School of Computer Science & Engineering
5 COMP9242 Advanced Operating Systems
UNSW | g

Pro- Pro-
cess cess

2020 T2 Week 04a
Virtualisation
@GernotHeiser

Processor

Copyright Notice

These slides are distributed under the

Creative Commons Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

» under the following conditions:

+ Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW

Virtual Machine (VM)

“A VM is an efficient, isolated duplicate of a real machine” [Popek&Goldberg 74]

» Duplicate: VM should behave identically to the real machine

* Programs cannot distinguish between real or virtual hardware
» Except for:

» Fewer resources (potentially different between executions)

+ Some timing differences (when dealing with devices)

+ Isolated: Several VMs execute without interfering with each other
« Efficient: VM should execute at speed close to that of real hardware
+ Requires that most instruction are executed directly by real hardware

Hypervisor aka virtual machine monitor (VMM):
Software layer implementing the VM

© Gernot Heiser 2019 — CC Attribution License

COMP9242 2020T2 WO04a Virtualisation

Plus anything else you
- want to sound cool!

Types of Virtualisation

“Platform” Processor
thV\#SW) Programming
nterface
OS AP Language
Process

Java
Program

Process

Hypervisor

Process

Virtualisation Layer

OS-level VM

Hypervisor
Processor Processor

Platform V{1 or System VM
Npe-1:"Bare metg Type-2: “Hosted”

Java VM

Processor

Process VM

3 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW

Why Virtual Machines?

» Historically used for easier sharing of expensive mainframes
* Run several (even different) OSes on same machine
* called guest operating system
» Each on a subset of physical resources

* Can run single-user single-tasked OS
in time-sharing mode
* legacy support

N

 Obsolete R
 by1980s

y-

Mem. region Mem. region

COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License 85 UNSW

%

: e ~ Would not be needed i
Why Virtual Machines? ~ OSes provided proper

~ security &resource

* Heterogenous concurrent guest OSes (
- management!

* eg Linux + Windows N B S
« Improved isolation for consolidated servers: QoS & Security
« total mediation/encapsulation:
« replication
* migration/consolidation
« checkpointing
« debugging
* Uniform view of hardware

Mem. region

Mem. region

© Gernot Heiser 2019 — CC Attribution License UNSW

5 COMP9242 2020T2 WO04a Virtualisation

Why Virtual Machines: Cloud Computing

* Increased utilisation by sharing hardware

* Reduced maintenance cost through scale
» On-demand provisioning

* Dynamic load balancing through migration

Hypervisor Hypervisor

H/W H/W

Cloud Provider Data Centre

COMP9242 2020T2 WO04a Virtualisation

Hypervisor aka Virtual Machine Monitor

» Software layer that implements virtual machine

» Controls resources
* Partitions hardware
» Schedules guests
* “world switch”

» Mediates access to shared resources APl

* e.g. console, network

Hypervisor

ISA \/

Privileged guest instructions
trap to hypervisor

Implications:
» Hypervisor executes in privileged mode

7 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW

Native vs Hosted Hypervisor

» Hosted VMM besides native apps
» Sandbox untrusted apps
Guest OS + Convenient for running alternative

App

— MVAMA OS on desktop
Guest OS . * leverage host drivers
Hvr enisor
App \N\
]
(O]
Native Native/ Hosted/
execution Bare-metal/ Type-ll
Type-I Hypervisor
Hypervisor

© Gernot Heiser 2019 — CC Attribution License

8 COMP9242 2020T2 WO04a Virtualisation

Virtualisation Mechanics: Instruction Emulation

* Traditional frap-and-emulate (T&E) approach:
* guest attempts to access physical resource
* hardware raises exception (trap), invoking HV’s exception handler
* hypervisor emulates result, based on access to virtual resource

Exception

Guest VMM

9 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

T
Trap & Emulate Requirements égm':;@;}
* Privileged instruction: when executed in user mode will frap N
* Privileged state: determines resource allocation

* Incl. privilege level, PT ptr, exception vectors...
* Sensitive instruction:
+ control sensitive: change privileged state
» behaviour sensitive: expose privileged state
« eg privileged instructions which NO-OP in user state
* Innocuous instruction: not sensitive

T&E virtualisable HW:
(XK All sensitive instructions
are privileged

Can run
unmodified
guest binary

10 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

"Impure” Virtualisation

Insert trap —
“hypercall”

R
Insert in-line

© Gernot Heiser 2019 — CC Attribution License

» Support non-T&E hardware
+ Improve performance

12 COMP9242 2020T2 WO04a Virtualisation

Virtualisation vs Address Translation

\ Virtual Memory H
L

\ Virtual Memory ‘ \ Virtual Memory ‘

Virtual Virtual \F{L:tg”:'
P P
age age Table

Table

Page Page
Table Table
»
P S Must implement with
((Two levels of single MMU translation!
address translation!

© Gernot Heiser 2019 — CC Attribution License

13 COMP9242 2020T2 WO04a Virtualisation

Virtualisation Mechanics: Shadow Page Table

(Virtual)
guest page
table
Shadow (real) guest page table,
translations cached in TLB
User| Id r0, adr Guest

virtual address

Virt_PT_ptr -—— =" o Guest

(Software) physical ggg:trvisor's
address memory map
VMM Physical
address

14 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

—_andiRdi

Mechanics: Shadow Page Table. . - {Used by

VMware

Hypervisor must shadow (virtualize) PT updates by guest:

* trap guest writes to guest PT

* translate guest PA in guest (virtual) PTE using memory map
* insert translated PTE in shadow PT

User| |d r0, adr

Virt_PT_ptr -=—— > Guest
(Software) physical
address

Guest
virtual address

VMM Physical

address

15 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Lazy Shadow Update

User Guest OS Hypervisor

mapping in GPT

another mapping;
return to user

access new page

16 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Lazy Shadow Update Mechanics: Real Guest Page Table
User Guest OS Hypervisor

VMM maintains
guest PT

mapping in GPT -

Guest

virtual address

Virt_PT_ptr ==—> ‘e
(Software)

another mapping; -

NN
.

Each guest PT
access traps!

return to user

Physical
address

17 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License 18 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Optimised Guest Page Table Mechanics: Guest Self-Virtualisation
@ O O

Minimise traps by holding
some virtual state inside guest

Pare-virtualised guest
“knows” it’s virtualised

Guest

virtual address

Virt_PT_ptr -=—> ‘e
(Software)

VPSR PSR

Used by

P 1, #VPSR
original Xen mov rl, 4

1ldr «r0,[rl]
orr r0,r0,#VPSR ID
sto r0,[rl]

Physical
address

19 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License 20 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Device Models

Split (para-
virtualised)

Pass-through

Device
Driver

Device
Driver

Device

Virtual
Driver

Device
Driver

© Gernot Heiser 2019 — CC Attribution License

21 COMP9242 2020T2 WO04a Virtualisation

22

Mechanics: Emulated Device

Device
Driver

Device

Device register
accesses

COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Split Driver

“Para-virtualized”
driver

Virtual
Drive

Device
Driver Virtual device:

simple interface

23 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

24

Mechanics: Driver OS (Xen DomO)

COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Mechanics: Pass-Through Driver

Device
Driver

25 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

x86 Virtualisation Extensions: VT-x

Non-Root

Kernel
entry

Guest Kernel Hypervisor

26 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Arm Virtualisation Extensions (1)

EL, aka “hyp mode”

“Normal world” “Secure world”

EL,

EL,

27 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW

Arm Virtualisation Extensions (2) .

Configurable Traps

Eus

Native syscall User mode

Can configure traps to
go directly to guest OS

T

a

Virtual syscall Virtual syscall
Trap to guest

28 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

134

Arm Virtualisation Extensions (3) Arm Virtualisation Extensions (3)

Emulation Emulation . ®

IR mv cPu_ASID,r1 IR mv CPUASIDrl.

L11- L11-
Cache Cache
L2 L2
Cache Cache
Arm Virtualisation Extensions (4) Arm Virtualisation Extensions (4)
2-stage translation©© 2-stage translation cost

Trade-off:

Guest
physical address

Guest
physical address

VMM Hardware Physical VMM Hardware Physical
address address

31 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW 32 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

Arm Virtualisation Extensions (5)

Virtual Interrupts

*

« 2-part IRQ controller
« global “distributor”
* per-CPU “interface”
* New H/W *“virt. CPU interface”
* Mapped to guest
* Used by HV to forward IRQ
» Used by guest to acknowledge

» Halves hypervisor invocations for
interrupt virtualization

CPU Interface

Virt. CPU Interface

Distributor

‘ x86: issue only for legacy
— level-triggered IRQs

Arm Virtualisation Extensions (6)

* Devices use virtual addresses

System MMU (/O MMU) « Translated by

— elsewhere called /O MMU
— translation cache, like TLB

=~
.%' < — reloaded from 1/O page table

Guest Physical x86 different Y

Address (VT_d) N) Many ARM

e 7 SoCs
different

Physical o
Address « Can do pass-through I/O safely

Physical Memory

— guest accesses device registers
— no hypervisor invocation

33 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License :?: U”NS‘W 34 COMP9242 2020T2 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UsN"SEW
2
World Switch Hybrid Hypervisor-OSes .
x86 Arm Huge TCB, contains full Linux Idea: Turn OS into N
. i i . i system (kernel and userland)! ‘ hypervisor by running A
VM state is up to 4 KiB VM state is 488 B "~ inVTxrootmode,
. \S/ﬁ/lve/_rt?\s/t'\c/)lre Sone by hardware on Save/restore done by hypervisor Often falsely called a o pnone?red by KVMi
exivvivientry « Selective save/restore “Type-2” hypervisor T .-
* Fast and simple + Eg traps w/o world switch
Non-Root
)
_ ‘ World switch > _
} — |l Bl _ _ _ _
Save Rest JE——
estore Reuse Linux
VM 1 control block VM 2 control block VM exit ~_drivers!
35 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License 36 COMP9242 2020T2 W04a Virtualisation © Gernot Heiser 2019 — CC Attribution License UNSW

37

Fun and Games with Hypervisors

... and many

* Time-travelling virtual machines [King ‘05] IO

» debug backwards by replaying VM from checkpoint, log state changes
 SecVisor: kernel integrity by virtualisation [Seshadri ‘07]
+ controls modifications to kernel (guest) memory
» Overshadow: protect apps from OS [Chen ‘08]
» make user memory opaque to OS by transparently encrypting
* Turtles: Recursive virtualisation [Ben-Yehuda ‘10]
» virtualize VT-x to run hypervisor in VM
* CloudVisor: mini-hypervisor underneath Xen [Zhang “11]
* isolates co-hosted VMs belonging to different users
* leverages remote attestation (TPM) and Turtles ideas

COMP9242 202072 WO04a Virtualisation © Gernot Heiser 2019 — CC Attribution License

