]

12 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License 13 COMP9242 2020T2 W01a

What Are (Object) Capabilities?

Any system call is invoking a capability:
err = cap.method(args);

Obj reference
Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Eg. read, write,
send, execute…

Capabilities provide:
• Fine-grained access control
• Reasoning about information flow

Object

Eg. thread,
address space

© Gernot Heiser 2019 – CC Attribution License

seL4 Capabilities
• Stored in cap space (CSpace)

• Kernel object made up of CNodes
• each an array of cap “slots”

• Inaccessible to userland
• But referred to by pointers into CSpace (slot addresses)
• These CSpace addresses are called CPTRs

• Caps convey specific privilege (access rights)
• Read, Write, Execute, GrantReply (call), Grant (cap transfer)

14 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

Capabilities

• Main operations on caps:
• Invoke: perform operation on object referred to by cap

• Possible operations depend on object type
• Copy/Mint/Grant: create copy of cap with same/lesser privilege
• Move/Mutate: transfer to different address with same/lesser privilege
• Delete: invalidate slot (cleans up object if this is the only cap to it)
• Revoke: delete any derived (eg. copied or minted) caps

15 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

seL4 Mechanisms
IPC & Notifications

16 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License 17 COMP9242 2020T2 W01a

Cross-Address-Space Invocation (IPC)

Fundamental microkernel operation
• Kernel provides no services, only mechanisms
• OS services provided by (protected) user-level server processes
• invoked by IPC

seL4

Client Server

IPC

send receive

• seL4 IPC uses a handshake through endpoints:
• Transfer points without storage capacity
• Message must be transferred instantly

• Single-copy user ➞ user by kernel

© Gernot Heiser 2019 – CC Attribution License 18 COMP9242 2020T2 W01a

seL4 IPC: Cross-Domain Invocation

seL4

Client

…
err = server.f(args);
…

Server

f(args) {
…

}

IPC

seL4 IPC is not:
• A mechanism for shipping data
• A synchronisation mechanism

• side effect, not purpose

seL4 IPC is:
• A protected procedure call
• A user-controlled context switch

© Gernot Heiser 2019 – CC Attribution License 19 COMP9242 2020T2 W01a

IPC: Endpoints

• Threads must rendez-vous
• One side blocks until the

other is ready
• Implicit synchronisation

• Message copied from sender’s to receiver’s message registers
• Message is combination of caps and data words

• Presently max 121 words (484B, incl message “tag”)
• Should never use anywhere near that much!

…....

Client
Running Blocked

Server
Blocked Running

Call (ep_cap, …)

while (true) {
…
ReplyRecv (…)

}…....

• Involves 2 threads, but
always one blocked

• logically, thread moves
between address spaces

© Gernot Heiser 2019 – CC Attribution License 20 COMP9242 2020T2 W01a

Endpoints are Message Queues

Kernel

• EP has no sense of direction
• May queue senders or receivers

• never both at the same time!
• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2
EP

Further callers of
same direction
queue behind

TCBS

Note: Should not
normally get
queues on a
single core, server
should have
higher priority
than clients!

© Gernot Heiser 2019 – CC Attribution License

Server Invocation & Return
• Asymmetric relationship:

• Server widely accessible, clients not
• How can server reply back to

client (distinguish between them)?
• Client can pass (session) reply cap in first request

• server needs to maintain session state
• forces stateful server design

• seL4 solution: Kernel creates channel in reply object (RO)
• server provides RO in ReplyRecv() operation
• kernel connects RO to client when executing receive phase
• server invokes RO for send phase (only one send until refreshed)
• only works when client invokes with Call()

21 COMP9242 2020T2 W01a

Client1 Server Client2

New MCS
kernel

semantics!

© Gernot Heiser 2019 – CC Attribution License 22 COMP9242 2020T2 W01a

Call Semantics

Client

Call(ep, args)

process

Client Server

Kernel

deliver to server
block client on RO

deliver to client

Server
ReplyRecv(ro,ep,&args)

process
ReplyRecv(ro,ep,&args)

ep

ro

© Gernot Heiser 2019 – CC Attribution License

Stateful Servers: Identifying Clients
• Server must respond to correct client

• Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client
• endpoints are lightweight (16 B)
• but requires mechanism to wait on a set of EPs (like select)

• Instead, seL4 allows to individually mark (“badge”) caps to same EP
• server provides individually badged (session) caps to clients

• separate endpoints for opening session, further invocations
• server tags client state with badge
• kernel delivers badge to receiver on invocation of badged caps

23 COMP9242 2020T2 W01a

Client1 Server
Client1 state

Client2 Client2 state
Args

© Gernot Heiser 2019 – CC Attribution License

IPC Mechanics: Virtual Registers
• Like physical registers, virtual registers are thread state

• context-switched by kernel
• implemented as physical registers or thread-local memory

• Message registers
• contain message transferred in IPC
• architecture-dependent subset mapped to physical registers

• 4 on ARM & x64
• library interface hides details
• 1st transferred word is special, contains message tag

• API MR[0] refers to next word (not the tag!)

24 COMP9242 2020T2 W01a

© Gernot Heiser 2019 – CC Attribution License

IPC Operations Summary
• Call (ep_cap, …)

• Atomic: guarantees caller is ready to receive reply
• Sets up server’s reply object

• ReplyRecv (ep_cap, …)
• Invokes RO, waits on EP, re-inits RO

• Recv (ep_cap, …), Reply(…), Send (ep_cap, …)
• For initialisation and exception handling
• needs Write, Read permission, respectively

• NBSend (ep_cap, …)
• Polling send, message lost if receiver not ready

No failure notification where this reveals info on other entities!

25 COMP9242 2020T2 W01a

Need error
handling
protocol !

Not really
useful

© Gernot Heiser 2019 – CC Attribution License

Notifications – Synchronisation Objects
• Logically, a Notification is an array of binary semaphores

• Multiple signalling, select-like wait
• Not a message-passing IPC operation!

• Implemented by
data word in Notification

• Send OR-s sender’s
cap badge to data word

• Receiver can poll or wait
• waiting returns and

clears data word
• polling just returns

data word

26 COMP9242 2020T2 W01a

…....

Thread1
Running Blocked

Thread2
Blocked Running

w = Poll (not_cap, …)

…... w = Wait (not_cap,…)
….... Signal (not_cap, …)

Signal (not_cap, …)

© Gernot Heiser 2019 – CC Attribution License 27 COMP9242 2020T2 W01a

Receiving from EP and Notification

Server
Client Driver

Server with synchronous and asynchronous interface

Synchronous
RPC protocol

Asynchronous
completion signals

Separate thread
per interface? Concurrency

control, complexity!
Better: single thread for both interfaces
• Notification “bound” to TCB
• Signal delivered as “IPC” from EP

© Gernot Heiser 2019 – CC Attribution License 28 COMP9242 2020T2 W01a

IPC Message Format

Note: Don’t need to deal with this explicitly for project

Msg
Length

#
Caps

Caps
unwrappedLabel

CSpace reference for receiving
caps (Receive only)

Caps (on Send)
Badges (on Receive)MessageTag

Semantics defined
by IPC protocol
(Kernel or user)

Raw data

Bitmap indicating
caps which had

badges extracted
Caps sent
or received

© Gernot Heiser 2019 – CC Attribution License

Client-Server IPC Example
seL4_MessageInfo_t tag = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_SetTag(tag);
seL4_SetMR(0,1);
seL4_Call(server_c, tag);

Load into
tag register

Set message
register #0

ut_t* reply_ut = ut_alloc(seL4_ReplyBits, &cspace);
seL4_CPtr reply = cspace_alloc_slot(&cspace);
err = cspace_untyped_retype(&cspace, reply_ut->cap, reply,

seL4_ReplyObject, seL4_ReplyBits);
seL4_CPtr badged_ep = cspace_alloc_slot(&cspace);
cspace_mint(&cspace, badged_ep, &cspace, ep, seL4_AllRights, 0xff);
…
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Recv(ep, &badge, reply);
…
seL4_MessageInfo_t response = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_NBSend(reply,response);

Allocate slot &
retype to RO

Mint cap with
badge 0xff

Client

Server

COMP9242 2020T2 W01a29

Wait on EP, receiving
badge, setting RO

Reply to sender
identified by RO

Should really
use ReplyRecv!

