
Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout

Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Why Threads Are A Bad Idea September 28, 1995, slide 2

Introduction

 Threads:
– Grew up in OS world (processes).
– Evolved into user-level tool.
– Proposed as solution for a variety of problems.
– Every programmer should be a threads programmer?

 Problem: threads are very hard to program.

 Alternative: events.

 Claims:
– For most purposes proposed for threads, events are

better.
– Threads should be used only when true CPU

concurrency is needed.

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads?

 General-purpose solution for managing concurrency.

 Multiple independent execution streams.

 Shared state.

 Pre-emptive scheduling.

 Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads

Why Threads Are A Bad Idea September 28, 1995, slide 4

What Are Threads Used For?

 Operating systems: one kernel thread for each user
process.

 Scientific applications: one thread per CPU (solve
problems more quickly).

 Distributed systems: process requests concurrently
(overlap I/Os).

 GUIs:
– Threads correspond to user actions; can service

display during long-running computations.
– Multimedia, animations.

Why Threads Are A Bad Idea September 28, 1995, slide 5

What's Wrong With Threads?

 Too hard for most programmers to use.

 Even for experts, development is painful.

casual wizardsall programmers

Visual Basic programmers
C programmers
C++ programmers

Threads programmers

Why Threads Are A Bad Idea September 28, 1995, slide 6

Why Threads Are Hard

 Synchronization:
– Must coordinate access to shared data with locks.
– Forget a lock? Corrupted data.

 Deadlock:
– Circular dependencies among locks.
– Each process waits for some other process: system

hangs.

lock A lock Bthread 1 thread 2

1 2

3 4

5 6

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

 Hard to debug: data dependencies, timing dependencies.

 Threads break abstraction: can't design modules
independently.

 Callbacks don't work with locks.

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

Why Threads Are A Bad Idea September 28, 1995, slide 8

Why Threads Are Hard, cont'd

 Achieving good performance is hard:
– Simple locking (e.g. monitors) yields low concurrency.
– Fine-grain locking increases complexity, reduces

performance in normal case.
– OSes limit performance (scheduling, context switches).

 Threads not well supported:
– Hard to port threaded code (PCs? Macs?).
– Standard libraries not thread-safe.
– Kernel calls, window systems not multi-threaded.
– Few debugging tools (LockLint, debuggers?).

 Often don't want concurrency anyway (e.g. window
events).

Why Threads Are A Bad Idea September 28, 1995, slide 9

Event-Driven Programming

 One execution stream: no CPU
concurrency.

 Register interest in events
(callbacks).

 Event loop waits for events,
invokes handlers.

 No preemption of event
handlers.

 Handlers generally short-lived.

Event
Loop

Event Handlers

Why Threads Are A Bad Idea September 28, 1995, slide 10

What Are Events Used For?

 Mostly GUIs:

– One handler for each event (press button, invoke menu
entry, etc.).

– Handler implements behavior (undo, delete file, etc.).

 Distributed systems:

– One handler for each source of input (socket, etc.).

– Handler processes incoming request, sends response.

– Event-driven I/O for I/O overlap.

Why Threads Are A Bad Idea September 28, 1995, slide 11

Problems With Events

 Long-running handlers make application non-
responsive.
– Fork off subprocesses for long-running things (e.g.

multimedia), use events to find out when done.
– Break up handlers (e.g. event-driven I/O).
– Periodically call event loop in handler (reentrancy adds

complexity).

 Can't maintain local state across events (handler must
return).

 No CPU concurrency (not suitable for scientific apps).

 Event-driven I/O not always well supported (e.g. poor
write buffering).

Why Threads Are A Bad Idea September 28, 1995, slide 12

Events vs. Threads

 Events avoid concurrency as much as possible, threads
embrace:
– Easy to get started with events: no concurrency, no

preemption, no synchronization, no deadlock.
– Use complicated techniques only for unusual cases.
– With threads, even the simplest application faces the

full complexity.

 Debugging easier with events:
– Timing dependencies only related to events, not to

internal scheduling.
– Problems easier to track down: slow response to button

vs. corrupted memory.

7 8

9 10

11 12

Why Threads Are A Bad Idea September 28, 1995, slide 13

Events vs. Threads, cont'd

 Events faster than threads on single CPU:
– No locking overheads.
– No context switching.

 Events more portable than threads.

 Threads provide true concurrency:
– Can have long-running stateful handlers without

freezes.
– Scalable performance on multiple CPUs.

Why Threads Are A Bad Idea September 28, 1995, slide 14

Should You Abandon Threads?

 No: important for high-end servers (e.g. databases).

 But, avoid threads wherever possible:

– Use events, not threads, for GUIs,
distributed systems, low-end servers.

– Only use threads where true CPU
concurrency is needed.

– Where threads needed, isolate usage
in threaded application kernel: keep
most of code single-threaded. Threaded Kernel

Event-Driven Handlers

Why Threads Are A Bad Idea September 28, 1995, slide 15

Conclusions

 Concurrency is fundamentally hard; avoid whenever
possible.

 Threads more powerful than events, but power is
rarely needed.

 Threads much harder to program than events; for
experts only.

 Use events as primary development tool (both GUIs
and distributed systems).

 Use threads only for performance-critical kernels.

13 14

15

