Events, Co-routines, Continuations and Threads
OS (and application)Execution Models

UNSW

System Building

General purpose systems need to deal with

* Many activities
— potentially overlapping
— may be interdependent
» need to resume after something else happens

 Activities that depend on external phenomena
— may requiring waiting for completion (e.g. disk read)
— reacting to external triggers (e.g. interrupts)

Need a systematic approach to system structuring

© Kevin Elphinstone 2 UNSW
ssssss

Construction Approaches

Events
Coroutines
Threads

Continuations

© Kevin Elphinstone 3 UNSW

Events

External entities generate (post) events.
» keyboard presses, mouse clicks, system calls

Event loop walts for events and calls an appropriate
event handler.

« common paradigm for GUIs

Event handler is a function that runs until
completion and returns to the event loop.

© Kevin Elphinstone 4 UNSW
/ SYDNEY

Event Model

The event model only requires

a single stack
Memory/ All event handlers must return to the

event loop
CPU > Event - No bIocking
Loop L — No yielding
PC_H Event AL
SP Handler 1 _
REGS = 1< | No preemption of handlers
Handler 2
 Handlers generally short lived
\/ Event % g y
Handler 3
Data M
-~
Stack %
© Kevin Elphinstone 5 USN)§EW

What is ‘a’?

int/ a;//* global */

int func()
{
a = 1;
if (a ==1) {
a = 2;
} No concurrency issues within a
return a; handler
}

© Kevin Elphinstone 6 UNSW

Event-based kernel on CPU with protection

e

Kernel-only Memory

i

User Memory

Event
Loop

Event
Handler 1

Event
Handler 2

Event
Handler 3

Data

Stack

CPU

Use
Code

e SP

User
Data

PC

REGS

Stack

© Kevin Elphinstone

Huh?

How to support
multiple
processes?

7 UNSW

Event-based kernel on CPU with protection

P
Kernel-only Memory User Memory CPU
PC
Trap /; SP
Dispatcher User / e
Event COdg
SEEET User-level state in PCB
Event PCB
Handler 2 A User Kernel starts on fresh
- -97 Data stack on each trap
PCB
B No interrupts, no blocking
Currént — I
Data | Cue . 7 in kernel mode
C Stack
Stack
© Kevin Elphinstone 8 USN)§EW

Co-routines

Originally described in:

* Melvin E. Conway. 1963. Design of a separable transition-diagram compiler. Commun. ACM 6, 7
(July 1963), 396-408. DOI=http://dx.doi.org/10.1145/366663.366704

Analogous to a “subroutine” with extra entry and
exit points.

Via yield()

e Supports long running subroutines

« Can implement sync primitives that wait for a condition to
be true

— while (condition != true) yield();

© Kevin Elphinstone 9 UNSW
ssssss

Co-routines

CPU

Memory

PC

SP

REGS

© Kevin Elphinstone

Routine A
/P

Routine B

Data

{ Stack

yield() saves state of routine A
and starts routine B

or resumes B’s state from its previous
yield() point.

No preemption

10 G UNSW

What is ‘a’?

int a; /* global */

int func()

= 2;
}
N\» return a;
}
© Kevin Eipinstone 11 UNSW

What is ‘a’?

int a; /* global */

int func() {

| —

a = 1;
if (a == 1) {

yield(); <=
a=2; >Q2@—
} Limited concurrency

return a; <t— Issues/races as globals are
’ exclusive between yields()

}
© Kevin Elphinstone 12 USN§E\YN

Co-routines Implementation strategy?

Memory
CPU \B
Routine A
PC — |
SP _
REGS Routine B

© Kevin Elphinstone

Data

P
Stac Stack
A B

Usually implemented with a stack
per routine

Preserves current state of
execution of the routine

13 UNSW

Co-routines

Memory Routine A state currently loaded
CPU Routine B state stored on stack
Routine A : .
__b Routine switch from A — B
PC / .
Sp e — * saving state of Aa
— .
REGS —Boutine B - regs, sSp, pc
restoring the state of B
Data ~ regs, sp, pc
Stack™Na| Stack
A B
© Kevin Elphinstone 14 USN)§EW

A hypothetical yield()

yield:

/*
a0 contains a pointer to the previous routine’s struct.
al contains a pointer to the new routine’s struct.

The registers get saved on the stack, namely:

s0-s8
gp, ra

* % ok ok * ok ok ok ok

*
~

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

/* Save the registers */

SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW

Sw

/*

SwW

ra,
apP,
s8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,

40 (sp)
36 (sp)
32 (sp)
28 (sp)
24 (sp)
20 (sp)
16 (sp)
12 (sp)
8 (sp)

4 (sp)

0(sp)

Save the registers
that the ‘C’
procedure calling

convention
expects
preserved

Store the old stack pointer in the old pcb */

SP.

(a0)

16

UNoW

=

/*

Get the new_stack pointer from the new pcb */
/* delay slot for load */

nop

/* Now, restore the registers */

/*

lw s0, O(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24 (sp)
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

and return. */

j ra

addi sp, sp, 44 /* in delay slot */
.end mips_switch

17

Routine A Routine B

Yield

yield(a,Db) . I)

{

} \ < yield(b, a)
{

yield(a,b) > }

{

18 UNSW

What is ‘a’?

int a; /* global */

int func() {

¥

a = 1;

func2();

if (a == 1) {
a = 2;

}

return a;

© Kevin Elphinstone

19

UNSW

Coroutines

What about subroutines combined with coroutines

* i.e. what is the issue with calling subroutines?

Subroutine calling might involve an implicit yield()

« potentially creates a race on globals
— either understand where all yields lie, or
— cooperative multithreading

© Kevin Elphinstone

Cooperative Multithreading

Also called green threads

Conservatively assumes a multithreading model
* i.e. uses synchronisation (locks) to avoid races,

« and makes no assumption about subroutine behaviour
— Everything thing can potentially yield()

© Kevin Elphinstone

int a; /* global */

int func() {

}

int t;

lock _acquire(a_lock)

a =1;

func2();

if (a ==1) {
a = 2;

}

t = a;

lock release(a_lock);

return t;

© Kevin Elphinstone

22

UNSW

A

A Thread

I\/I}mory Thread attributes
7 .
CPU processor related
I V2 — memory
PC — program counter
SP
REGS B — stack pointer
Data — registers (and status)
Stack / « OS/package related

— state (running/blocked)

Q

— identity
— scheduler (queues, priority)
- etc...

© Kevin Elphinstone 23 UsN)éW

A

Thread Control Block

Memory To support more than a
CPU single thread we to need
L store thread state and
e | attributes
SP
REGS \\ aa Stored in per-thread thread
NS control block
Stack » also indirectly in stack

TCB

© Kevin Elphinstone 24 UsN)éW

Thread A and Thread B

Memory Thread A state currently loaded
Thread B state stored in TCB B

CPU\
) Code Thread switch from A — B
< g(F:’ » saving state of thread a

REGS - [Tegs, sp, pc

Dat :
— Ny - restoring the state of thread B

\ ~ — regs, sp, pc

Stack Stack

Note: registers and PC can be
stored on the stack, and only
TCB TCB SP stored in TCB

© Kevin Elphinstone 25 UsN)éW

Approximate OS

mi_switch()

{

struct thread *cur, *next;

next = scheduler(); f?’////’\

/* update curthread */
cur = curthread; / Note: global
curthread = next; variable curthread

/*
* Call the machine-dependent code that actually
* context switch.

md_switch(&cur->t _pcb, &next->t _pcb);

/* back running in same thread */

}

© Kevin Elphinstone 26 UNSW
SYDNEY

0S/161 mips_switch
mips_switch:
/*
* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved

* on the stack, namely:

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44 27

0S/161 mips_switch

/* Save the registers */

SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW

SwW

/*

SwW

ra,
aP;
s8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,

40 (sp)
36 (sp)
32 (sp)
28 (sp)
24 (sp)
20 (sp)
16 (sp)
12 (sp)
8 (sp)

4 (sp)

0 (sp)

Save the registers
that the ‘'C’
procedure calling

convention
expects
preserved

Store the old stack pointer in the old pcb */

SP.,

0(ao0)

28

UNoW

=

0S/161 mips_switch

/*

/*

Get the new stack pointer from the new pcb */
lw sp, @(al)‘ﬁéﬁi’—\\

nop /* delay slot for load */

Now, restore the registers */
1w s@, 0(sp)
1w sl, 4(sp)
1w s2, 8(sp)
1w s3, 12(sp)
1w s4, 16(sp)
1w s5, 20(sp)
1w s6, 24(sp)
1w s7, 28(sp)

1w s8, 32(sp)
lw gp, 36(sp) v
1w ra, 40(sp)

nop /* delay slot for load */

/* and return. */
j ra

addi sp, sp, 44
.end mips_switch

/* in delay slot */

Thread a

mips switch(a,b)

{

mips, switch(a,b)

{

Thread b Thread
) Switch

mips switch(b,a)

{

30

UNSW

Preemptive Multithreading

Switch can be triggered by asynchronous external event

« timer interrupt

Asynch event saves current state
« on current stack, if in kernel (nesting)

« on kernel stack or in TCB if coming from user-level

call thread_switch()

© Kevin Elphinstone

Threads on simple CPU

Memory
=
Data
-
4l i
Stac9 Stack Stack >
N~
//_\
TCB TCB TCB
A B C)
~___—

© Kevin Elphinstone 32

Threads on CPU with protection

Ke&elﬁnJ;LMMLUser Memory

What is missing?

CPU

PC

SP

REGS

© Kevin Elphinstone

Code
||
Data
Stack Stack Stack
TCB TCB TCB
K A B C
I——— — /
7

33

UNSW

Threads on CPU with protection

Kernel-only Memory User Memory

CPU
Use
Code Code PC
e SP
/ REGS
Data User

Data What happens on kernel
Stack Stack Stack entry and exit?
V4
Stack
TCB TCB TCB
A B C
© Kevin Elphinstone 34 UsN)éW

A

Switching Address Spaces on
Thread Switch = Processes

Kernel-only Memory User Memory

CPU
Use
e

REGS
Data h User
Data
/ Stack |\ Stack | \| Stack
K
Stack
TCB TCB TCB
A B C
_/

© Kevin Elph instone 35 USN)§EW

Switching Address Spaces on
Thread Switch = Processes

Kernel-only Memory User Memory

CPU

Code
Code Sp

REGS

Data User
Data
Stack Stack Stack
Stack
TCB TCB TCB
A B C

© Kevin Elphinstone

36 UNSW

What is this?

Kernel-only Memor,

= CPU
Scheduling
Code & Switchi 7 PC
e SP
REGS
Data
Stack Stack Stack
TcB ||| TcB | | TcB \
A B C
___/
© Kevin Elphinstone 37 USN)§E\YN

A

User-level Threads

User Mode

-

| Scheduler |

K Process

~

Kernel Mode

-~

| Scheduler |

k Process B /

| Scheduler |

rocess C /

[Sche"duler }

UNSW

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

x Blocking blocks all threads in a process

« Syscalls
« Page faults

x No thread-level parallelism on multiprocessor

UNSW

Kernel-Level Threads

User Mode

-

UL

K Proc

~

Kernel Mode

} Scheduler]

K Process B /

1

UNSW

Kernel-level Threads

x Slow thread management (creation, deletion,
switching, synchronisation...)

« System calls

v Blocking blocks only the appropriate thread in a
process

v Thread-level parallelism on multiprocessor

UNSW

Continuations (in Functional Languages)

Definition of a Continuation

representation of an instance of a computation at a point in time

© Kevin Elphinstone 42 UNSW
/ SYDNEY

call/ccin Scheme

call/cc=call-with-current-continuation

A function
« takes a function (f) to call as an argument

« calls that function with a reference to current continuation (cont) as an argument

« when cont is later called, the continuation is restored.
— The argument to cont is returned from to the caller of call/cc

© Kevin Elphinstone m UNSW
p 43 IN.

% call-with-current-continuation f)

© Kevin Elphinstone 44 UNSW

Canres)

Note

For C-programmers, call/cc is effectively saving stack, and PC

Simple Example

(define (f arg)
(arg 2)
3)

(display (f (lambda (x) x))); displays 3

(display (call-with-current-continuation f))

;displays 2

Derived from http://en.wikipedia.org/wiki/call-with-current-continuation

© Kevin Elphinstone 46 UNSW
/ SYDNEY

Another Simple Exa%

(define the-continuation #f)

(define (test)
(let ((i @))
; call/cc calls its first function argument, passing
; @ continuation variable representing this point in
; the program as the argument to that function.

; In this case, the function argument assignhs that

; continuation to the variable theéggntinuation.
\Qtzib(call/cc (lambda (j? (set! the—continﬁzizggzgﬁb) Aéé%f/"\

J

; The next time the-continuation is called, we start here.
(set! i (+1i 1))

i))1fh—\

© Kevin Elphinstone m UNSW
phinst 47 N

Another Simple Example

> (test)

1 s
> (the-continuation)

2

> (the-continuation) é%a////’/j

3

>

> (the-continuation) 44?;’———\

2

> (another-continuation) (_uses the previously stored continuation

4

© Kevin Elphinstone 48

Yet Another Simple Example

;33 Return the first element in LST for which WANTED? returns a true

jj; value. Q?Q/——”

(define (search wanted? 1st)

(ca11/cc (lambda (arg)
('Iambda (‘
(if ent)

e

1s;0)
#1)))

© Kevin Elphinstone 49 UH§EW

Coroutine Example

;33 This starts_a new routine running (proc).
(define (fork<EE§;;§§

(call/cc ('Iambda@
(enqueué:Eja

proc))))

;53 This yields the processor to another routine, if there is one.
(define (yield)

(call/cc

(Tambda (k)

(engueve 1
)))

© Kevin Elphinstone m UNSW
phinst 50 IN.

Continuations

A method to snapshot current (stack) state and return to the computation in the future
In the general case, as many times as we like

Variations and language environments (e.g. in C) result in less general continuations

* e.g. one shot continuations, setimp()/longjump()

© Kevin Elphinstone m UNSW
p 51 IN.

What should be a kernel’s execution model?

Note that the same question can be asked of applications

© Kevin Elphinstone 52 UNSW
ssssss

The two alternatives

No one correct answer
From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack
Only one stack 1s Every user thread has a
used all the time to support kernel stack.

all user threads.

UNSW

Per-Thread Kernel Stack

Processes Model
A thread’s kernel state is implicitly =~ example(argl, arg2?) {

encoded in the kernel activation Pl(argl, arq2): &
stack if (need to block) {/

+ If the thread must block in- thread block () Fex @
kernel, we can simply switch -
from the current stack, to P2(arg2) ; &
another threads stack until } else {
thread is resumed P3 () ; %

* Resuming is simply switching }

back to the original stack /* return control to user */

« Preemption is easy return SUCCESS : _g_/\

UNSW

Single Kernel Stack
“Event” or “Interrupt” Model
How do we use a single kernel stack to support
many threads?

 |ssue: How are system calls that block handled?

= elther continuations

Using Continuations to Implement Thread Management and
Communication in Operating Systems. [Draves et al., 1991]

= or stateless kernel (event model)

— Interface and Execution Models in the Fluke Kernel. [Ford et al.,
1999]

— Also selL 4

UNSW

example(argl, arg2) {
Continuations P1(argl, arg2);
if (need _to block) {
State required to resume a blocked

) o _ save_arg in TCB;
thread is explicitly saved in a =
TCB thread block(example continue);
— A function pointer /* NOT REACHED */ ~=&——
— Variables } else {
Stack can be discarded and P3()3/
reused to support new thread }
Resuming involves discarding thread_syscall return(SUCCESS);
current stack, restoring the }

continuation, and continuing example _continue() { %

recover_arg2 from TCB; “ﬁf%/’\
P2(recovered argZ);égfL/’///ﬂ

thread_syscall_return(SUCCESS);/CiT

=]

UNSW

2

Stateless Kernel

System calls can not block within the kernel

* If syscall must block (resource unavailable)
— Modify user-state such that syscall is restarted when resources

become available
— Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.
= Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code

= Syscall arguments in registers
— Page fault during roll-back to restart (due to a page fault) is fatal.

UNSW

IPC implementation examples — Per thread

stack

msg_send rcv(msg, option,

send size, rcv_size, ...) {

rc = msg_send(msg, option,

send size, ...);

if (rc '= SUCCESS)

return rc;

rc = msg_rcv(msg, option;Nycv_size, ...

Send and Receive
system call
Implemented by a
non-blocking send
part and a blocking
receive part.

return rc;

Block inside
msg_rcv if no
message
available

IPC examples - Continuations

msg_send_rcv(msg, option,
send_size, rcv_size, ...) {
rc = msg_send(msg, option,
send size, ...);
if (rc != SUCCESS)
return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);

return rc;
msg_rcv_continue() {
msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);
return rc;

The function to
continue with if
blocked

IPC Examples — stateless kernel

msg_send rcv(cur_thread) {
rc = msg_send(cur_thread);
if (rc '= SUCCESS)

return rc;

Set user-level PC
to restart msg_rcv
if (rc == WOULD BLOCK) { only

rc = msg_rcv(cur_thread) ;

set _pc(cur_ thread, msg _rcv_efitry);

return RESCHEDULE;

}

return rc;

RESCHEDULE changes
curthread on exiting the

kernel UNSW

YYYYYY

A

Single Kernel Stack

per Processor, event model

either continuations
complex to program
must be conservative in state saved (any state that might be needed)
Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

or stateless kernel
no kernel threads, kernel not interruptible, difficult to program
request all potentially required resources prior to execution
blocking syscalls must always be re-startable
Processor-provided stack management can get in the way
system calls need to be kept simple “atomic”.
e.g. the fluke kernel from Utah

low cache footprint
always the same stack is used !
reduced memory footprint

Per-Thread Kernel Stack

simple, flexible

kernel can always use threads, no special techniques required for
keeping state while interrupted / blocked

no conceptual difference between kernel mode and user mode
e.g. traditional L4, Linux, Windows, OS/161

but larger cache footprint

and larger memory consumption

UNSW

A

