School of Computer Science & Engineering
5 COMP9242 Advanced Operating Systems
UNSW |z
2020 T2 Week 05b

Microkernel Design & Implementation
The 25-year quest for the right API
@GernotHeiser

UNSWINICTA
GMD/BMKarisruhe

Copyright Notice

These slides are distributed under the

Creative Commons Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

» under the following conditions:

+ Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

[CommercialGlone | NP4, pikeos)
o35 Tsa Tes Tos T o7 T8 199 oo [o1 Toz T o3 Toa Tos [o6 [o7 Tos Tos T10 [11 [z [13
COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UHSEW
L4 Microk Is — Deployed by the Billi
L4: The Quest for a
[}
Real Microkernel
COMP9242 2020T2 WO05b: Microkernel D&I COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UNSW

L4: The Quest for a Real Microkernel

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s

- required functionality. [Liedtke, SOSP"95]

L4: 25 Years High Performance Microkernels

First L4 kernel

@

A\
OKL4 pKernel -

Code Inheritance

L4/MIPS

L4/Alpha

Codezero

Pistachio

~ iOSsecure with capabilties
‘) _— u E
¢ enclave A

API Inheritance - Y | 4.cmbed. %_ﬂ icrovisor |

~ Qualcomm
modem chips

Fiasco
CoKLabs
("commercial Clone | P4 — PikeOS]
["93 T 94 T o5 T o6 [97 T08 To9 T0o T o1 Toz To3 Toa Tos Tos To7 Tos Tog T10 T41 T2 T3
COMP9242 2020T2 WO05b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License 5 COMP9242 2020T2 WO05b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License UsN"SEW

L4 IPC Performance Over the Years Minimality: Source Lines of Code (SLOC)

Original 1993 486 50 _ : _ --

Original 1997 Pentium 160 Original 1486

L4/MIPS 1997 MIPS R4700 100 L4/Alpha Alpha

L4/Alpha 1997 Alpha 21064 433 L4/MIPS MIPS64

Hazelnut 2002 Pentium 4 1,400 H Inut 86

Pistachio 2005 Itanium 1,500 azelinu X

OKL4 2007 Arm XScale 255 400 Pistachio x86

NOVA 2010 x86 i7 Bloomfield (32-bit) 2,660 L4-embedded ARMv5

selL4 2013 ARM11 532

KL4 3. ARMv

selL4 2018 x86 i7 Haswell (64-bit) 3,400 0 &L g

selL4 2018 Arm Cortex A9 1,000 Fiasco.OC x86

selL4 2020 RISC-V HiFive (64-bit, no ASID) 1,500 selL4 ARMv6

COMP9242 2020T2 WO05b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License 7 COMP9242 2020T2 WO05b: Microkernel D& UNSW

What Have We Learnt
in 25 Years?

COMP9242 202072 WO5b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License E::
=2

Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
* Global thread name space = covert channels [Shapiro’03]
* Threads as IPC targets = insufficient encapsulation
|* Single kernel memory pool = DoS attacks |
» No delegation of authority = impacts flexibility, performance
* Unprincipled management of time

Solved by capabilities

COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UNSW

10

Traditional L4: Recursive Address Spaces

Replaced by magic-free Issues:

selL4 resource model » Complex mapping DB

» Exhaustion of kernel memory

Mépbihgs are
page — page

Magic initial AS to
Initial Address Space anchor recursion

R (map of PM)
Physical Memor o o

COMP9242 202072 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

"

Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved

» Problem: ad-hoc approach to security and resource management
» Global thread name space = covert channels [Shapiro’'03]
» Threads as IPC targets = insufficient encapsulation

+ Single kernel memory pool = DoS attacks

» No delegation of authority = impacts figséhility, performance
* Unprincipled management of time

Solved by seL4
memory management
model

COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

Direct vs Indirect IPC Addressing

* Direct: Queue senders/messages at receiver
* Need unique thread IDs

Receiver

¥

Sender
» Kernel guarantees identity of sender v IPC
« useful for authentication Sender

destination

* Indirect: Mailbox/port object

 Just a user-level handle for the
kernel-level queue

« Extra object type — extra weight? v v

Port Port

. Sender Receiver
« Communication partners are anonymous v v
* Need separate mechanism
for authentication Sender Receiver

12 COMP9242 202072 WO5b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License E:: UNSW

Other Issues with L4 IPC Adressing

RPC reply from

wrong thread! ?_)3;?
é/ﬁ Client Server
0

/ All IPCs
IPC_ 3 Client ~ Load Workers duplicated!
3 ?? balancer Server
Client Recent L4 kernels adopt cap-
SCaee rotected ports (endpoints)
Interpose P

Access transparently?

Client must do
load balancing?

* Inefficient designs

monitor « Poor information hiding
?_ - 3. . - >? * Covert channels [Shapiro ‘02]
13 COMP9242 2020T2 WO05b: Microkernel D&

© Gernot Heiser 2019 — CC Attribution License UNSW

Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
* Global thread name space = covert channels [Shapiro’03]
» Threads as IPC targets = insufficient encapsulation

) Solved by caps &
 Single kernel memory pool = DoS attacks

endpoints
» No delegation of authority = impacts flexibility, performance
* Unprincipled management of time J
Examine later
14 COMP9242 2020T2 WO05b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License UNSW

Other Design &
Implementation Issues

15 COMP9242 2020T2 W05b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License UNSW
2

L4 “Long” IPC

Abandoned

in seL4

Sender address space

Kernel copy

Page fault!
Receiver address space g

16 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

. Thread, Thread,
I—4 TImeOUtS Running Blocked Blocked Running

; :

Thread, .. Send (dest, msg)

Running Blocked = |
VJ“
u@
3

_— s Wait (src, msg)

Kernel copy
3 7R

W4

¢

3 e

Rev(NIL_THRD, delay)

5
3

4

17 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

IPC Fastpath: Send Phase of Call
. Save minimal state, get args

2) Identify destination
= Cap lookup;
get endpoint; check queue

3) Getreceiver TCB
= Check receiver can still run
= Check receiver priority is = ours

4) Mark sender blocked and enqueue
= Block caller on reply object
= Donate scheduling contex

5) Switch to receiver
. Copy virtual message registers
6) Epilogue (restore & return)

18 COMP9242 2020T2 WO5b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UNSW

Direct process switch:
* no scheduler invocation
» sched-context donation

Fastpath Coding Tricks

Common case: 0

* Reduces branch-prediction footprint
* Avoids mispredicts, stalls & flushes
» Uses ARM instruction predication

« But: increases slow-path latency (slightly)
* should be minimal compared to basic slow-path cost

© Gernot Heiser 2019 — CC Attribution License

19 COMP9242 2020T2 W05b: Microkernel D&I

How About Real-Time Support?

» Kernel runs with interrupts disabled . ®
. How about long-
» No concurrency control = simpler kernel X
running system calls?

« Easier reasoning about correctness
« Better average-case performance

Bl WRONG
WAY

GO BACK
/

Lots of
concurrency
in kernel!

20 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

Q-‘il’-|-4 Incremental Consistency Paradigm

o(1) Kernel
exit

Kernel
entry

Check pending
interrupts

Disable

Long operation

[]
Good fit for

Consistency
Restartability .o ®

Progress E N in (sing|) I J

© Gernot Heiser 2019 — CC Attribution License

21 COMP9242 2020T2 WO05b: Microkernel D&I

Q—‘-P-|-4 Example: Destroying IPC Endpoint
Endpoint

> ~
Client, 3;

Message
queue

22 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

@=l4 Difficult Example: Revoking Badge

Note: not yet
in mainline!

®°
Removing
orange
badge
23 COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

WCET Analysis

Control-flow
graph

Program
binary

Micro-
architecture

model
~

Integer
linear
equations

Infeasible

: Scalability!
path info

Pessimism!

24 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

@seld WCET Analysis on ARM11

u Observed
378 u Computed

0 100

200

300

25 COMP9242 2020T2 WO05b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License

L4 Scheduler Optimisation: Lazy Scheduling

thread_t schedule() {
foreach (prio in priorities) {
foreach (thread in runQueue[prio]) {

if (isRunnable(thread))
return thread;
else
schedDequeue(thread);
}
}
return idleThread;

}

© Gernot Heiser 2019 — CC Attribution License

26 COMP9242 2020T2 WO05b: Microkernel D&I

@sel4 Scheduler: Benno Scheduling

thread_t schedule() {
foreach (prio in priorities) {
g e 3 Q Foo+
if (thread=head(runQueue[prio]))
return thread;
=alge.
schedDequeuacthready..

}

27 COMP9242 2020T2 W05b: Microkernel D&I

}
}
return idleThread; o
)
L]

Scheduler Optimisation: Direct Process Switch

» Sender was running = had highest prio
 If receiver prio = sender prio = run receiver

Implication: Time slice
donation — receiver runs
on sender’s time slice

* Arguably, sender should donate back
if it's a server replying to a Call()
* Hence, aIways donate on Reply Wait()

Idea Don’t invoke

scheduler if you know
who'll be chosen >

+ Frequent c8ntext switches
in IPC-based systems CallQ
* Many scheduler invocations Client

28 COMP9242 2020T2 WO05b: Microkernel D&I

Remember: Delegatlon of Critical Sections

Cllent may frequently

invoke server without \

using much of its own y
time! __

Running

N\

cient, 3

Client, ?

Running

\

Server may run on
clients time slice, its
own or a combination

~ Noaccurate

{ accounting pr
o fortme

© Gernot Heiser 2019 — CC Attribution License

29 COMP9242 2020T2 WO05b: Microkernel D&I

@=2L4 MCS Model: Scheduling Contexts

MCS thread attributes
* Priority
@ o * Scheduling context capability

Capability
for time

Classical thread attributes
* Priority
* Time slice - o g

Scheduling context object
|+ T period
e C:budget (=T)

Limits CPU
access!

COMP9242 2020T2 WO05b: Microkernel D&I

Per-core SchedControl capability
conveys right to assign budgets
(i.e. perform admission control)

© Gernot Heiser 2019 — CC Attribution License

@sel4 Delegation with Scheduling Contexts

Passive servers
Running support migrating

\ thread model!

Client is charged Cllent1 ?
for server’s time :
.

Client, ?

. Server runs on client’s
: scheduling context

Scheduling-context capabilities: a principled, light-weight
OS mechanism for managing time [Lyons et al, EuroSys’18]

31 COMP9242 2020T2 W05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License

Mixed-Criticality Support

For mixed-criticality systems (MCS), OS must provide:

» Temporal isolation, to force jobs to adhere to declared WCET
Solved by ‘
| scheduling contexts

* Mechanisms for safely sharing resources across criticalities

What if budget expires while
shared server executing on

T e Low’s scheduling context?
_ Client, ?
Crit: Low Passive Server
—— R
Client, "B '
Crit: High = "N cad
32 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License U”NS.W

Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

* Provide emergency budget to leave critical section

» Cancel operation & roll-back server

* Reduce priority of low-crit client (together with one of the above)
* Implement priority inheritance (if you must...)

33 COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UNSW

Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
* Global thread name space = covert channels [Shapiro’03]
» Threads as IPC targets = insufficient encapsulation
* Single kernel memory pool = DoS attacks
» No delegation of authority = impacts flexibility, performance
* Unprincipled management of time. -
Solved by
scheduling contexts

& time-out
exceptions

34 COMP9242 2020T2 W05b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License UNSW

Lessons & Principles

35 COMP9242 2020T2 WO5b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License UNSW
=

Original L4 Design and Implementation

Implement. Tricks [SOSP’93] Design Decisions [SOSP’95]
+ Processkernel . ‘Synchronous IPC ‘

- VifuaFeBamaY | Modified | S
: ~ Modified arbi out-of-line mess
Lazy scheduling

» Zero-copy register messages\

Direct process switch ‘ + User-mode page-fault handlers
Non-preemptible ‘ - re ations

. W . Retained . |w

- Non=s i vention) g !
* ' User-mode device drivers
) S - Processhierarchy _

. ecCl i -

36 COMP9242 202072 WO5b: Microkernel D&I

© Gernot Heiser 2019 — CC Attribution License

Reflecting on Changes

Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control
» Poor/non-existent control over kernel memory use
« Inflexible & costly process hierarchies (policy!)
« Arbitrary limits on number of address spaces and threads (policy!)
» Poor information hiding (IPC addressed to threads)
« Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:
« Communication
» Synchronisation
* Memory management — sending mappings
* Scheduling — time-slice donation

COMP9242 2020T2 WO05b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License UNSW

38 COMP9242 202072 WO05b: Microkernel D&I

Design Principles

* Fully delegatable access control

+ All resource management is subject to user-defined policies

* Applies to kernel resources too!

 Performance on par with best-performing L4 kernels
* Prerequisite for real-world deployment!

+ Suitability for real-time use P
. it argely in line wi
.Important for safety anlc.:aI s.ystems traditional L4 approach!
« Suitable for formal verification o f'

* Requires small size, avoid complex constructs

© Gernot Heiser 2019 — CC Attribution License

A Thirty-Year Dream!

1. Introdution

oy £ Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data musi be possible only if the recorded
protection policy permits it. The two major components

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Angeles

Communications February 1980
e Volume 23
the ACM Number 2

aperat
£, ALPHARD, farmal specifications.
Kernel

CR Categories: 4.29, 435, 6.35

COMP9242 2020T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License UNSW

