
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2020 T2 Week 04a
Virtualisation
@GernotHeiser

VM

OS

Pro-
cess

Processor

Hypervisor

VM

OS

Pro-
cess

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W04a Virtualisation

© Gernot Heiser 2019 – CC Attribution License

Virtual Machine (VM)
“A VM is an efficient, isolated duplicate of a real machine” [Popek&Goldberg 74]

• Duplicate: VM should behave identically to the real machine
• Programs cannot distinguish between real or virtual hardware
• Except for:

• Fewer resources (potentially different between executions)
• Some timing differences (when dealing with devices)

• Isolated: Several VMs execute without interfering with each other
• Efficient: VM should execute at speed close to that of real hardware

• Requires that most instruction are executed directly by real hardware

2 COMP9242 2020T2 W04a Virtualisation

Hypervisor aka virtual machine monitor (VMM):
Software layer implementing the VM

© Gernot Heiser 2019 – CC Attribution License

Types of Virtualisation

3 COMP9242 2020T2 W04a Virtualisation

VM

OS
Process

Processor
Hypervisor

VM

OS
Process

Platform VM or System VM

Operating System

Processor

Virtualisation Layer

VM
Process

VM
Process

OS-level VM

Operating System

Processor

Process
Java
Program

Java VM

Process VM

Operating System

Process

Processor

Process

Type-2: “Hosted”

Processor

VM

OS

Process

Hypervisor

VM

OS

Process

Operating System

Type-1:“Bare metal”

Plus anything else you
want to sound cool!

© Gernot Heiser 2019 – CC Attribution License

Why Virtual Machines?
• Historically used for easier sharing of expensive mainframes

• Run several (even different) OSes on same machine
• called guest operating system

• Each on a subset of physical resources
• Can run single-user single-tasked OS

in time-sharing mode
• legacy support

4 COMP9242 2020T2 W04a Virtualisation

Hypervisor

RAM

VM1

Guest OS

Apps

Virt RAM

VM2

Guest OS

Apps

Virt RAM

Mem. region Mem. region

Obsolete
by 1980s

© Gernot Heiser 2019 – CC Attribution License

Why Virtual Machines?
• Heterogenous concurrent guest OSes

• eg Linux + Windows
• Improved isolation for consolidated servers: QoS & Security

• total mediation/encapsulation:
• replication
• migration/consolidation
• checkpointing
• debugging

• Uniform view of hardware

5 COMP9242 2020T2 W04a Virtualisation

Hypervisor

RAM

VM1

Guest OS

Apps

Virt RAM

VM2

Guest OS

Apps

Virt RAM

Mem. region Mem. region

Would not be needed if
OSes provided proper

security & resource
management!

© Gernot Heiser 2019 – CC Attribution License

Why Virtual Machines: Cloud Computing
• Increased utilisation by sharing hardware
• Reduced maintenance cost through scale
• On-demand provisioning
• Dynamic load balancing through migration

6 COMP9242 2020T2 W04a Virtualisation

H/W
Hypervisor

OS

App
AppApp
OS

App
AppApp

OS

AppAppApp
OS

AppAppApp

H/W
Hypervisor

OS

AppAppApp
OS

AppAppApp

Cloud Provider Data Centre

B.com

OS
H/W

AppAppApp

OS
H/W

AppAppApp

OS
H/W

AppAppApp

A.com

OS
H/W

AppAppApp

OS
H/W

AppAppApp

OS
H/W

AppAppApp

© Gernot Heiser 2019 – CC Attribution License

Hypervisor aka Virtual Machine Monitor
• Software layer that implements virtual machine
• Controls resources

• Partitions hardware
• Schedules guests

• “world switch”
• Mediates access to shared resources

• e.g. console, network

7 COMP9242 2020T2 W04a Virtualisation

Hardware

OS

Hardware

Hypervisor

Guest OS

ISA

API

Implications:
• Hypervisor executes in privileged mode
• Guest software executes in unprivileged mode

Privileged guest instructions
trap to hypervisor

© Gernot Heiser 2019 – CC Attribution License

Native vs Hosted Hypervisor

8 COMP9242 2020T2 W04a Virtualisation

• Hosted VMM besides native apps
• Sandbox untrusted apps
• Convenient for running alternative

OS on desktop
• leverage host drivers

Native/
Bare-metal/

Type-I
Hypervisor

Hosted/
Type-II

Hypervisor

App

Hardware

OS

App

Hardware

Hypervisor

Guest OS

App

Hardware

Guest OS

Host OS

Hypervisor

Native
execution

Overheads:
• Double mode switches
• Double context switches
• Host not optimised for

exception forwarding

© Gernot Heiser 2019 – CC Attribution License

Virtualisation Mechanics: Instruction Emulation
• Traditional trap-and-emulate (T&E) approach:

• guest attempts to access physical resource
• hardware raises exception (trap), invoking HV’s exception handler
• hypervisor emulates result, based on access to virtual resource

9 COMP9242 2020T2 W04a Virtualisation

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

lda r1, vm_reg_ctxt
ld r2, (r1,ofs_r0)
sto r2, (r1,ofs_ASID)

Guest
Exception

VMM

Most instructions do not trap
• prerequisite for efficient virtualisation
• requires VM ISA (almost) same as processor ISA

© Gernot Heiser 2019 – CC Attribution License

Trap & Emulate Requirements
• Privileged instruction: when executed in user mode will trap
• Privileged state: determines resource allocation

• Incl. privilege level, PT ptr, exception vectors…
• Sensitive instruction:

• control sensitive: change privileged state
• behaviour sensitive: expose privileged state

• eg privileged instructions which NO-OP in user state

• Innocuous instruction: not sensitive

10 COMP9242 2020T2 W04a Virtualisation

No-op is
insufficient!

• Some inherently
sensitive, e.g. set
interrupt level

• Some context-
dependent, e.g.
store to page table

T&E virtualisable HW:
All sensitive instructions
are privileged

Can run
unmodified
guest binary

© Gernot Heiser 2019 – CC Attribution License

”Impure” Virtualisation

12 COMP9242 2020T2 W04a Virtualisation

• Support non-T&E hardware
• Improve performance

ld r0, curr_thrd
ld r1, (r0,ASID)
mv r1, PSR
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
trap
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
jmp fixup_15
ld sp, (r1,kern_stk)

Insert trap –
“hypercall”

Insert in-line
emulation code

• Modify binary: binary translation (VMware)
• Modify hypervisor ”ISA”: para-virtualisation

© Gernot Heiser 2019 – CC Attribution License

Virtualisation vs Address Translation

13 COMP9242 2020T2 W04a Virtualisation

Virtual Memory Virtual Memory

Physical Memory

Page
Table

Page
Table

Guest Physical Memory

Page
Table

Virtual
Page
Table

Virtual
Page
Table

Virtual Memory

Guest Physical Memory

Page
Table

Virtual
Page
Table

Virtual Memory

Two levels of
address translation!

Must implement with
single MMU translation!

© Gernot Heiser 2019 – CC Attribution License

Virtualisation Mechanics: Shadow Page Table

14 COMP9242 2020T2 W04a Virtualisation

Virt_PT_ptr
(Software)

data

ld r0, adr

Physical
address

PT_ptr
(Hardware)

User

(Virtual)
guest page
table

Hypervisor's
guest
memory map

Shadow (real) guest page table,
translations cached in TLB

Guest

VMM

Memory

Guest
physical
address

Guest
virtual address

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Shadow Page Table

15 COMP9242 2020T2 W04a Virtualisation

Virt_PT_ptr
(Software)

data

ld r0, adr Guest
virtual address

Physical
address

PT_ptr
(Hardware)

User

Guest

VMM

Memory

Guest
physical
address

Hypervisor must shadow (virtualize) PT updates by guest:
• trap guest writes to guest PT
• translate guest PA in guest (virtual) PTE using memory map
• insert translated PTE in shadow PT

Shadow PT has TLB semantics
(i.e. weak consistency) ⇒
Update at synchronisation points:
• page faults
• TLB flushes

Used by
VMware

Is virtual TLB
• similar semantics
• can be incomplete

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Lazy Shadow Update

16 COMP9242 2020T2 W04a Virtualisation

access new page
…

write-protect GPT

unprotect GPT & mark dirty

update dirty shadow;
write-protect GPT

User HypervisorGuest OS

add mapping in GPT

add another mapping;
return to user

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Lazy Shadow Update

17 COMP9242 2020T2 W04a Virtualisation

continue

write-protect GPT

unprotect GPT & mark dirty

update dirty shadow;
write-protect GPT;
flush TLB

User HypervisorGuest OS

invalidate mapping in GPT

invalidate another mapping;
flush TLB

return to user

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Real Guest Page Table

18 COMP9242 2020T2 W04a Virtualisation

Virt_PT_ptr
(Software)

data

ld r0, adr

Physical
address

PT_ptr
(Hardware)

User

VMM maintains
guest PT

Guest

VMM

Memory

Guest
virtual address

Guest PT
VMM PT

On guest PT access must
translate (virtualise) PTEs:

• store: guest “PTE” → real PTE
• load: real PTE → guest “PTE”

Each guest PT
access traps!

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Optimised Guest Page Table

19 COMP9242 2020T2 W04a Virtualisation

Virt_PT_ptr
(Software)

data

ld r0, adr

Physical
address

PT_ptr
(Hardware)

User

Pare-virtualised guest
“knows” it’s virtualised

Guest

VMM

Memory

Guest
virtual address

Guest PT
VMM PT

• Guest translates PTE on read from PT
• Linux PT-access wrappers help

• Guest batches PR updates
• hypercalls to reduce overhead

Used by
original Xen

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Guest Self-Virtualisation

20 COMP9242 2020T2 W04a Virtualisation

Minimise traps by holding
some virtual state inside guest

0

1

VPSR
0

0

PSR
mov r1,#VPSR
ldr r0,[r1]
orr r0,r0,#VPSR_ID
sto r0,[r1]

Example: Interrupt-enable in virtual PSR
• guest and VMM agree on VPSR location
• VMM queues guest IRQs when disabled in VPSR

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Device Models

21 COMP9242 2020T2 W04a Virtualisation

VMM

Device
Driver

VM1

OS Virtual
Driver

AppsAppsApps

Device

VMM

VM1

OS Device
Driver

AppsAppsApps

Device

Emulation
VMM

VM1

OS Device
Driver

AppsAppsApps

Device

Emulated Pass-throughSplit (para-
virtualised)

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Emulated Device

22 COMP9242 2020T2 W04a Virtualisation

VMM

VM1

OS Device
Driver

AppsAppsApps

Device

Emulation
Device register

accesses

Each device access must be
trapped and emulated
– unmodified native driver
– high overhead!
– may not actually work, violate

device timing constraints

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Split Driver

23 COMP9242 2020T2 W04a Virtualisation

VMM

Device
Driver

VM1

OS Virtual
Driver

AppsAppsApps

Device

Virtual device:
simple interface

Simplified, high-level device interface
– small number of hypercalls
– new (but very simple) driver
– low overhead
– must port drivers to hypervisor

“Para-virtualized”
driver

© Gernot Heiser 2019 – CC Attribution License

Leverage native drivers
– no driver porting
– must trust complete driver guest!
– huge trusted computing base (TCB)!

Mechanics: Driver OS (Xen Dom0)

24 COMP9242 2020T2 W04a Virtualisation

VMM

DomU

OS Virtual
Driver

AppsAppsApps
Dom0

OS Device
Driver

Device

© Gernot Heiser 2019 – CC Attribution License

Mechanics: Pass-Through Driver

25 COMP9242 2020T2 W04a Virtualisation

VMM

VM1

OS Device
Driver

AppsAppsApps

Device

Direct device
access by

guest

Unmodified native driver
• Must trust driver (and guest) for DMA

– except with hardware support: I/O MMU
• Can’t share device between VMs

– except with hardware support: recent NICs

© Gernot Heiser 2019 – CC Attribution License

x86 Virtualisation Extensions: VT-x

26 COMP9242 2020T2 W04a Virtualisation

Non-Root

Ring 0

Ring 3

Ring 2

Ring 1

Root

Ring 0

Ring 3

Ring 2

Ring 1

VM exit

Kernel
entry

Guest Kernel Hypervisor

New processor mode: VT-x root mode
• orthogonal to protection rings
• entered on virtualisation trap

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (1)

27 COMP9242 2020T2 W04a Virtualisation

“Secure world”“Normal world”

Monitor mode

Hyp mode

User mode

Kernel modes Kernel modes

User mode

EL2 aka “hyp mode” New privilege level
• Strictly higher than kernel (EL1)
• Virtualizes or traps all sensitive

instructions
• Presently only available in Arm

TrustZone “normal world”

EL0

EL1

EL2

EL3

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (2)

28 COMP9242 2020T2 W04a Virtualisation

Kernel mode

User mode

Native syscall

Kernel mode

Hyp mode

User mode

Virtual syscall

Kernel mode

Hyp mode

User mode

Virtual syscall
Trap to guest

Can configure traps to
go directly to guest OS

x86 similar

Big
performance

boost!

Configurable Traps

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (3)

29 COMP9242 2020T2 W04a Virtualisation

mv CPU_ASID,r1IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

L2
Cache

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

...

...

...

L1 D-
Cache

...R2

...
mv CPU_ASID,r1
...

mv CPU_ASID,r1

Emulation

1) Load faulting instruction:
• Compulsory L1-D miss!

2) Decode instruction
• Complex logic

3) Emulate instruction
• Usually straightforward

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (3)

30 COMP9242 2020T2 W04a Virtualisation

mv CPU_ASID,r1IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

L2
Cache

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

...

...

...

L1 D-
Cache

...R2

...
mv CPU_ASID,r1
...

mv CPU_ASID,r1

Emulation
1) HW decodes instruction

• No L1 miss
• No software decode

2) SW emulates instruction
• Usually straightforward

No x86
equivalent

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (4)

31 COMP9242 2020T2 W04a Virtualisation

1st PT_ptr
(Hardware)

data

ld r0, adr

Physical
address

2nd PT ptr
(Hardware)

User

Guest

VMM

Memory

Guest
virtual address

• Hardware PT walker traverses both PTs
• PT walker loads combined (guest-virtual

to physical) mapping into TLB
• eliminates “virtual TLB”

Guest
physical address

x86 similar
(EPTs)2-stage translation

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (4)

32 COMP9242 2020T2 W04a Virtualisation

1st PT_ptr
(Hardware)

data

ld r0, adr

Physical
address

2nd PT ptr
(Hardware)

User

Guest

VMM

Memory

Guest
virtual address

• On page fault walk twice number of page tables!
• Can have a page miss on each, requiring PT walk
• O(n2) misses in worst case for n-level PT
• Worst-case cost is massively worse than for

single-level translation!

Guest
physical address

2-stage translation cost

Trade-off:
• fewer traps

simpler implementation
• higher TLB-miss cost

up to 50% of run-time!

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (5)

33 COMP9242 2020T2 W04a Virtualisation

Virtual Interrupts • 2-part IRQ controller
• global “distributor”
• per-CPU “interface”

• New H/W “virt. CPU interface”
• Mapped to guest
• Used by HV to forward IRQ
• Used by guest to acknowledge

• Halves hypervisor invocations for
interrupt virtualization

Distributor

CPU Interface

Hypervisor

Guest

Virt. CPU Interface

x86: issue only for legacy
level-triggered IRQs

© Gernot Heiser 2019 – CC Attribution License

Arm Virtualisation Extensions (6)

34 COMP9242 2020T2 W04a Virtualisation

Physical Memory

TLB

VASVASVM

System
MMU

Physical
Address

Guest Physical
Address

System MMU (I/O MMU)
• Devices use virtual addresses
• Translated by system MMU

– elsewhere called I/O MMU
– translation cache, like TLB
– reloaded from I/O page table

• Can do pass-through I/O safely
– guest accesses device registers
– no hypervisor invocation

x86 different
(VT-d) Many ARM

SoCs
different

© Gernot Heiser 2019 – CC Attribution License

World Switch
x86

• VM state is up to 4 KiB
• Save/restore done by hardware on

VMexit/VMentry
• Fast and simple

Arm
• VM state is 488 B
• Save/restore done by hypervisor
• Selective save/restore

• Eg traps w/o world switch

35 COMP9242 2020T2 W04a Virtualisation

VM 1 control block

Guest 1 state Guest 2 stateWorld switch

VM 2 control block

Save Restore

© Gernot Heiser 2019 – CC Attribution License

Hybrid Hypervisor-OSes

36 COMP9242 2020T2 W04a Virtualisation

Idea: Turn OS into
hypervisor by running

in VT-x root mode,
pioneered by KVM

Root

Linux kernel
“Host”

Linux
demons

Native
Linux
apps

Drivers

VM exit

Non-Root

VM

Guest
kernel

Guest
apps

VM

Guest
kernel

Guest
apps Ring 3

Ring 0

Hypervisor

Reuse Linux
drivers!

Huge TCB, contains full Linux
system (kernel and userland)!

Often falsely called a
“Type-2” hypervisor

© Gernot Heiser 2019 – CC Attribution License

Fun and Games with Hypervisors
• Time-travelling virtual machines [King ‘05]

• debug backwards by replaying VM from checkpoint, log state changes
• SecVisor: kernel integrity by virtualisation [Seshadri ‘07]

• controls modifications to kernel (guest) memory
• Overshadow: protect apps from OS [Chen ‘08]

• make user memory opaque to OS by transparently encrypting
• Turtles: Recursive virtualisation [Ben-Yehuda ‘10]

• virtualize VT-x to run hypervisor in VM
• CloudVisor: mini-hypervisor underneath Xen [Zhang ‘11]

• isolates co-hosted VMs belonging to different users
• leverages remote attestation (TPM) and Turtles ideas

37 COMP9242 2020T2 W04a Virtualisation

… and many
more..

