
1

Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk HotOS 2003

The Stage
 Highly concurrent applications

 Internet servers (Flash, Ninja, SEDA)
 Transaction processing databases

 Workload
 Operate “near the knee”
 Avoid thrashing!

 What makes concurrency hard?
 Race conditions
 Scalability (no O(n) operations)
 Scheduling & resource sensitivity
 Inevitable overload
 Code complexity

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rf

or
m

an
ce

The Debate
 Performance vs. Programmability

 Current threads pick one
 Events somewhat better

 Questions
 Threads vs. Events?
 How do we get performance and

programmability?

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g

Current
Threads

Current Threads

Current Events

Ideal

Our Position
 Thread-event duality still holds
 But threads are better anyway

 More natural to program
 Better fit with tools and hardware

 Compiler-runtime integration is key

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

Threads Events
 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

Threads Events
 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

1 2

3 4

5 6

2

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

Threads Events
 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

“But Events Are Better!”
 Recent arguments for events

 Lower runtime overhead
 Better live state management
 Inexpensive synchronization
 More flexible control flow
 Better scheduling and locality

 All true but…
 No inherent problem with threads!
 Thread implementations can be improved

Runtime Overhead
 Criticism: Threads don’t perform

well for high concurrency
 Response

 Avoid O(n) operations
 Minimize context switch overhead

 Simple scalability test
 Slightly modified GNU Pth
 Thread-per-task vs.

single thread
 Same performance!

R
eq

ue
st

s
/ S

ec
on

d

Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 10 100 1000 10000 100000 1e+06

Live State Management
 Criticism: Stacks are bad for live state
 Response

 Fix with compiler help
 Stack overflow vs. wasted space

 Dynamically link stack frames

 Retain dead state
 Static lifetime analysis
 Plan arrangement of stack
 Put some data on heap
 Pop stack before tail calls

 Encourage inefficiency
 Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)

Synchronization
 Criticism: Thread synchronization is heavyweight
 Response

 Cooperative multitasking works for threads, too!
 Also presents same problems

 Starvation & fairness
 Multiprocessors
 Unexpected blocking (page faults, etc.)

 Compiler support helps

Control Flow
 Criticism: Threads have restricted

control flow
 Response

 Programmers use simple patterns
 Call / return
 Parallel calls
 Pipelines

 Complicated patterns are unnatural
 Hard to understand
 Likely to cause bugs

7 8

9 10

11 12

3

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

 Criticism: Thread schedulers are too generic
 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

 Criticism: Thread schedulers are too generic
 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Scheduling
 Criticism: Thread schedulers are too generic

 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

Events

The Proof’s in the Pudding
 User-level threads package

 Subset of pthreads
 Intercept blocking system calls
 No O(n) operations
 Support > 100K threads
 5000 lines of C code

 Simple web server: Knot
 700 lines of C code

 Similar performance
 Linear increase, then steady
 Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)
KnotA (Favor Accept)

Haboob

Concurrent Clients

M
bi

ts
 /

 s
ec

on
d

Our Big But…
 More natural programming model

 Control flow is more apparent
 Exception handling is easier
 State management is automatic

 Better fit with current tools & hardware
 Better existing infrastructure
 Allows better performance?

Control Flow
 Events obscure control flow

 For programmers and tools

Threads Events
thread_main(int sock) {

struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s); }

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

13 14

15 16

17 18

4

Control Flow

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Threads Events
thread_main(int sock) {

struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

 Events obscure control flow
 For programmers and tools

Exceptions
 Exceptions complicate control flow

 Harder to understand program flow
 Cause bugs in cleanup code Accept

Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Threads Events
thread_main(int sock) {

struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

State Management

Threads Events
thread_main(int sock) {

struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

 Events require manual state management
 Hard to know when to free

 Use GC or risk bugs

Existing Infrastructure
 Lots of infrastructure for threads

 Debuggers
 Languages & compilers

 Consequences
 More amenable to analysis
 Less effort to get working systems

Better Performance?
 Function pointers & dynamic dispatch

 Limit compiler optimizations
 Hurt branch prediction & I-cache locality

 More context switches with events?
 Example: Haboob does 6x more than Knot
 Natural result of queues

 More investigation needed!

The Future:
Compiler-Runtime Integration

 Insight
 Automate things event programmers do by hand
 Additional analysis for other things

 Specific targets
 Dynamic stack growth*
 Live state management
 Synchronization
 Scheduling*

 Improve performance and decrease complexity

* Working prototype in threads package

19 20

21 22

23 24

5

Conclusion
 Threads  Events

 Performance
 Expressiveness

 Threads > Events
 Complexity / Manageability

 Performance and Ease of use?
 Compiler-runtime integration is key

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g
Current
Threads

Current Threads

Current Events

New Threads?

25

