
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2020 T2 Week 05b
Microkernel Design & Implementation
The 25-year quest for the right API
@GernotHeiser

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

L4 Microkernels – Deployed by the Billions

2 COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 – CC Attribution License

L4: The Quest for a
Real Microkernel

3 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

L4: The Quest for a Real Microkernel

4 COMP9242 2020T2 W05b: Microkernel D&I

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [Liedtke, SOSP’95]

© Gernot Heiser 2019 – CC Attribution License

L4: 25 Years High Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

iOS secure
enclave

First L4 kernel
with capabilities

Qualcomm
modem chips

COMP9242 2020T2 W05b: Microkernel D&I5

© Gernot Heiser 2019 – CC Attribution License

L4 IPC Performance Over the Years
Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 MIPS R4700 100 86 0.86
L4/Alpha 1997 Alpha 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 Arm XScale 255 400 151 0.64
NOVA 2010 x86 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2013 ARM11 532 188 0.35
seL4 2018 x86 i7 Haswell (64-bit) 3,400 442 0.13
seL4 2018 Arm Cortex A9 1,000 303 0.30
seL4 2020 RISC-V HiFive (64-bit, no ASID) 1,500 500 0.33

COMP9242 2020T2 W05b: Microkernel D&I6 © Gernot Heiser 2019 – CC Attribution License

Minimality: Source Lines of Code (SLOC)

7 COMP9242 2020T2 W05b: Microkernel D&I

Name Architecture C/C++ asm total
Original i486 0 k 6.4 k 6.4 k
L4/Alpha Alpha 0 k 14.2 k 14.2 k
L4/MIPS MIPS64 6.0 k 4.5 k 10.5 k
Hazelnut x86 10.0 k 0.8 k 10.8 k
Pistachio x86 22.4 k 1.4 k 23.0 k
L4-embedded ARMv5 7.6 k 1.4 k 9.0 k
OKL4 3.0 ARMv6 15.0 k 0.0 k 15.0 k
Fiasco.OC x86 36.2 k 1.1 k 37.6 k
seL4 ARMv6 9.7 k 0.5 k 10.2 k

© Gernot Heiser 2019 – CC Attribution License

What Have We Learnt
in 25 Years?

8 COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]

left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ impacts flexibility, performance
• Unprincipled management of time

9 COMP9242 2020T2 W05b: Microkernel D&I

Solved by capabilities

© Gernot Heiser 2019 – CC Attribution License

Traditional L4: Recursive Address Spaces

10 COMP9242 2020T2 W05b: Microkernel D&I

Map GrantUnmapX

Initial Address Space

Physical Memory

Mappings are
page → page

Magic initial AS to
anchor recursion

(map of PM)

Issues:
• Complex mapping DB
• Exhaustion of kernel memory

Replaced by magic-free
seL4 resource model

© Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]

left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ impacts flexibility, performance
• Unprincipled management of time

11 COMP9242 2020T2 W05b: Microkernel D&I

Solved by seL4
memory management

model

© Gernot Heiser 2019 – CC Attribution License

Direct vs Indirect IPC Addressing
• Direct: Queue senders/messages at receiver

• Need unique thread IDs

• Kernel guarantees identity of sender
• useful for authentication

• Indirect: Mailbox/port object
• Just a user-level handle for the

kernel-level queue
• Extra object type – extra weight?
• Communication partners are anonymous

• Need separate mechanism
for authentication

12 COMP9242 2020T2 W05b: Microkernel D&I

Receiver

Sender

Sender

Port

Sender

Sender

Port

Receiver

Receiver

IPC
Destination

IPC
Destination

IPC
destination

© Gernot Heiser 2019 – CC Attribution License

Other Issues with L4 IPC Adressing

13 COMP9242 2020T2 W05b: Microkernel D&I

IPC

Client
Server

Client
Server

Load
balancer

Workers

Client Server
All IPCs

duplicated!

Client must do
load balancing?

RPC reply from
wrong thread!

• Inefficient designs
• Poor information hiding
• Covert channels [Shapiro ‘02]

Interpose
transparently?Access

monitor

Recent L4 kernels adopt cap-
protected ports (endpoints)

© Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]

left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ impacts flexibility, performance
• Unprincipled management of time

14 COMP9242 2020T2 W05b: Microkernel D&I

Solved by caps &
endpoints

Examine later

© Gernot Heiser 2019 – CC Attribution License

Other Design &
Implementation Issues

15 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

L4 “Long” IPC

16 COMP9242 2020T2 W05b: Microkernel D&I

Receiver address space

Sender address space

Kernel copy
Page fault!

• Not minimal
• Source of kernel complexity:

• nested exceptions
• concurrency in kernel
• must upcall PF handlers during IPC
• timeouts to prevent DOS attacks

Abandoned
in seL4

© Gernot Heiser 2019 – CC Attribution License

L4 Timeouts

17 COMP9242 2020T2 W05b: Microkernel D&I

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

Wait (src, msg)….... Kernel copy

Limit IPC
blocking time

Thread1
Running Blocked

Rcv(NIL_THRD, delay)

…....

Timed
wait

• No theory/heuristics for determining timeouts
• Typically server reply with zero T.O., else ∞
• Added complexity
• Can do timed wait with timer syscall

seL4 reply semantics
prevent DOS-ing server!

© Gernot Heiser 2019 – CC Attribution License

IPC Fastpath: Send Phase of Call

18 COMP9242 2020T2 W05b: Microkernel D&I

1) Prologue
§ Save minimal state, get args

2) Identify destination
§ Cap lookup;

get endpoint; check queue
3) Get receiver TCB

§ Check receiver can still run
§ Check receiver priority is ≥ ours

4) Mark sender blocked and enqueue
§ Block caller on reply object
§ Donate scheduling context

5) Switch to receiver
§ Copy virtual message registers

6) Epilogue (restore & return)

Running Wait to receive

Wait to receive
Running

312 cycles
on Arm A9

Direct process switch:
• no scheduler invocation
• sched-context donation

© Gernot Heiser 2019 – CC Attribution License

Fastpath Coding Tricks

19 COMP9242 2020T2 W05b: Microkernel D&I

slow = cap_get_capType(en_c) != cap_endpoint_cap ||
!cap_endpoint_cap_get_capCanSend(en_c);

if (slow) enter_slow_path();

Common case: 0

Common case: 1• Reduces branch-prediction footprint
• Avoids mispredicts, stalls & flushes
• Uses ARM instruction predication
• But: increases slow-path latency (slightly)

• should be minimal compared to basic slow-path cost

© Gernot Heiser 2019 – CC Attribution License

How About Real-Time Support?
• Kernel runs with interrupts disabled

• No concurrency control ⇒ simpler kernel
• Easier reasoning about correctness
• Better average-case performance

20 COMP9242 2020T2 W05b: Microkernel D&I

Lots of
concurrency

in kernel!

Most protected-mode
RTOSes are fully preemptible

How about long-
running system calls?

© Gernot Heiser 2019 – CC Attribution License 21 COMP9242 2020T2 W05b: Microkernel D&I

Incremental Consistency Paradigm
Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

No concurrency in (single-core) kernel!

Consistency
Restartability

Progress

Good fit for
event kernel!

© Gernot Heiser 2019 – CC Attribution License 22 COMP9242 2020T2 W05b: Microkernel D&I

Example: Destroying IPC Endpoint

Actions:
1. Disable EP cap (prevent new messages)
2. while message queue not empty do
3. remove head of queue (abort message)
4. check for pending interrupts
5. done

Client1 Server

Client2

Endpoint

Message
queue

© Gernot Heiser 2019 – CC Attribution License 23 COMP9242 2020T2 W05b: Microkernel D&I

Difficult Example: Revoking Badge

State to keep across preemptions
• Badge being removed
• Point in queue where preempted
• End of queue at time operation started
• Thread performing revocation

Need to squeeze into endpoint cap!

Client1 Server Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

Note: not yet
in mainline!

© Gernot Heiser 2019 – CC Attribution License

WCET Analysis

24 COMP9242 2020T2 W05b: Microkernel D&I

Program
binary

Control-flow
graph

Loop
bounds

Micro-
architecture

model

Integer
linear

equations

Infeasible
path info

WCETILP solverAnalysis tool

Accurate &
sound model of
pipeline, caches

Scalability!

Pessimism!

© Gernot Heiser 2019 – CC Attribution License 25 COMP9242 2020T2 W05b: Microkernel D&I

WCET Analysis on ARM11

378
99.5

0 100 200 300

Observed
Computed

Pessimism mostly
due to under-

specified hardware

WCET presently limited by verification practicalities
• without regard to verification achieved 50 µs
• 10 µs seem achievable
• BCET ~ 1µs
• [Blackham‘11, ‘12] [Sewell’16]

µs

© Gernot Heiser 2019 – CC Attribution License

L4 Scheduler Optimisation: Lazy Scheduling

26 COMP9242 2020T2 W05b: Microkernel D&I

thread_t schedule() {
foreach (prio in priorities) {

foreach (thread in runQueue[prio]) {
if (isRunnable(thread))

return thread;
else

schedDequeue(thread);
}

}
return idleThread;

}

• Frequent blocking/unblocking in
IPC-based systems

• Many ready-queue manipulations

Idea: leave blocked
threads in ready
queue, scheduler

cleans up

Call()
Client

Reply_Wait()
Server

BLOCKEDBLOCKED

Problem: Unbounded
scheduler execution time!

© Gernot Heiser 2019 – CC Attribution License

thread_t schedule() {
foreach (prio in priorities) {

foreach (thread in runQueue[prio]) {
if (isRunnable(thread))

return thread;
else

schedDequeue(thread);
}

}
return idleThread;

}

27 COMP9242 2020T2 W05b: Microkernel D&I

Scheduler: Benno Scheduling
thread_t schedule() {

foreach (prio in priorities) {
foreach (thread in runQueue[prio]) {

if (thread=head(runQueue[prio]))
return thread;

else
schedDequeue(thread);

}
}
return idleThread;

}

Call()
Client

Reply_Wait()
Server

BLOCKEDBLOCKED

• Frequent blocking/unblocking in
IPC-based systems

• Many ready-queue manipulations

Idea: Lazy on
unblocking instead

on blocking

Only current thread
needs fixing up at
preemtion time!

© Gernot Heiser 2019 – CC Attribution License

Scheduler Optimisation: Direct Process Switch

28 COMP9242 2020T2 W05b: Microkernel D&I

• Sender was running ⇒ had highest prio
• If receiver prio ≥ sender prio ⇒ run receiver

Call()

Client

Reply_Wait()

Server

Implication: Time slice
donation – receiver runs
on sender’s time slice

• Arguably, sender should donate back
if it’s a server replying to a Call()

• Hence, always donate on Reply_Wait()

• Frequent context switches
in IPC-based systems

• Many scheduler invocations

Idea: Don’t invoke
scheduler if you know

who’ll be chosen

© Gernot Heiser 2019 – CC Attribution License

Remember: Delegation of Critical Sections

29 COMP9242 2020T2 W05b: Microkernel D&I

Client1

Server

Running

Running

Client2

Server may run on
clients time slice, its
own or a combination

Client may frequently
invoke server without
using much of its own

time!

No accurate
accounting

for time

© Gernot Heiser 2019 – CC Attribution License 30 COMP9242 2020T2 W05b: Microkernel D&I

MCS Model: Scheduling Contexts
Classical thread attributes
• Priority
• Time slice

MCS thread attributes
• Priority
• Scheduling context capabilityNot runnable

if null
Not runnable

if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU
access! Per-core SchedControl capability

conveys right to assign budgets
(i.e. perform admission control)

C = 2
T = 3

C = 250
T = 1000

Capability
for time

© Gernot Heiser 2019 – CC Attribution License 31 COMP9242 2020T2 W05b: Microkernel D&I

Delegation with Scheduling Contexts

Client1

Passive Server

Running
Running

Server runs on client’s
scheduling context

Client is charged
for server’s time

Client2

Scheduling-context capabilities: a principled, light-weight
OS mechanism for managing time [Lyons et al, EuroSys’18]

Passive servers
support migrating

thread model!

© Gernot Heiser 2019 – CC Attribution License

Mixed-Criticality Support
For mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

32 COMP9242 2020T2 W05b: Microkernel D&I

Solved by
scheduling contexts

Client1
Passive Server

Client1Crit: High

Crit: Low

What if budget expires while
shared server executing on
Low’s scheduling context?

© Gernot Heiser 2019 – CC Attribution License

Timeout Exceptions
Policy-free mechanism for dealing with budget depletion

Possible actions:

• Provide emergency budget to leave critical section
• Cancel operation & roll-back server
• Reduce priority of low-crit client (together with one of the above)
• Implement priority inheritance (if you must…)

33 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]

left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]
• Threads as IPC targets ⇒ insufficient encapsulation
• Single kernel memory pool ⇒ DoS attacks
• No delegation of authority ⇒ impacts flexibility, performance
• Unprincipled management of time

34 COMP9242 2020T2 W05b: Microkernel D&I

Solved by
scheduling contexts

& time-out
exceptions

© Gernot Heiser 2019 – CC Attribution License

Lessons & Principles

35 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

Original L4 Design and Implementation

36 COMP9242 2020T2 W05b: Microkernel D&I

Implement. Tricks [SOSP’93]
• Process kernel
• Virtual TCB array
• Lazy scheduling
• Direct process switch
• Non-preemptible
• Non-portable
• Non-standard calling convention
• Assembler

Design Decisions [SOSP’95]
• Synchronous IPC
• Rich message structure,

arbitrary out-of-line messages
• Zero-copy register messages
• User-mode page-fault handlers
• Threads as IPC destinations
• IPC timeouts
• Hierarchical IPC control
• User-mode device drivers
• Process hierarchy
• Recursive address-space construction

Modified

Retained

© Gernot Heiser 2019 – CC Attribution License

Reflecting on Changes
Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control
• Poor/non-existent control over kernel memory use
• Inflexible & costly process hierarchies (policy!)
• Arbitrary limits on number of address spaces and threads (policy!)
• Poor information hiding (IPC addressed to threads)
• Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:
• Communication
• Synchronisation
• Memory management – sending mappings
• Scheduling – time-slice donation

37 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 – CC Attribution License

Design Principles
• Fully delegatable access control
• All resource management is subject to user-defined policies

• Applies to kernel resources too!
• Performance on par with best-performing L4 kernels

• Prerequisite for real-world deployment!
• Suitability for real-time use

• Important for safety-critical systems
• Suitable for formal verification

• Requires small size, avoid complex constructs

38 COMP9242 2020T2 W05b: Microkernel D&I

Largely in line with
traditional L4 approach!

© Gernot Heiser 2019 – CC Attribution License

A Thirty-Year Dream!

39 COMP9242 2020T2 W05b: Microkernel D&I

