
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2020 T2 Week 03b
Caches:
What Every OS Designer Must Know
@GernotHeiser

Registers

I-Cache D-Cache

Write buffer

Last-Level Cache (LLC)

Memory (RAM)

Write buffer

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W03b

© Gernot Heiser 2019 – CC Attribution License

The Memory Wall

2 COMP9242 2020T2 W03b

Multicore offsets stagnant per-core performance with proliferation of cores
• Same effect on overall memory bandwidth
• Basic trend is unchanged

© Gernot Heiser 2019 – CC Attribution License

Use temporal & spatial
locality to improve
average memory latency

Caches

3 COMP9242 2020T2 W03b

Registers CPU Cache Main Memory DiskDisk Cache

Software

Slow: 10s–100s cycles
Large: GiB

Core
Chip

Hardware

Fast: 1–3 cycles
Small: 32 KiB – 16 MiB

• Holds recently used data/instructions
• Load/fetch hits in cache ⇒ fast access
• Miss not much worse than no cache
• Key is high hit rate (>90%)

© Gernot Heiser 2019 – CC Attribution License

Cache Organisation: Unit of Data Transfer

4 COMP9242 2020T2 W03b

Registers CPU Cache Main Memory
byte…word

1–16 B
line

32–64 B

Reduce memory transactions:
• Reads – locality
• Writes – clustering

Line is also unit of allocation, holds data and
• valid bit
• modified (dirty) bit
• tag
• access stats (for replacement)

© Gernot Heiser 2019 – CC Attribution License

Cache Access

5 COMP9242 2020T2 W03b

CPU

MMU

Main
Memory

Virtual
Address

Virtually
Indexed
Cache

Physically-
indexed
Cache

Data Data Data

Physical
Address

Physical
Address

• Virtually indexed: looked up by virtual address
– operates concurrently with address translation

• Physically indexed: looked up by physical address
– requires result of address translation

• Usually a hierarchy: L1, L2, …, LLC (last-level cache, next to RAM)
– L1 may use virtual address, all others use physical only

© Gernot Heiser 2019 – CC Attribution License

Cache Indexing

6 COMP9242 2020T2 W03b

• The tag is used to distinguish lines of a set…
• Consists of high-order bits not used for indexing

tag1

Address

tag0

tag2

Byte #

datatag

tag

Set #

tag set byte

© Gernot Heiser 2019 – CC Attribution License

Cache Indexing

7 COMP9242 2020T2 W03b

CPU
Registers

Main
Memory

Line 1

Line 2
Line 3
Line 4

Set 0

Set 1

• Address hashed to produce index of line set
• Associative lookup of line within set
• n lines per set: n-way set-associative cache, typically n=1–16

– n = 1 is called direct mapped
– 2 ≤ n ≤ ∞ is called set associative
– n = ∞ is called fully associative

• Hashing must be simple (complex hardware is slow)
– generally use least-significant bits of address

Many conflicts
⇒ low hit rate

Slow & power-hungry

© Gernot Heiser 2019 – CC Attribution License

Cache Indexing: Direct Mapped

8 COMP9242 2020T2 W03b

tag(25) index(3) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique line

Tag used to check
whether line contains
requested address

© Gernot Heiser 2019 – CC Attribution License

Cache Indexing: 2-Way Associative

9 COMP9242 2020T2 W03b

tag(26) index(2) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique set to
match within

Tag checked against
both lines for match

© Gernot Heiser 2019 – CC Attribution License

Cache Indexing: Fully Associative

10 COMP9242 2020T2 W03b

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(28) offset(4)

Tag compared with
all lines for a match

Offset bits used to select
appropriate bytes from line

Lookup hardware for many tags is
large and slow ⇒ does not scale

© Gernot Heiser 2019 – CC Attribution License

Cache Associativity vs Paging

11 COMP9242 2020T2 W03b

tag(26) index(2) offset(11)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

page number offset
31 12 11 0

Top/bottom
half

Subset

When index overlaps page number,
a particular page can only reside in
a specific subset of the cache!

© Gernot Heiser 2019 – CC Attribution License

Cache Mapping Implications

12 COMP9242 2020T2 W03b

Cache

RAM

Multiple memory
locations map to
same cache line

A page can only reside
in the part of the cache
defined by its colour

If c index bits overlap page #, a page
can only reside in 2-c of the cache

Cache is said to have 2c colours
2c = cache_size/(page_size × assoc)

11 10 01 10 Colour

© Gernot Heiser 2019 – CC Attribution License

Cache Misses

13 COMP9242 2020T2 W03b

• n-way associative cache can hold n lines with the same index value
• More than n lines are competing for same index forces a miss!
• There are different types of cache misses (“the four Cs”):

• Compulsory miss: data cannot be in the cache (of infinite size)
• First access (after loading data into memory or cache flush)

• Capacity miss: all cache entries are in use by other data
• Would not miss on infinite-size cache

• Conflict miss: all lines with the same index value are in use by other data
• Would not miss on fully-associative cache

• Coherence miss: miss forced by hardware coherence protocol
• Covered later (multiprocessing lecture)

© Gernot Heiser 2019 – CC Attribution License

Cache Replacement Policy
• Indexing (using address) points to specific line set
• On miss (no match and all lines valid): replace existing line

• Dirty-bit determines whether write-back needed

• Replacement strategy must be simple (hardware!)

14 COMP9242 2020T2 W03b

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)
Typical policies:
• LRU
• pseudo-LRU
• FIFO
• “random”
• toss clean

© Gernot Heiser 2019 – CC Attribution License

Cache Write Policy
• Treatment of store operations

• write back: Stores only update cache;
memory is updated once dirty line is replaced (flushed)
þclusters writes
zmemory inconsistent with cache
zmulti-processor cache-coherency challenge

• write through: stores update cache and memory immediately
þmemory is always consistent with cache
zincreased memory/bus traffic

• On store to a line not presently in cache (write miss):
• write allocate: allocate a cache line and store there

• typically requires reading line into cache first!
• no allocate: store directly to memory, bypassing the cache

15 COMP9242 2020T2 W03b

Typical combinations:
• write-back &

write allocate
• write-through &

no-allocate

© Gernot Heiser 2019 – CC Attribution License

Cache Addressing Schemes
• So far pretended cache only sees one type of address: virtual or physical
• However, indexing and tagging can use different addresses!
• Four possible addressing schemes:

• virtually-indexed, virtually-tagged (VV) cache
• virtually-indexed, physically-tagged (VP) cache
• physically-indexed, virtually-tagged (PV) cache
• physically-indexed, physically-tagged (PP) cache

16 COMP9242 2020T2 W03b

Nonsensical except with
weird MMU designs

© Gernot Heiser 2019 – CC Attribution License

Virtually-Indexed, Virtually-Tagged Cache
• Also called virtually-addressed cache
• Various incorrect names in use:

• virtual cache
• virtual address cache

• Uses virtual addresses only
• Can operate concurrently with MMU
• Usable for on-core L1

• Rarely used these days

17 COMP9242 2020T2 W03b

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

tag(26) index(2) byte(4)

Permissions?
Write back?

© Gernot Heiser 2019 – CC Attribution License

Virtually-Indexed, Physically-Tagged Cache
• Virtual address for accessing line (lookup)
• Physical address for tagging
• Needs complete address translation

for looking up retrieving data
• Indexing concurrent with MMU
• Used for on-core L1

18 COMP9242 2020T2 W03b

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

index(2) byte(4) tag(26)

Use MMU for
tag check &
permissions

© Gernot Heiser 2019 – CC Attribution License

Physically-Indexed, Physically-Tagged Cache
• Only uses physical addresses
• Address translation result needed for lookup
• Only sensible choice for L2…LLC

19 COMP9242 2020T2 W03b

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

index(2) byte(4)tag(26)Speed matters
less after L1 miss

Page offset invariant under VA→PA:
• Index bits ⊂ offset bits
⇒ don’t need MMU for indexing!

• VP = PP in this case
⇒ fast, suitable for L1

• Single-colour cache!

© Gernot Heiser 2019 – CC Attribution License

Cache Issues
• Caches are managed by hardware transparently to software,

so OS doesn’t have to worry about them, right?
• Software-visible cache effects:

• performance
• cache-friendly data layout

• homonyms:
• same address, different data
• can affect correctness!

• synonyms (aliases):
• different address, same data
• can affect correctness!

20 COMP9242 2020T2 W03b

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

© Gernot Heiser 2019 – CC Attribution License

Virtually-Indexed Cache Issues
Homonyms – same name for different data:
• Problem: VA used for indexing is

context-dependent
• same VA refers to different PAs
• tag does not uniquely identify data!
• wrong data may be accessed
• an issue for most OSes

• Homonym prevention:
• flush cache on each context switch
• force non-overlapping address-space layout

• single-address-space OS
• tag VA with address-space ID (ASID)

• makes VAs global

21 COMP9242 2020T2 W03b

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

tag(26) index(2) byte(4)

© Gernot Heiser 2019 – CC Attribution License

Virtually-Indexed Cache Issues
Synonyms – multiple names for same data:
• Several VAs map to the same PA

• frame shared between ASs
• frame multiply mapped within AS

• May access stale data!
• same data cached in multiple lines

• … if aliases differ in colour
• on write, one synonym updated
• read on other synonym returns old value
• physical tags or ASIDs don’t help!

• Are synonyms a problem?
• depends on page and cache size (colours)
• no problem for R/O data or I-caches

22 COMP9242 2020T2 W03b

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

tag(26) index(2) byte(4)

© Gernot Heiser 2019 – CC Attribution License

Example: MIPS R4x00 Synonyms

23 COMP9242 2020T2 W03b

• ASID-tagged, on-chip VP cache
• 16 KiB cache, 2-way set associative, 32 B line size, 4 KiB (base) page size
• size/associativity = 16/2 KiB = 8 KiB > page size (2 page colours)

• 16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5)
• overlap of tag bits and index bits, but from different addresses!

Remember, only index
determines location of data!
• Tag only confirms hit
• Synonym problem iff VA12 ≠ VA’12
• Problem of virtually-indexed

cache with multiple colours

VPN

Cache

39

35

13 5 0
VA

index (8 bits)

tag (24 bits)
011

s b

PFN offset PA

© Gernot Heiser 2019 – CC Attribution License

Address Mismatch Problem: Aliasing

24 COMP9242 2020T2 W03b

• Page aliased in different address spaces
• AS1: VA12 = 1, AS2: VA12 = 0

• One alias gets modified
• in a write-back cache, other alias sees stale data
• lost-update problem

2nd half of cache
1st half of

cache

RAM

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

© Gernot Heiser 2019 – CC Attribution License

RAM

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Address Mismatch Problem: Aliasing

25 COMP9242 2020T2 W03b

• Unmap aliased page, remaining page has a dirty cache line
• Re-use (remap) frame for a different page (in same or different AS)
• Access new page

• without replication, new write will overwrite old (hits same cache line)
• with replication, alias may write back after remapping: “cache bomb”

dirty
unmap

© Gernot Heiser 2019 – CC Attribution License

DMA Consistency Problem

26 COMP9242 2020T2 W03b

• DMA (normally) uses physical addresses and bypasses cache
• CPU access inconsistent with device access
• must flush cache before device write
• must invalidate cache before device read

You’ll have to
deal with this!

RAM

write

Cache

DMA

© Gernot Heiser 2019 – CC Attribution License

Avoiding Synonym Problems
• Flush cache on context switch

• doesn’t help for aliasing within address space!

• Detect synonyms and ensure:
• all read-only, or
• only one synonym mapped

• Restrict VM mapping so synonyms map to same cache set
• eg on R4x00: ensure VA12 = PA12 – colour memory!

• Hardware synonym detection
• e.g. Cortex A53: store overlapping tag bits of both addresses & check
• “physically”-addressed

27 COMP9242 2020T2 W03b

© Gernot Heiser 2019 – CC Attribution License

Summary: VV Caches
þFastest (don’t rely on TLB for retrieving data)

zstill need TLB lookup for protection
z… or alternative mechanism for providing protection
zstill need TLB lookup or physical tag for writeback

zSuffer from synonyms and homonyms
zrequires flushing on context switches

zmakes context switches expensive
zmay even be required on kernel→user switch

• … or guarantee no synonyms and homonyms
• Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
• Used for I-caches on several other architectures (Alpha, Pentium 4)
• Not used on recent architectures

28 COMP9242 2020T2 W03b

Historically used with
shallow hierarchies
to support bigger L1

© Gernot Heiser 2019 – CC Attribution License

Summary: ASID-Tagged VV Caches
• Add ASID as part of tag
• On access, compare with CPU’s ASID register
þRemoves homonyms

þpotentially better context-switching performance
zASID recycling still needs flush

zDoesn’t solve synonym problem (but that’s less severe)
zDoesn’t solve write-back problem
• Not used on recent architectures

29 COMP9242 2020T2 W03b

© Gernot Heiser 2019 – CC Attribution License

Summary: VP Caches
• Medium speed

þlookup in parallel with address translation
ztag comparison after address translation

þNo homonym problem
zPotential synonym problem
zBigger tags (cannot leave off set-number bits)

zincreases area, latency, power consumption
• Used on most contemporary architectures for L1 cache

• but mostly single-colour (pseudo-PP) or with HW alias prevention (Arm)

30 COMP9242 2020T2 W03b

© Gernot Heiser 2019 – CC Attribution License

Summary: PP Caches
zSlowest

zrequires result of address translation before lookup starts
þNo synonym problem
þNo homonym problem
þEasy to manage
þCache can use bus snooping for DMA/multicore coherency
þObvious choice for L2–LLC where speed matters less

31 COMP9242 2020T2 W03b

© Gernot Heiser 2019 – CC Attribution License

Write Buffer
• Store operations can take a long time to complete

• eg if a cache line must be read or allocated
• Can avoid stalling the CPU by buffering writes
• Write buffer is a FIFO queue of incomplete stores

• Also called store buffer or write-behind buffer
• May exist at any cache level, or between cache and memory

• Can fetch intermediate values out of buffer
• to service read of a value that is still in write buffer
• avoids unnecessary stalls of load operations

• Implies that memory contents are temporarily stale
• on a multiprocessor, CPUs see different order of writes!
• “weak memory ordering”, to be revisited in SMP context

32 COMP9242 2020T2 W03b

CPU

Cache

…
Store A
…
Store B
…
Store A
…

© Gernot Heiser 2019 – CC Attribution License

Cache Hierarchy

33 COMP9242 2020T2 W03b

• Hierarchy of caches to balance memory accesses:
• small, fast, virtually-indexed L1
• large, slow, physically indexed L2–LLC

• Each level reduces and clusters traffic
• L1 split into I- and D-caches

• “Harvard architecture”
• requirement of pipelining

• Other levels unified
• Chip multiprocessors:

• Usually LLC shared chip-wide
• L2 private (Intel) or clustered (AMD)

Registers

I-Cache D-Cache

Write buffer

L2 Cache

Last-Level Cache (LLC)

Memory (RAM)

Write buffer

Write buffer

© Gernot Heiser 2019 – CC Attribution License

ODROID-C2 (Cortex A53) System Architecture

34 COMP9242 2020T2 W03b

Device Device

RAM

L1 cache:
• 32 KiB, 64-B lines

• L1-I: 2-way, virtually addr.
• L1-D: 4-way, “physically” addr.

L2 cache:
• 512 KiB, 16-way

64-B lines, physical

Armlogic S905 SoC

A53 core

L1
-D

 $

L1
-I

$

L2 cache

A53 core
L1

-D
 $

L1
-I

$

L1
-D

 $

L1
-I

$

A53 core A53 core

L1
-D

 $

L1
-I

$

© Gernot Heiser 2019 – CC Attribution License

Translation Lookaside Buffer (TLB)

35 COMP9242 2020T2 W03b

• TLB is a (VV) cache for page-table entries
• TLB can be

• hardware loaded,
transparent to OS

• software loaded,
maintained by OS

• TLB can be:
• split: I- and D-TLBs
• unified

ASID VPN

VPNASID PFN flags

flagsPFN

© Gernot Heiser 2019 – CC Attribution License

TLB Size (I-TLB+D-TLB)

36 COMP9242 2020T2 W03b

Architecture Size (I+D) Assoc Page Size Coverage
VAX-11 64–256 2 0.5 KiB 32–128 KiB

ix86 32i + 64d 4 4 KiB + 4 MiB 128 KiB

MIPS 96–128 full 4 KiB – 16 MiB 384–512 KiB

SPARC 64 full 8 KiB – 4 MiB 512 KiB

Alpha 32–128i + 128d full 8 KiB – 4 MiB 256 KiB

RS/6000 (PPC) 32i + 128d 2 4 KiB 256 KiB

Power-4 (G5) 1024 4 4 KiB 512 KiB

PA-8000 96i + 96d full 4 KiB – 64 MiB 384 KiB

Itanium 64i + 96d full 4 KiB – 4 GiB 384 KiB

ARMv7 (A9) 64–128 1–2 4 KiB – 16 MiB 256–512 KiB

x86 (Skylake) L1:128i+64d; L2:1536 4 4 KiB + 2/4 MiB 1 MiB

Not much
growth in 40

years!

© Gernot Heiser 2019 – CC Attribution License

TLB Size

37 COMP9242 2020T2 W03b

TLB coverage
• Memory sizes are increasing
• Number of TLB entries are roughly constant
• Base page sizes are steady

• 4 KiB (SPARC, Alpha used 8KiB)
• OS designers have trouble using superpages effectively

• Consequences:
• Total amount of RAM mapped by TLB is not changing much
• Fraction of RAM mapped by TLB is shrinking dramatically!
• Modern architectures have very low TLB coverage!

• The TLB can become a bottleneck

© Gernot Heiser 2019 – CC Attribution License

Multi-Level TLBs

38 COMP9242 2020T2 W03b

CPU

L1 I-TLB

Unified L2 TLB

L1 D-TLB

L I/D Pages Assoc Entr
1 I 4 KiB 4-way 64
1 D 4 KiB 4-way 64
1 I 2/4 MiB fully 7
1 D 2/4 MiB 4-way 32
2 unif 4 KiB 4-way 512

Intel Core i7

L I/D Pages Assoc #
1 I 4 KiB–1 GiB? full? 10

1 D 4 KiB–1 GiB? full? 10

2 unif 4 KiB–512 MiB 4-way 512

Arm A53

• Multi-level design (like I/D cache)
• Improve size-performance tradeoff

© Gernot Heiser 2019 – CC Attribution License

Intel Core i7 (Haswell) Cache Structure

39 COMP9242 2020T2 W03b

Source: Intel

© Gernot Heiser 2019 – CC Attribution License

Intel Haswell L3 Cache

40 COMP9242 2020T2 W03b

Source: Intel

