School of Computer Science & Engineering
COMP9242 Advanced Operating Systems

Australia’s
Global
SYDNEY University

2020 T2 Week 01a
Introduction: Microkernels and sel 4

@GernotHeiser

Hazelnut

UNSW/NICTA
GMD/IBM/Karlsruhe

Dresden I

Fiasco

L4-embed

Codezero

Pistachio

Fiasco.OC

Commercial Clone P4 — PikeOS

: 93' 94I 95I 96' 97I 98' 99' OOI 01I 02I 03I 04I 05I 06I O7I O8I 09I 1OI 11| 12I

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

Loz

Microkernels: Reducing the Trusted Computing Base

* |dea of microkernel:

IPC performance Flexible, minimal platform
is criticall Mechanisms, not policies
' OS functionality provided by usermode servers

Servers invoked by kernel-provided message-
passing mechanism (IPC)

Goes back to Nucleus [Brinch Hansen’70]

Application

Syscall
User
Mode Device
Application Driver
Kernel
Mode

IPC, virtual memory \Ipc

2 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License

Monolithic vs Microkernel OS Evolution

Monolithic OS Microkernel OS

* New features add code kernel » Features add usermode code

* New policies add code kernel * Policies replace usermode code
« Kernel complexity grows » Kernel complexity is stable

User

Vode « Adaptable

 Dependable
Highly optimised

Syscall = Application

VFS

20.000 IPC, file system Application
, Kernel

kSLOC Scheduler, virtual memory ode

Niec 10 kSLOC

Device drivers, dispatcher IPC, virtual memory

3 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

4

1993 “Microkernel”: IPC Performance

[Ws]
Culprit: 400 Mach
Cache footprint i486 @
[Liedtke'95] 300 50 MHz
115 ps 200
L4
S US
raw copy
0 2000 4000 6000
Message Length [B]
COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

Microkernel Principle: Minimality

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [SOSP’95]

- Advantages of resulting small kernel: Limited by arch-
— Easy to implement, port? specific micro-
: . optimisations
— FEasier to optimise
— Hopefully enables a minimal trusted computing base
— Easier debug, maybe even prove correct?

Small attack
« Challenges: surface, fewer
— API design: generality despite small code base failure modes

— Kernel design and implementation for high performance

5 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

6

Microkernel Evolution

First generation Second generation Third generation
Mach ['87], QNX, Chorus L4 [95], PikeOS, Integrity selL4 [09]
Memory Objects
Low-level FS
. Memory-
Swapping mangrr?’/c
Devices library
Kernel memory Kernel memory
Scheduling Scheduling
180 syscalls, 100 kSLOC ~7 syscalls, ~10 kSLOC ~3 syscalls, ~10 kSLOC
100 us IPC ~1 us IPC 0.1 us IPC
Capabilities

Design for isolation

COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

L4: 25 Years High Performance Microkernels

First L4 kernel
with capabilities

IOS secure
enclave

API Inheritance
>

=> L4/MIPS

OKL4 Microvisor

Code Inheritance

OKL4 pKernel []

)

Qualcomm
.

modem @Qs_/

L4/Alpha

Codezero

L3 —> L4 “x” Hazelnut Pistachio

UNSW/NICTA Fiasco Fiasco.0OC

GMD/IBM/Karlsruhe

Dresden [OK Labs]

Commercial Clone P4 — PikeOS

>

| o3 1 94 | 95 | 96 1 97 | 98 | 99 | 00 [01 T 02 [03 1 04 1 05 06 | 07 1 08 1090 1 10 [114 [12 | 13

ssssss

7 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License UNSW

8

Issues With 2G Microkernels

L4 solved microkernel performance [Hartig et al, SOSP’97]

 Left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
 Global thread name space = covert channels [Shapiro’03]
« Threads as IPC targets = insufficient encapsulation
 Single kernel memory pool = DoS attacks
* No delegation of authority = impacts flexibility, performance
* Unprincipled management of time

« Addressed by sel 4

» Designed to support safety- and security-critical systems
* Principled time management (new MCS configuration)

COMP9242 2020T2 WO01a

The selL4 Microkernel

COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

)

)

Principles

« Single protection mechanism: capabilities
« Now also for time: MCS configuration [Lyons et al, EuroSys’18]

 All resource-management policy at user level
 Painful to use

* Need to provide standard memory-management library

« Results in L4-like programming model

 Suitable for formal verification
 Proof of implementation correctness
 Attempted since 70s

 Finally achieved by L4.verified project
at NICTA [Klein et al, SOSP’09]

10 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

Concepts in a Slide

@)W ___= Capabilities (Caps): reference kernel objects

* 10 kernel object types:
» Threads (thread-control blocks: TCBs) — 3
——Scheduling contexts (SCs)

« Address spaces (page table objects: PDs, PTs)

m * Reply objects (ROs)— —~
— Notifications s
-~y

- Capability spaces (CNodes)— |
[Frames | | j
* Interrupt objects (architecture specific)

» Untyped memory

/-System calls:
« Call(), ReplyRecv() (and one-way variants)

* Yield()

11 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

12

Not a Concept: Hardware Abstraction

Why?
« Hardware abstraction violates minimality
« Hardware abstraction introduces policy

True microkernel:

« Minimal wrapper of hardware, just enough to safely multiplex
« “CPU driver” [Charles Gray]

« Similarities with Exokernels [Engeler '95]

COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

@seld What Are (Object) Capabilities?

Access rights

13 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

ssssss

C w9 selL4 Capabilities

 Stored in cap space (CSpace) O
« Kernel object made up of CNodes
« each an array of cap “slots”

 Inaccessible to userland
 But referred to by pointers into CSpace (slot addresses)
* These CSpace addresses are called CPTRs

« Caps convey specific privilege (access rights)
* Read, Write, Execute, GrantReply (call), Grant (cap transfer)

14 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

VVVVVV

G w» Capabilities

* Main operations on caps:
 Invoke. perform operation on object referred to by cap
» Possible operations depend on object type
« Copyl Mint!/ Grant. create copy of cap with same/lesser privilege
« Movel Mutate. transfer to different address with same/lesser privilege
 Delete:. invalidate slot (cleans up object if this is the only cap to it)
« Revoke. delete any derived (eg. copied or minted) caps

15 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

VVVVVV

selL.4 Mechanisms

16 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

)

)

@ Cross-Address-Space Invocation (IPC)

Fundamental microkernel operation

» Kernel provides no services, only mechanisms
« OS services provided by (protected) user-level server processes

* invoked by IPC
Client “

» selL4 IPC uses a handshake through endpoints:
 Transfer points without storage capacity

« Message must be transferred instantly .
_ send receive
 Single-copy user = user by kernel

17 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License {«: UNSW

vvvvvv

” selL4 |IPC: Cross-Domain Invocation

Server

f(args) {
}

18 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

@) 1Pc: Endpoints

» Involves 2 threads, but Elter Server .
Running Blocked Blocked Running
always one blocked el Grrwe) |
» logically, thread moves
between address spaces ReplyReCV(3

* Threads must rendez-vous Call (ep_cap, ..)——»@@

* One side blocks until the
other is ready 3

* Implicit synchronisation

* Message copied from sender’s to receiver’'s message reqgisters

» Message is combination of caps and data words
* Presently max 121 words (484B, incl message “tag”)
« Should never use anywhere near that much!

19 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

e

@ Endpoints are Message Queues

Client, 3 Server /Note: Should not \
> normally get
' @ o queues on a
Client, _
3 single core, server

G should have
higher priority
Kernel — N Kthan clients!

4

TCB, TCB, B
N A

« EP has no sense of direction

Further callers of =i rveesiian May queue senders or receivers
same direction queues caller * never both at the same time!
queue behind - Communication needs 2 EPs!

20 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License

@ Server Invocation & Return

« Asymmetric relationship: Client, Client,
« Server widely accessible, clients not

« How can server reply back to
client (distinguish between them)?

« Client can pass (session) reply cap in first request
* server needs to maintain session state
« forces stateful server design ®

 seL4 solution: Kernel creates channel in reply objégt (RO)
« server provides RO in ReplyRecv() operation
 kernel connects RO to client when executing receive phase
« server invokes RO for send phase (only one send until refreshed)
 only works when client invokes with Call()

New MCS
kernel
semantics!

21 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License {«:

vvvvvv

@@ Call Semantics

22

ep
Client o 2@ oy

\ Coo

ro

Client Kernel
Server
ReplyRecv(ro,ep,8&args)
Call(ep, args) deliver to server
block client on RO
brocess
, , ReplyRecv(ro,ep,8&args)
deliver to client
process
COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

@ Stateful Servers: Identifying Clients

« Server must respond to correct client Client,
* Ensured by reply cap

(/=
* Must associate request Client,

Server

Client, state /
Client, state /

with correct state

» Could use separate EP per client

« endpoints are lightweight (16 B)
 but requires mechanism to wait on a set of EPs (like select)

* Instead, sel4 allows to individually mark (“badge”) caps to same EP

 server provides individually badged (session) caps to clients

« separate endpoints for opening session, further invocations
 server tags client state with badge
» kernel delivers badge to receiver on invocation of badged caps

23 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License {«: UNSW

VVVVVV

@@ IPC Mechanics: Virtual Registers

* Like physical registers, virtual registers are thread state
 context-switched by kernel
* implemented as physical registers or thread-local memory

* Message registers
 contain message transferred in IPC
« architecture-dependent subset mapped to physical registers
* 4 on ARM & x64
* library interface hides details
* 1st transferred word is special, contains message tag
* API MR]0] refers to next word (not the tag!)

24 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

@@ IPC Operations Summary

25

 Call (ep_cap, ...)
« Atomic: guarantees caller is ready to receive reply
« Sets up server’s reply object

* ReplyRecv (ep_cap, ...) Not really
» Invokes RO, waits on EP, re-inits RO useful

* Recv (ep_cap, ...), Reply(...), Send (e€p_cap, ...)

* For initialisation and exception handling Need error
* needs Write, Read permission, respectively handling
- NBSend (ep_cap, ...) slteieel

 Polling send, message lost if receiver not ready
No failure notification where this reveals info on other entities!

COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

FF ? Notifications — Synchronisation Objects

* Logically, a Notification is an array of binary semaphores

» Multiple signalling, select-like wait
* Not a message-passing IPC operation!

* Implemented by Thread, Thread,
data word in Notification Running Blocked Blocked Running

 Send OR-s sender’s
cap badge to data word

« Receiver can poll or wait

w = Poll (not_cap, ...)

e Al € ey w = Wait (not_cap,...
- waiting returns and |)__Ir >] ()
clears data word Signal (not_cap, ... —l.
* polling just returns ,)__Ir
Sata ng(J)rd Slgn§,1 (not_cap, ... t_,
26 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License UNSW

@@ == Receiving from EP and Notification

[Server with synchronous and asynchronous interface]

[Synchronous [Asynchronous }

RPC protocol completion signals

Client Driver

Better: single thread for both interfaces per interface?
* Notification “bound” to TCB
« Signal delivered as “IPC” from EP

Separate thread
[Concurrency }

control, complexity!

27 COMP9242 2020T2 WO01a © Gernot Heiser 2019 — CC Attribution License {«: UNSW

VVVVVV

” IPC Message Format

28 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

@@ ciient-server IPC Example

Client

29 COMP9242 2020T2 W01a © Gernot Heiser 2019 — CC Attribution License

