School of Computer Science & Engineering
COMP9242 Advanced Operating Systems
UNSW

Australia’s
Global

nt.grny Availability
2020 T2 Week 08a Amm:uod.u
Formal Verification and selL 4
@GernotHeiser

Binary code

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

Loz

Assurance and Verification

COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

)

)

3

Refresher: Assurance and Formal Verification

« Assurance:
 systematic evaluation and testing
 essentially an intensive and onerous form of quality assurance

 Formal verification:

. Assurance and formal verification
« mathematical proof

aim to establish correctness of
* mechanism design

- Certification: independent examination mechanism implementation

« confirming that the assurance or verification was done right

COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

4

Assurance: Substantiating Trust

Informal (English)

* Specification or formal (maths)

« Unambiguous description of desired behaviour

» System design Compelling argument
» Justification that it meets specification or formal proof

* Implementation

« Justification that it implements the design Code inspection,

rigorous testing,
proof

 Maintenance

« Justifies that system use meets assumptions

COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

YYYYYY

5

Common Criteria

« Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]
* |ISO standard, for general use
« Evaluates QA used to ensure systems meet their requirements
 Developed out of the famous US DOD “Orange Book™:
Trusted Computer System Evaluation Criteria [1985]
* Terminology:
 Target of evaluation (TOE): Evaluated system
« Security target (ST): Defines requirements
* Protection profile (PP): Standardised ST template

 Evaluation assurance level (EAL). Defines thoroughness of evaluation
* PPs have maximum EAL they can be used for

COMP9242 2020T2 WO08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

6

CC: Evaluation Assurance Levels

- Level |Requirements |Specification |Design Implementation
g EAL1 [not evaluated |Informal not eval not evaluated
9; EAL2 |not evaluated [Informal Informal not evaluated
_qé EAL3 |not evaluated [Informal Informal not evaluated
%’ EAL4 |not evaluated [Informal Informal not evaluated
_’c;) EALS |not evaluated [Semi-Formal |Semi-Formal |Informal
= EALG |Formal Semi-Formal |Semi-Formal |Informal

EAL7 |Formal Formal Formal Informal

COMP9242 2020T2 W08a: Verification and selL4

© Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

7

Common Criteria: Protection Profiles (PPs)

 Controlled Access PP (CAPP)
« standard OS security, up to EAL3

« Single Level Operating System PP
« superset of CAPP, up to EAL4+

« Labelled Security PP (LSPP)
« MAC for COTS OSes

« Multi-Level Operating System PP
« superset of CAPP, LSPP, up to EAL4+

» Separation Kernel Protection Profile (SKPP)
« strict partitioning, for EAL6-7

COMP9242 2020T2 W08a: Verification and selL4

© Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

COTS OS Certifications

 EALS:
+ 2010 Mac OS X (10.6)

 EAL4:
« 2003: Windows 2000 Get regularly
« 2005: SUSE Enterprise Linux hacked!

» 2006: Solaris 10 (EAL4+)
« against CAPP (an EAL3 PP!)

 2007: Red Hat Linux (EAL4+)

« EALG:
» 2008: Green Hills INTEGRITY-178B (EALG+)
« against SKPP, relatively simple PPC-based hardware platform in TOE

* EALY:
» 2019: Prove & Run PROVENCORE

COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

SKPP on Commodity Hardware

« SKPP: OS provides only separation

* One Box One Wire (OB1) Project
« Use INTEGRITY-178B to isolate VMs on commodity desktop hardware
 Leverage existing INTEGRITY certification

* by “porting” it to commodity platform

NSA subsequently dis-endorsed SKPP,

_ discontinued certifying 2EALS
Conclusion [NSA, March 2010]:

« SKPP validation for commodity hardware
platforms infeasible due to their complexity
« SKPP has limited relevance for these platforms

COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

=]
vvvvvv
)

Common Criteria Limitations

* Very expensive Effectively dead
« rule of thumb: EALG+ costs $1K/LOC in 5-Eyes defence
design-implementation-evaluation-certification
 Too much focus on development process
* rather than the product that was delivered

« Lower EALs of little practical use for OSes
« c.f. COTS OS EALA4 certifications

« Commercial Licensed Evaluation Facilities licenses rarely revoked
 Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]

10 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW
a

Formal Verification

* Prove properties about a mathematical model of a system

Model checking / abstract interpretation:
O Cannot generally prove code correct
* Proves specific properties

» Has false positives or Theorem proving:
false negatives (unsoundness) v’ Can deal with large (even
O Suffers state-space explosion infinite) state spaces
v May scale to large code bases v’ Can prove functional
correctness against a spec
Recent work automatically d Very labour-intensive

proved functional correctness of
simple systems using SMT
solvers [Hyperkernel, SOSP’17]

11 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

=
vvvvvv
)

Model Checking and Linux: A Sad Story

« Static analysis of Linux source [Chou & al, 2001]
« Found high density of bugs, especially in device drivers

« Re-analysis 10 years later [Palix & al, 2011] Disappointing rate of
improvement for bugs that

are automatically detectable!
Fault rat? by directory [Palix’11]
‘ |

" 0.8-a ‘ ‘ | ‘ ‘ . & - Average
8 - | | | | | —a— Staging
O (.64 50 | | | | —o— Drivers
: | BANE —e— Sound
5 0.4] M AR AL S Arch
«s FS
- Net
o 0.2 3
52 : | | : ‘ | —=— Other
0.0-—] | r I
04 05 06 07 08 09 10
12 COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

And the Result?

QD TECHNICA = s o s s cvmca

RISK ASSESSMENT —

Unsafe at any clock speed:
Linux kernel security needs a
rethink

Ars reports from the Linux Security Summit—and finds much work
that needs to be done.

J-M. PORUP (UK) - 9/27/2016, 10:57 PM B I u e B O rn e

A The | iniy karnal tndav farac an iinnraradanted cafatv rricic Miich like when

13 COMP9242 2020T2 WO08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License {«: UNSW

VVVVVV

Au g u St 2 O O 9 A NICTA bejelentette a vilag elsd, formalis médszerekkel igazolt,

New Scientist

Saturday 29/8/2009
p| Stories Recent Popular Searc Page: 21

Section: General News

Region: National
Type: Magazines Science / Technology
™= Size: 196.31 sq.cms.

+ = Technology: World's Firs N — Published: -----S-

Posted by Soulskill on Thursday Aug
from the wait-for-it dept.

Slashdot is powered by your subm

An anonymous reader writes The UItimate Way to keep your
"Operating systems usually hav¢ Computer Safe ffom harm

and so forth are known by almos

to prove that a particular OS ker FLAWS in the code, or “kernel”, that just mathematics, and you can
. . sits at the heart of modern computers reason about them mathematically,”
formally verified, and as such it «
leave them prone to occasional says Klein.
researchers used an executable malfunction and vulnerable to attack His team formulated a model with
the Isabelle theorem prover to ge by worms and viruses. So the more than 200,000 logical steps
matches the executable and the development of a secure general- which allowed them to prove that the

. . purpose pave program would always behave
ms It mn LanX? "welre Dleased to SDCAY LIMGL I UUG?‘?:“GSL“II‘J!??‘:!‘V llﬂvqm: ’Iﬂlﬂ" nwuanaocu ver .s‘ts

[P OSSIET S ereamenyeKkeppen peaig egy Olyan megpiZnatosagot Kapnak a szortvertdl, amely e
|

15 COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

MIT
Technology

Review

a LISTS | INNOVATORSUNDER35 = DISRUPTIVE COMPANIES BREAKTHROUGH TECHNOLOGIES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

7 comments
WILLIAM BULKELEY

16 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

oy SYDNEY

@seld Proving Security and Safety
Inteqrity

Isolation properties
[ITP11, S&P13] Abstract

odel
Functional correctness
[SOSP’09]

Translation correctness C Imple- Exclusions (at present, Armv7):
[PLD|’1 3] mentation

Worst-case

execution time
[RTSS’11, RTAS'16]

17 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License [#% UNSW

ssssss

@:el4 Proving Functional Correctness

Abstract Model
4.9 kLOC Isabelle

117,000 lop
Refinement: all possible
Implementation Executable Model implementation behaviours
5.7 kLOC Haskell 13 kLOC Isabelle are captured by the model

50,000 lop

Implementation
8.7kLOC C

18 COMP9242 2020T2 WO08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

ssssss

@:el4 Proving Functional Correctness

constdefs
schedule :: "unit s_monad"
"schedule = do
threads « allactiveTCBs;
thread ¢« select threads;
do_machine op flushCaches OR return ();
modify (As. s {] cur_thread := thread [)
Odll

schedule Kernel ()
schedule = do

action <- getScheduleraction
case action of

void cad <- getCurThread

setPriority(tch_t *tptr, prio_t prio) {

prio_t oldprio; le <- isRunnable curThread
threadGet tchbTimeSlice curThread
if(thread_state_get_tcbQueued({tptr->tchState)) { ot runnable || time == 0) chooseThread

oldprio = tptr->tcbPriority;

ksReadyQueues[oldprio] = tchSchedDequeue(tptr, ksReadyQueues([
if(isRunnable(tptr)) {

} ksReadyQueues[priol] = tchSchedEngueue(tptr, ksReadyQueues

else {
thread_state_ptr_set_tcbQueued(&tptr->tchState, false);

3

tptr->tcbPriority = prio;

voild
yieldTo(tch_t *target) £
target->tchTimeSlice += ksCurThread->tchTimeSlice;

19 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

£ UNSW
w

Functional Correctness Summary

. _ Can prove
Kinds of properties proved further properties

Behaviour of C code is fully captured by abstract model . on abstract level!

Behaviour of C code is fully captured by executable model

Kernel never fails, behaviour is always well-defined

: : Bugs found:
e assertions never fail

* 16 in (shallow) testing

» will never de-reference null pointer « 460 in verification
* will never access array out of bounds « 160in C,
« cannot be subverted by misformed input « 150 in design,

« 150 in spec

All syscalls terminate, reclaiming memory is safe, ...

Well typed references, aligned objects, kernel always mapped...
Access control is decidable

20 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW
XA

Target of functional
correctness proof

{ C Source

Formal

C Semantics Rewrite
Rules
Compiler { L oraPh Jhmﬂ[L aaph }
guag SMT Solver anguage

De-
compiler

Symbol Tables

Formalised J

{ Binary Code :
Binary

Formal ISA Spec

21 COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License #85) UNSW

|solation Goes Deep

High ? Low

Kernel data
partitioned
like user data

22 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

23

Integrity: Control Write Access

Event-based kernel
always operates on be-
half of well-defined user:
* Prove kernel only
modifies data if
presented write cap

To prove:

Low has no write capabilities to High objects
= no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!

COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

Availability: Ensuring Resource Access

Tt

Nothing to do, implied

by other properties!
Strict separation of kernel resources
= Low cannot deny High access to resources
24 COMP9242 2020T2 W08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

Confidentiality: Control Information Flow

Violation not
observable
by High!

Non-interference proof:
« Evolution of Low does not depend on High state
» Also shows absence of covert storage channels

To prove:
Low has no read capabilities to High objects
= no action will reveal High state to Low

25 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

Confidentiality Proof Challenge

Spec Implementation

bool a() {
return !secret;

}

bool a(); Idiotic but valid refinement

bool b() { o
. Non-determinism
int secret; . .
} breaks confidentiality
under refinement!
Solution:

* Remove non-determinism vgh%re
it affects confidentiality O
« Eg: scheduler strictly round-robin

Infoflow is very strong
property, requiring
restrictions rarely met
In real world

26 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

27

Verification Assumptions

1. Hardware behaves as expected

* Formalised hardware-software contract (ISA)
« Hardware implementation free of bugs, Trojans, ...

2. Spec matches expectations

« Can only prove “security” if specify what “security” means
« Spec may not be what we think it is

3. Proof checker is correct
* Isabel/HOL checking core that validates proofs against logic

With binary verification do
not need to trust C compiler!

COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

Present Verification Limitations

* Not verified boot code
« Assume it leaves kernel in safe state

« Caches/MMU presently modeled at high level / axiomised

MMU model just finished

* Not proved any temporal properties

» Presently not proved scheduler observes priorities,
properties needed for RT

« WCET analysis applies only to dated ARM11/A8 cores
* No proofs about timing channels

28 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
al

vvvvvv

Common Criteria?

Level |Requirements |Specification |Design Implementation
EAL1 |not evaluated |Informal not eval not evaluated
EAL2 |not evaluated |Informal Informal not evaluated
EAL3 |not evaluated |Informal Informal not evaluated
EAL4 |not evaluated |Informal Informal not evaluated

EAL5 |not evaluated |Semi-Formal [Semi-Formal |Informal

EAL6 |Formal Semi-Formal |Semi-Formal |[Informal
EAL7 |Formal Formal Formal Informal
Formal Formal Formal Formal

29 COMP9242 2020T2 W08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

Cost of Verification

30 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

- § SYDNEY
P

)

)

Verification Cost Breakdown

Verification

Reusable!

Haskell design

Abstract
2 py Spec

C implementation
Debugging/Testing

0.15 py

Abstract spec refinement

8 py

Executable spec refinement

3 py

Fastpath verification

0.4 py

Formal frameworks
Total

Non-reusable verification

C Imple-

Traditional engineering

4-6 py mentation

31 COMP9242 2020T2 W08a: Verification and selL4

© Gernot Heiser 2019 — CC Attribution License

:} UNSW

ssssss
)

Why So Hard for 9,000 LOC?

sel 4 call
graph

=

32 COMP9242 2020T2 WO08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

vvvvvv
e

@sel4 Verification Cost

S

o ot
e 3>

o
Abstract
Model

o
o

|

o
C Imple-
mentation

33 COMP9242 2020T2 WO08a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

Microkernel Life-Cycle Cost in Context

? ¢ sel
Revolution! $400
o
=
% Fast!
2 Slow!
L4
Pistachio
$100-150
100 250 500 750 1000
Cost ($/SLOC)

34 COMP9242 2020T2 WO08a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

Update:

RISC-V Verification was completed in April 2020

v RISC-V°

© Gernot Heiser 2019 — CC Attribution License UNSW

VVVVVV

Update:

We now have the seL4 Foundation to raise funds
to support on-going selL4 development and verification!

© Gernot Heiser 2019 — CC Attribution License UNSW

vvvvvv
e

