
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2020 T2 Week 05a
Real Time Systems Basics
@GernotHeiser
Incorporating material by Stefan Petters and Anna Lyons

blocked 1 preempted 1

2 2

33 3 3

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W05a Real-Time Systems

© Gernot Heiser 2019 – CC Attribution License

Real-Time Basics

2 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 – CC Attribution License

Real-Time Systems

3 COMP9242 2020T2 W05a Real-Time Systems

© Gernot Heiser 2019 – CC Attribution License

What’s a Real-Time System?

4 COMP9242 2020T2 W05a Real-Time Systems

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals
dictated by the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the
system is dependent not only on the results of computations, but on the time
at which those results arrive. [Stankovic, IEEE Computer, 1988]

Issues:
• Correctness: What are the temporal requirements?
• Criticality: What are the consequences of failure?

© Gernot Heiser 2019 – CC Attribution License

Strictness of Temporal Requirements
• Hard real-time systems
• Weakly-hard real-time systems
• Firm real-time systems
• Soft real-time systems
• Best-effort systems

5 COMP9242 2020T2 W05a Real-Time Systems

St
ric

tn
es

s
of

 te
m

po
ra

l
re

qu
ire

m
en

ts

© Gernot Heiser 2019 – CC Attribution License

Real-Time Tasks

6 COMP9242 2020T2 W05a Real-Time Systems

void main(void) {

init(); // initialise system

while (1) {
wait(); // timer, device interrupt, signal
doJob();

}
}

T1
T2

TimeT0

Ev
en

t

R
el

ea
se

T1

C
om

pl
et

io
n

T2

Processing
timeJi

tte
r

D
ea

dl
in

e

Real-time tasks have deadlines
• Usually stated relative to release time
• Frequently implicit: next release time

© Gernot Heiser 2019 – CC Attribution License

Real Time ≠ Real Fast

7 COMP9242 2020T2 W05a Real-Time Systems

System Deadline Single Miss Conseq Ultimate Conseq.
Car engine ignition 2.5 ms Catastrophic Engine damage
Industrial robot 5 ms Recoverable? Machinery damage
Air bag 20 ms Catastrophic Injury or death
Aircraft control 50 ms Recoverable Crash
Industrial process 100 ms Recoverable Lost production,

plant/environment
damage

Pacemaker 100 ms Recoverable Death

© Gernot Heiser 2019 – CC Attribution License

Example: Industrial Control

8 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 – CC Attribution License

Hard Real-Time Systems

9 COMP9242 2020T2 W05a Real-Time Systems

Deadline

Triggering
Event

Cost

Time

≈ ≈

• Deadline miss is catastrophic
• Steep and real cost function

• Safety-critical: Failure ⇒ death, serious injury
• Mission-critical: Failure ⇒ massive financial damage

© Gernot Heiser 2019 – CC Attribution License

Challenge: Execution-Time Variance

10 COMP9242 2020T2 W05a Real-Time Systems

WCET/BCET
may be orders
of magnitude! • Data-dependent execution paths

• Microarchitecture (caches)

© Gernot Heiser 2019 – CC Attribution License

Weakly-Hard Real-Time Systems

11 COMP9242 2020T2 W05a Real-Time Systems

Tolerate small fraction
of deadline misses

• Most feedback control systems (incl life-support!)
• Control compensates for occasional miss
• Becomes unstable if too many misses

• Typically integrated with fault tolerance for HW issues

Time

Triggering
Event

Deadline
Cost

In practice, certifiers treat
critical avionics as hard RT

© Gernot Heiser 2019 – CC Attribution License

Firm Real-Time Systems

12 COMP9242 2020T2 W05a Real-Time Systems

Result obsolete if deadline
missed (loss of revenue)

• Forecast systems
• Trading systems

Time

Triggering
Event

DeadlineGain

© Gernot Heiser 2019 – CC Attribution License

Soft Real-Time Systems

13 COMP9242 2020T2 W05a Real-Time Systems

Deadline miss undesirable
but tolerable, affects QoS

TimeTriggering
Event

DeadlineCost

Time

DeadlineCost

Tardiness

Bounded
Tardiness

• Media players
• Web services

© Gernot Heiser 2019 – CC Attribution License

Best-Effort Systems

14 COMP9242 2020T2 W05a Real-Time Systems

No deadline

In practice, duration is
rarely totally irrelevant

Time

Triggering
Event

Cost

© Gernot Heiser 2019 – CC Attribution License

Real-Time Operating System (RTOS)
• Designed to support real-time operation

• Fast context switches, fast interrupt handling
• More importantly, predictable response time

• Main duty is scheduling tasks to meet their deadline

15 COMP9242 2020T2 W05a Real-Time Systems

Requires analysis of
worst-case execution
time (WCET)

Traditional RTOS is very primitive
• single-mode execution
• no memory protection
• inherently cooperative
• all code is trusted

RT vs OS terminology:
• “task” = thread
• “job” = execution of thread

resulting from event

© Gernot Heiser 2019 – CC Attribution License

Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Reason: time is not fungible

16 COMP9242 2020T2 W05a Real-Time Systems

Time

A: needs 1
slot every 3

B: needs 3
slots every 9

Deadline
missed!

© Gernot Heiser 2019 – CC Attribution License

Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Time is not fungible

17 COMP9242 2020T2 W05a Real-Time Systems

Terminology:
• A set of tasks is feasible if there is a known algorithm

that will schedule them (i.e. all deadlines will be met).
• A scheduling algorithm is optimal if it can schedule

all feasible task sets.

© Gernot Heiser 2019 – CC Attribution License

Cyclic Executives
• Very simple, completely static, scheduler is just table
• Deadline analysis done off-line
• Fully deterministic

18 COMP9242 2020T2 W05a Real-Time Systems

t1 t2 t1 t1 t4 t1 t2 t1 t1 t4

Hyper-period (inverse base rate)

while (true) {
wait_tick();
job_1();
wait_tick();
job_2();
wait_tick();
job_1();
wait_tick();
job_3();
wait_tick();
job_4();

}

Drawback: Latency of event handling is hyper-period

© Gernot Heiser 2019 – CC Attribution License

Are Cyclic Executives Optimal?
• Theoretically yes if can slice (interleave) tasks
• Practically there are limitations:

• Might require very fine-grained slicing
• May introduce significant overhead

19 COMP9242 2020T2 W05a Real-Time Systems

t1 t2 t1 t1 t4 t1 t2 t1 t1 t4

Hyper-period (inverse base rate)

while (true) {
wait_tick();
job_1();
wait_tick();
job_2();
wait_tick();
job_1();
wait_tick();
job_3();
wait_tick();
job_4();

}

© Gernot Heiser 2019 – CC Attribution License

On-Line RT Scheduling
• Scheduler is part of the OS, performs scheduling decision on-demand
• Execution order not pre-determined
• Can be preemptive or non-preemptive
• Priorities can be

• fixed: assigned at admission time
• scheduler doesn’t change prios
• system may support dynamic adjustment of prios

• dynamic: prios potentially different at each scheduler run

20 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 – CC Attribution License

Fixed-Priority Scheduling (FPS)
• Classic L4 scheduling is a typical example:

• always picks highest-prio runnable thread
• round-robin within prio level
• will preempt if higher-prio thread is unblocked or time slice depleted

21 COMP9242 2020T2 W05a Real-Time Systems

prio0 255

In general may or may not:
• preempt running threads
• require unique prios

FPS is not optimal, i.e. cannot schedule some feasible sets

© Gernot Heiser 2019 – CC Attribution License

Rate Monotonic Priority Assignment (RMPA)
• Higher rate ⇒ higher priority:

• Ti<Tj ⇒ Pi>Pj

• Schedulability test: Can schedule task set with periods {T1…Tn} if

U ≡ ∑ Ci/Ti ≤ n(21/n-1)

22 COMP9242 2020T2 W05a Real-Time Systems

T: period
1/T: rate
P: priority
U: utilisation

Assumes “implicit”
deadlines: release
time of next job

n 1 2 3 4 5 10 ∞
U [%] 100 82.8 78.0 75.7 74.3 71.8 log(2) = 69.3

RMPA is optimal for FPS

© Gernot Heiser 2019 – CC Attribution License

Rate-Monotonic Scheduling Example

23 COMP9242 2020T2 W05a Real-Time Systems

Task T P C U [%]

t3 20 3 10 50
t2 40 2 10 25
t1 80 1 20 25

100
blocked 1 preempted 1

2 2

33 3 3

WCET

RMPA schedulability bound is
sufficient but not necessary

© Gernot Heiser 2019 – CC Attribution License

Another RMPA Example

24 COMP9242 2020T2 W05a Real-Time Systems

P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline

Release
Preemption

Deadline

© Gernot Heiser 2019 – CC Attribution License

Dynamic Prio: Earliest Deadline First (EDF)
• Job with closest deadline executes

• priority assigned at job level, not task (i.e. thread) level
• deadline-sorted release queue

• Schedulability test: Can schedule task set with periods {T1…Tn} if

U ≡ ∑ Ci/Ti ≤ 1

25 COMP9242 2020T2 W05a Real-Time Systems

Preemptive EDF is optimal

© Gernot Heiser 2019 – CC Attribution License

FPS vs EDF

26 COMP9242 2020T2 W05a Real-Time Systems

RMPA

EDF

t3

t2

t1

t3

t2

t1

© Gernot Heiser 2019 – CC Attribution License

Task P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 50 50 30 0

82

FPS vs EDF

27 COMP9242 2020T2 W05a Real-Time Systems

RMPA t3

t2

t1

Task P C T D U [%] release
t3 3 5 20 20 25 5
t2 2 8 30 20 27 12
t1 1 15 40 40 37.5 0

89.5

Misses
deadline!

© Gernot Heiser 2019 – CC Attribution License

FPS vs EDF

28 COMP9242 2020T2 W05a Real-Time Systems

RMPA t3

t2

t1

Misses
deadline!

EDF
schedules

EDF t3

t2

t1

© Gernot Heiser 2019 – CC Attribution License

Resource Sharing

29 COMP9242 2020T2 W05a Real-Time Systems

© Gernot Heiser 2019 – CC Attribution License

Challenge: Sharing

30 COMP9242 2020T2 W05a Real-Time Systems

Vehicle control must
see consistent state Updates

Vehicle
Control

Shared Data
(waypoints etc) Navigation

Ground
Comms

Sharing
introduces

dependencies

© Gernot Heiser 2019 – CC Attribution License

Critical Sections: Locking vs Delegation

31 COMP9242 2020T2 W05a Real-Time Systems

Client2

Client1

Shared
Buffer

Lock()
Unlock()

Server

Buffer

Send()

Lock()
Unlock()

Send()

RT terminology:
Resource Server

Receive()
or Poll()

Receive()
or Poll()

© Gernot Heiser 2019 – CC Attribution License 32 COMP9242 2020T2 W05a Real-Time Systems

Implementing Delegation

Server2
Client2

Client1
Server1

serv_remote() {
…
while (1) {

wait(not_rq);
/* critical section */
signal(not_ry);
}

}

serv_local() {
…
wait(ep);
while (1) {

/* critical section */
Reply&wait(ep);
}

}

client() {
while (1) {

…
call(ep);
…
signal(not_ry);
…
wait(not_rq);
}

}

Hoare-style monitor
Suitable intra-core

Semaphore synchronisation
Suitable inter-core

© Gernot Heiser 2019 – CC Attribution License

Problem: Priority Inversion

33 COMP9242 2020T2 W05a Real-Time Systems

• High-priority job is blocked by low-prio for a long time
• Long wait chain: t1→t4→t3→t2
• Worst-case blocking time of t1 bounded by total WCET: C2+C3+C4

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQQ

Preempted

Blocked!Critical
Section

© Gernot Heiser 2019 – CC Attribution License

Solution 1: Priority Inheritance (“Helping”)

34 COMP9242 2020T2 W05a Real-Time Systems

t4
t3
t2
t1 1 Q Q 1

2

33 V V

4 4VQ

t4
t3
t2
t1 1 Q 4 1

2

33 V V

4 4VQ

© Gernot Heiser 2019 – CC Attribution License

Solution 1: Priority Inheritance (“Helping”)

35 COMP9242 2020T2 W05a Real-Time Systems

t4
t3
t2
t1 1 Q 4 1

2

33 V V

4 4VQ

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1
– when tt releases the resource, its priority reverts to P2

© Gernot Heiser 2019 – CC Attribution License

Solution 1: Priority Inheritance (“Helping”)

36 COMP9242 2020T2 W05a Real-Time Systems

t5
t4
t3
t2
t1 1 Q 4 15

2

33

4 4Q

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1
– when tt releases the resource, its priority reverts to P2

2 V 5 5 5

5 5V

Transitive
Inheritance

Long blocking
chains!

© Gernot Heiser 2019 – CC Attribution License

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1
– when tt releases the resource, its priority reverts to P2

Solution 1: Priority Inheritance (“Helping”)

37 COMP9242 2020T2 W05a Real-Time Systems

t5
t4
t3
t2
t1 1 Q 4 15

2

33

4 4Q

2 V 5 5 5

Deadlock!

?

Priority Inheritance:
• Easy to use
• Potential deadlocks
• Complex to implement
• Bad worst-case blocking times

5 5V

© Gernot Heiser 2019 – CC Attribution License

Solution 2: Priority Ceiling Protocol (PCP)
• Aim: Block at most once, avoid deadlocks
• Idea: Associate ceiling priority with each resource

• Ceiling = Highest prio of jobs that may access the resource
• On access, bump prio of job to ceiling

38 COMP9242 2020T2 W05a Real-Time Systems

t4
t3
t2
t1 1 4 1

2

33 V

4 4VQ

IPCP

Immediate prio ceiling
protocol (IPCP)

© Gernot Heiser 2019 – CC Attribution License

IPCP vs PIP

39 COMP9242 2020T2 W05a Real-Time Systems

t4
t3
t2
t1 1 4 1

2

33 V

4 4VQ

IPCP

t4
t3
t2
t1 1 Q 4 1

2

33 V V

4 4VQ

PIP

© Gernot Heiser 2019 – CC Attribution License 40 COMP9242 2020T2 W05a Real-Time Systems

ICPC Implementation With Delegation

Client2
P2

Client1
P1Server

prio Ps

PS = max (P1, P2) + 1

Each task must declare all resources at admission time
• System must maintain list of tasks using resource
• Defines ceiling priority

Easy to enforce
with caps

Immediate Priority Ceiling:
• Requires correct prio config
• Deadlock-free
• Easy to implement
• Good worst-case blocking times

EDF: Floor
of deadlines

© Gernot Heiser 2019 – CC Attribution License 41 COMP9242 2020T2 W05a Real-Time Systems

Comparison of Locking Protocols

Priority Inversion Bound

Im
pl

em
en

ta
tio

n
C

om
pl

ex
ity

Original Priority-
Ceiling Protocol

Immediate Priority-
Ceiling Protocol

Priority-Inheritance
Protocol

Non-Preemptible
Critical Sections

© Gernot Heiser 2019 – CC Attribution License

Scheduling Overloaded
RT Systems

42 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 – CC Attribution License

Naïve Assumption: Everything is Schedulable
Standard assumptions of classical RT systems:
• All WCETs known
• All jobs complete within WCET
• Everything is trusted

More realistic: Overloaded system:

• Total utilisation exceeds schedulability bound
• Cannot trust everything to obey declared WCET

43 COMP9242 2020T2 W05a Real-Time Systems

Which job
will miss its
deadline?

© Gernot Heiser 2019 – CC Attribution License

Overload: FPS

44 COMP9242 2020T2 W05a Real-Time Systems

t3

t2

t1

Task P C T D U [%]
t1 1 5 20 20 25
t2 2 8 30 20 27
t3 3 15 50 50 30

82

Task P C T D U [%]
t3 3 5 20 20 25
t2 2 12 20 20 60
t1 1 15 50 50 30

115

Old

OldNew

© Gernot Heiser 2019 – CC Attribution License

Overload: FPS

45 COMP9242 2020T2 W05a Real-Time Systems

t3

t2

t1

Old

New

t3

t2

t1

© Gernot Heiser 2019 – CC Attribution License

Overload: FPS vs EDF

46 COMP9242 2020T2 W05a Real-Time Systems

t3

t2

t1

t3

t2

t1

FPS

EDF

© Gernot Heiser 2019 – CC Attribution License

Overload: EDF

47 COMP9242 2020T2 W05a Real-Time Systems

t3

t2

t1

t3

t2

t1

“EDF behaves
badly under
overload”

© Gernot Heiser 2019 – CC Attribution License

Mixed-Criticality Systems

48 COMP9242 2020T2 W05a Real-Time Systems © Gernot Heiser 2019 – CC Attribution License

Mixed Criticality Systems

49 COMP9242 2020T2 W05a Real-Time Systems

© Gernot Heiser 2019 – CC Attribution License

Mixed Criticality

50 COMP9242 2020T2 W05a Real-Time Systems

Control
loop

Sensor
readings

NW
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Need temporal
isolation!

Runs every 100 ms
for a few millisecods

Runs frequently but for
short time (order of µs)

© Gernot Heiser 2019 – CC Attribution License

Mixed Criticality

51 COMP9242 2020T2 W05a Real-Time Systems

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Certification requirement:
More critical components must
not depend on any less critical
ones! [ARINC-653]

Critical system certification:
• expensive
• conservative assumptions

• eg highly pessimistic WCET

• Must minimise critical software
• Need temporal isolation:

Budget enforcement

© Gernot Heiser 2019 – CC Attribution License

Mixed-Criticality Support
For supporting mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

52 COMP9242 2020T2 W05a Real-Time Systems

Will discuss seL4
approach next

lecture!

