School of Computer Science & Engineering
COMP9242 Advanced Operating Systems

UNSWV | éaa=e
SYDNEY University
2020 T2 Week 05a tﬂ 2| ‘
Real Time Systems Basics
. blocked reempted
@GernotHeiser ocked [l preemp n
Incorporating material by Stefan Petters and Anna Lyons | I | | ! | ! I E

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

L)

Real-Time Basics

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

5

)

containment
structure

steam line

control
rods

reactor ”l

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License {«:

4

What's a Real-Time System?”?

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals
dictated by the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the
system is dependent not only on the results of computations, but on the time

at which those results arrive. [Stankovic, IEEE Computer, 1988]
Issues:
 Correctness: What are the temporal requirements?
 Criticality: What are the consequences of failure?

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

=3
VVVVVV

5

Strictness of Temporal Requirements

« Hard real-time systems

» Weakly-hard real-time systems
* Firm real-time systems

« Soft real-time systems
 Best-effort systems

Strictness of temporal
requirements

COMP9242 2020T2 WO05a Real-Time Systems

© Gernot Heiser 2019 — CC Attribution License UNSW

Q:;] VVVVVV
R

6

Real-Time Tasks Real-time tasks have deadlines

« Usually stated relative to release time

5 Processing * Frequently implicit: next release time
_E, <time
>
t t t

o
T, T, T, % Time
S & S 3 void main(void) {
o0 B O
E E. init(); // initialise system
S while (1) {
T —,wait(); // timer, device interrupt, signal
T12 ,dodob();

}
}

COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Real Time # Real Fast

Car engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production,
plant/environment
damage

Pacemaker 100 ms Recoverable Death

7 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Example: Industrial Control
High speed PLC

Standard PLC Standard motion

control

Simple PLC High end motion
Simple drives control

Traffic lights Interrupt
Home automation reaction time

10s i1s 100ms 10ms 1ms 100pus 10us ius 100ns

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License :: UNSW

ssssss

g

Hard Real-Time Systems

Safety-critical: Failure = death, serious injury
Mission-critical: Failure = massive financial damage

Deadline miss is catastrophic
Steep and real cost function

Cost

Triggering
Event

COMP9242 2020T2 WO05a Real-Time Systems

Deadline

Time

© Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

Challenge: Execution-Time Variance
I

Longest observed time

WCET/BCET |
rgf%:en?trggerf « Data-dependent execution paths
9 : » Microarchitecture (caches)
g Safe lower bound Safe upper bound
£
- BCET WCET
v
] v
0 20 40 60 80 100

Execution time

10 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Weakly-Hard Real-Time Systems

Tolerate small fraction
of deadline misses

- Typically integrated with fault tolerance for HW issues

Most feedback control systems (incl life-support!)

Control compensates for occasional miss
Becomes unstable if too many misses

11

Cost

Triggering
Event

COMP9242 2020T2 W05a Real-Time Systems

Deadline

120 2
4

In practice, certifiers treat

critical avionics as hard RT

Time

© Gernot Heiser 2019 — CC Attribution License

vvvvvv

Firm Real-Time Systems

« Forecast systems
* Trading systems

Result obsolete if deadline
missed (loss of revenue)

Gain Deadline

Triggering
Event

Time

12 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

e

GO g|e real-time systems

Soft Real-Time Systems

Q Al [Images Q Shopping [Vi

About 2,340,000,000 results (0.69 seconds)

: Medla players In computer science, real-time computi
Deadline miss undesirable Web services reaciive computing describes hardware S

svstems subiect to a "rgal-time constra
but tolerable, affects QoS

Bounded
Tardiness

Cost Deadline

Cost Deadline

Triggering

<« Ti
: Ime
Event Tardiness
13 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License #85) UNSW

14

Best-Effort Systems

No deadline

Cost

Triggering
Event

COMP9242 2020T2 WO05a Real-Time Systems

Time

In practice, duration is
rarely totally irrelevant

VVVVVV

Real-Time Operating System (RTOS)

 Designed to support real-time operation Requires analysis .Of
: . : worst-case execution
 Fast context switches, fast interrupt handling time (WCET)
« More importantly, predictable response time

« Main duty is scheduling tasks to meet their deadline

Traditional RTOS is very primitive

« single-mode execution

" homemory protectl_o " RT vs OS terminology:
* inherently cooperative

_ « “task” = thread
all code is trusted “job” = execution of thread

resulting from event

15 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

16

Real-Time Scheduling

« Ensuring all deadlines are met is harder than bin-packing
« Reason: time is not fungible

Deadline
missed!

A: needs 1

slot every 3

B: needs 3

slots every 9

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License

Time

YYYYYY

Real-Time Scheduling

» Ensuring all deadlines are met is harder than bin-packing
« Time is not fungible

Terminology:

» Aset of tasks is feasible if there is a known algorithm
that will schedule them (i.e. all deadlines will be met).

» A scheduling algorithm is optimal if it can schedule
all feasible task sets.

17 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

el

Cyclic Executives

 Very simple, completely static, scheduler is just table

« Deadline analysis done off-line
 Fully deterministic

Drawback: Latency of event handling is hyper-period

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_L(0);
wait_tick();
job_10Q);
wait_tick();
job_30);

{

b

t

{

&y

wait_tick();
& job_4();

<€

Hyper-period (inverse base rate

18

COMP9242 2020T2 WO05a Real-Time Systems

>
)

© Gernot Heiser 2019 — CC Attribution License

Are Cyclic Executives Optimal?

 Theoretically yes if can slice (interleave) tasks
 Practically there are limitations:

« Might require very fine-grained slicing

« May introduce significant overhead

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_L(0);
wait_tick();
job_10Q);
wait_tick();
job_30);

wait_tick();
& job_4();

< >
Hyper-period (inverse base rate)

19 COMP9242 2020T2 WO05a Real-Time Systems

© Gernot Heiser 2019 — CC Attribution License

20

On-Line RT Scheduling

« Scheduler is part of the OS, performs scheduling decision on-demand
« Execution order not pre-determined
« Can be preemptive or non-preemptive

* Priorities can be

» fixed: assigned at admission time
» scheduler doesn’t change prios
« system may support dynamic adjustment of prios

« dynamic: prios potentially different at each scheduler run

COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Fixed-Priority Scheduling (FPS)

» Classic L4 scheduling is a typical example:
« always picks highest-prio runnable thread
 round-robin within prio level
 will preempt if higher-prio thread is unblocked or time slice depleted

FPS is not optimal, i.e. cannot schedule some feasible sets

In general may or may not:
« preempt running threads

0 prio 255 . . .
L :\I\: R T :\l\; — * require unique prios

21 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

=)
vvvvvv
el

Rate Monotonic Priority Assignment (RMPA)

 Higher rate = higher priority: T. period
« T<T,=> P>P, 1/T. rate
P:. priority

U: utilisation

« Schedulability test: Can schedule task set with periods {T,... T} if

Assumes “implicit’ _
deadlines: release % U= C/Ti<n(2'™1) RMPA s optimal for FPS

time of next job

U[%] 100 82.8 78.0 75.7 74.3 71.8 log(2)=69.3

22 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

ssssss

Rate-Monotonic Scheduling Example

RMPA schedulability bound is
sufficient but not necessary

WCET

e cum B EaE |

20 3
t2 40 2 10 25

t, 80 1 20 25
100

23 COMP9242 2020T2 W05a Real-Time Systems

N B

v v

blocked n preempted q

vvvvvv

Deadline

----h-

tt 3 5 20 20 25
t, 2 8 30 ,@ 27
t{ 1 15 50 50 30 0

Preemption Deadline 82

N Release ' | |

Another RMPA Example

24 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License

Dynamic Prio: Earliest Deadline First (EDF)

 Job with closest deadline executes
* priority assigned at job level, not task (i.e. thread) level

« deadline-sorted release queue

« Schedulability test: Can schedule task set with periods {T,... T} if

Us> G/T, <1
Preemptive EDF is optimal

25 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

FPS vs EDF

RMPA I I | I | I | |
3 - = 5 :

t, ‘ | | | = |
Jlr1+r11|l|1|r1 Ir.lrll>

EDF ¢,]

t2|“

hp 9L

1 I 1 I

26 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

vvvvvv

1 l | 1 »

|

FPS vs EDF

RMPA t, | | ; |

Misses
deadline!

t, I
IJ I7\ I r I | I I 7\ |7‘. 2 o
5 20 20
t2 2 8 30 20 27 12
t, 1 15 40 40 375 0
89.5
27 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License

FPS vs EDF

RMPA t, | ; | :
S . Misses

¢ & i | i . L Bl deadline!
2 Py o JlE e

3 o

|
EDF ¢, ! ? | s | o | o S

| | ‘ | EoF
RN 5 [7\ ’ . i ¢ schedules

hlfk 7\ I 17\, [« [. , 17\

28 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License :} UNSW

YYYYYY

tz

Resource Sharing

29 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

5

)

30

Challenge: Sharing

Sharing
introduces
dependencies

|

Vehicle control must @
see consistent state

Vehicle Shared Data

Control (waypoints etc)

COMP9242 2020T2 W05a Real-Time Systems

Updates

Navigation

© Gernot Heiser 2019 — CC Attribution License

YYYYYY

31

Critical Sections: Locking vs Delegation

Client, 3

Lock()
Unlock()

COMP9242 2020T2 W05a Real-Time Systems

RT terminology:

Send() Resource Server

Receive
or Poll() Server

Buffer

Receive()
or Poll()

© Gernot Heiser 2019 — CC Attribution License g

YYYYYY

@214 Implementing Delegation

Client,

Server,

serv_local() { client() {

while (1) {

serv_remote() {
wait(ep); while (1) {
while (1) { call(ep); wait(not_rq);
/* critical sectio% / /* critical section */
Reply&wait(ep); signal(not_ry); signal(not_ry);
} wait(not_rq);
}

32 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License ##s) UNSW

33

Problem: Priority Inversion

 High-priority job is blocked by low-prio for a long time
* Long wait chain: t;—»t;—t;—t,
« Worst-case blocking time of t; bounded by total WCET: C,+C;+C,

Critical Blocked!
S T

\

t3
t !
! Q-

Preempted

COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

ssssss

Solution 1: Priority Inheritance ("Helping”)
ty

t |
t Q-

34 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License ##s) UNSW

YYYYYY

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P,

ty
ts 3 3

ty |

t

35 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P

— when t; releases the resource, its priority reverts to P,
Long blocking
Transitive chains!
Inheritance -~

36 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P; Priority Inheritance:

— when t, releases the resource, its priority nggntt(i)atjzzadlocks
« Complex to implement

« Bad worst-case blocking times

Deadlock!

ts
iy 4
N N
ts 3AN__
A\l

37 COMP9242 2020T2 WO05a Real-Time Systems

Solution 2: Priority Ceiling Protocol (PCP)

 Aim: Block at most once, avoid deadlocks

* |dea: Associate ceiling priority with each resource
« Ceiling = Highest prio of jobs that may access the resource
* On access, bump prio of job to celllng }

Immediate prio ceiling
protocol (IPCP)

EE
IPCP

| 2

38 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License {«: UNSW

vvvvvv

IPCP vs PIP

PIP

IPCP
——

2

by
&3
5
4

39 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License

S8 T S O S I B Y

:] UNSW

ssssss
=2

ICPC Implementation With Delegation

Client, ?
E -
(_@ Immediate Priority Ceiling:
Client, 3 : :

» Requires correct prio config
P, » Deadlock-free

« Easy to implement

» (Good worst-case blocking times

Ps = max (P4, P,) + 1

EDF: Floor
of deadlines

Each task must declare all resources at admission time
« System must maintain list of tasks using resource
» Defines ceiling priority

Easy to enforce
with caps

VVVVVV

40 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

@24 Comparison of Locking Protocols

41

Original Priority-
Ceiling Protocol

Priority-Inheritance
Protocol

Implementation Complexity

Immediate Priority- Non-Preemptible
Ceiling Protocol Critical Sections

Priority Inversion Bound

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

42

Scheduling Overloaded
RT Systems

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

43

Nalve Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:
« All WCETs known
* All jobs complete within WCET

 Everything is trusted Which job
will miss its
More realistic: Overloaded system: deadline?

» Total utilisation exceeds schedulability bound
« Cannot trust everything to obey declared WCET

COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

Overload: FPS
I

t1|"§§?? 7‘|
|f|f.|f|.|.|.|f|f.|f|.,

5 20 20
t2 2 12 20 20 60 New
t, 1 15 50 50 30

115

44 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License ##s) UNSW

YYYYYY

Overload: FPS

t |

RN

45 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

46

Overload: FPS vs EDF
t; I : I |

COMP9242 2020T2 W05a Real-Time Systems

vvvvvv

Overload: ED

t | s I § | o I | ? _

3 L | 5 5
I i I 1

N | ~ “EDF behaves
' | I | T badly under

\

overload”

l L l L l L l L l L l L l L l L l 1 l 1 -

47 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License {«: UNSW

VVVVVV

Mixed-Criticality Systems

48 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

5

)

. 7 -

Mixed Criticality Systems
|

49 COMP9242 2020T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Mixed Criticality

Need temporal
isolation!

Runs frequently but for

Runs every 100 ms short time (order of ys)

for a few millisecods

NW
< interrupts

Sensor
readings

Mixed Criticality

/NW driver must preempt control loop A
* ... to avoid packet loss
* Driver must run at high prio (i.e. RMPA) /Critical system certification: N
< Driver must not monopolise CPU 4 « expensive
e conservative assumptions
'Certification requirement: . - eghighly pessimistic WCET

More critical components must
not depend on any less critical
@nes! [ARINC-653] D,

51 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License #5] UNSW

Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:
« Temporal isolation, to force jobs to adhere to declared WCET

* Mechanisms for safely sharing resources across criticalities

Will discuss selL4

approach next
lecture!

52 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License ##s) UNSW

