
SMP, Multicore, Memory Ordering & Locking

These slides are made distributed under the Creative Commons Attribution 3.0 License, unless
otherwise noted on individual slides.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work (but not in any way that suggests that the author
endorses you or your use of the work) as follows:

“Courtesy of Kevin Elphinstone, UNSW”

The complete license text can be found at http://creativecommons.org/licenses/by/3.0/legalcode

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU performance increases are slowing

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A.
Patterson

Multiprocessor System

A single CPU can only go so fast
• Idea: Use more than one CPU to improve performance

• Assumes
– Workload can be parallelised

– Workload is not I/O-bound or memory-bound

Amdahl’s Law

Given:

• Parallelisable fraction

• Number of processor

• Speed up

Parallel computing takeaway:

• Useful for small numbers of CPUs
()

• Or, high values of

– Aim for high P values by design

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup vs. CPUs

0.5 0.9 0.99

Classic symmetric
multiprocessor (SMP)

• Uniform Memory Access

o Access to all memory occurs at the
same speed for all processors.

• Processors with local caches
o Separate cache hierarchy

 Cache coherency issues

Types of Multiprocessors (MPs)

Cache

CPU

Cache

CPU Main
Memory

Bus

Cache Coherency

What happens if one CPU writes to address 0x1234 (and it
is stored in its cache) and another CPU reads from the
same address (and gets what is in its cache)?

• Can be thought of as managing replication and migration of data
between CPUs

• Note: The unit of replication and consistency is the cache line

Cache

CPU

Cache

CPU Main
Memory

Bus

Problematic Example

a = 1

if b == 0 then {

/* critical section */

a = 0

} else {

…

b = 1

if a == 0 then {

/* critical section */

b = 0

} else {

…

CPU A CPU B
Main

Memory

Bus

Memory Model: Sequential Consistency

“the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.” [Lamport, 1979]

With sequential consistency

a = 1

if b == 0 then {

/* critical section */

a = 0

} else {

…

b = 1

if a == 0 then {

/* critical section */

b = 0

} else {

…

CPU A CPU B
Main

Memory

Bus

Write-through Caches

a = 1

if b == 0 then {

/* critical section */

a = 0

} else {

…

b = 1

if a == 0 then {

/* critical section */

b = 0

} else {

…
CPU A CPU B

Main
Memory

Bus

• For classic SMP a hardware solution is used
• Write-through caches
• Each CPU cache snoops bus activity to invalidate stale lines
• Reduces cache effectiveness – all writes go out to the bus.

• Longer write latency
• Reduced bandwidth

NUMA MP

• Non-uniform memory access

o Access to some parts of memory is
faster for some processors than
other parts of memory

• Provides high-local bandwidth
and reduces bus contention
o Assuming locality of access

Types of Multiprocessors (MPs)

Cache

CPU

Cache

CPU

Main
Memory

Main
Memory

Interconnect

How is such a machine kept consistent?

Snooping caches assume

• write-through caches

• cheap “broadcast” to all CPUs

Many alternative cache coherency protocols

• They improve performance by tackling above assumptions

• We’ll examine MESI (four state)

– Optimisations exist (MOESI, MESIF)

• ‘Memory bus’ becomes message passing system between caches

Example Coherence Protocol MESI
Each cache line is in one of four states

Invalid (I)
• This state indicates that the addressed line is not resident in the cache and/or any data

contained is considered not useful.

Exclusive (E)
• The addressed line is in this cache only.

• The data in this line is consistent with system memory.

Shared (S)
• The addressed line is valid in the cache and in at least one other cache.

• A shared line is always consistent with system memory. That is, the shared state is
shared-unmodified; there is no shared-modified state.

Modified (M)
• The line is valid in the cache and in only this cache.

• The line is modified with respect to system memory—that is, the modified data in the
line has not been written back to memory.

Example

Cache

CPU

Cache

CPU

Main Memory

MESI (with snooping/broadcast)

Events

RH = Read Hit

RMS = Read miss, shared

RME = Read miss, exclusive

WH = Write hit

WM = Write miss

SHR = Snoop hit on read

SHI = Snoop hit on invalidate

LRU = LRU replacement

Bus Transactions

Push = Write cache line back to memory

Invalidate = Broadcast invalidate

Read = Read cache line from memory

Performance improvement via write-back caching
• Less bus traffic

Each memory block has a home
node

Home node keeps directory of
caches that have a copy

• E.g., a bitmap of processors per
cache line

Pro
• Invalidation/update messages can

be directed explicitly
o No longer rely on broadcast/snooping

Con
• Requires more storage to keep

directory
o E.g. each 256 bits of memory (cache

line) requires 32 bits (processor mask)
of directory

Directory-based coherence

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A.
Patterson

Example

Cache

CPU A
Cache

CPU B

Main
Memory

Cache

CPU C
Cache

CPU D

Summary

Hardware-based cache coherency:

• Provide a consistent view of memory across the machine.

• Read will get the result of the last write to the memory hierarchy

Memory Ordering

Example: a tail of a critical section

/* assuming lock already held */

/* counter++ */

load r1, counter

add r1, r1, 1

store r1, counter

/* unlock(mutex) */

store zero, mutex

Relies on all CPUs seeing update of counter before update of mutex

Depends on assumptions about ordering of stores to memory

Cache

CPU

Cache

CPU Main
Memory

Bus

Memory Models: Strong Ordering
Sequential consistency

– the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program

Traditionally used by many architectures

Assume X = Y = 0 initially

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

Potential interleavings

At least one CPU must load the other's new value
• Forbidden result: X=0,Y=0

store 1, X
load r2, Y
store 1, Y
load r2, X
X=1,Y=0

store 1, X
store 1, Y
load r2, Y
load r2, X
X=1,Y=1

store 1, Y
load r2, X
store 1, X
load r2, Y
X=0,Y=1

store 1, Y
store 1, X
load r2, X
load r2, Y
X=1,Y=1

store 1, X
store 1, Y
load r2, X
load r2, Y
X=1,Y=1

store 1, Y
store 1, X
load r2, Y
load r2, X
X=1,Y=1

Realistic Memory Models

Modern hardware features can interfere with store order:

• write buffer (or store buffer or write-behind buffer)

• instruction reordering (out-of-order execution)

• superscalar execution and pipelining

Each CPU/core keeps its own execution consistent, but how
is it viewed by others?

Write-buffers and SMP
Stores go to write buffer to hide memory latency

• And cache invalidates

Loads read from write buffer if possible
CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 0
store r1, A
store r2, B
store r3, C
load r4, A

CPU 1
CPU 0

store r1, A
store r2, B
store r3, C

Write-buffers and SMP

When the buffer eventually drains, what order does CPU1 see CPU0’s
memory updates?

What happens in our example?

CPU0

Cache

Store C
…

Store B
…

Store A
….

Total Store Ordering (e.g. x86)

Stores are guaranteed to occur in FIFO order

CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 1 sees
A=1
B=2
C=3

CPU 0
store 1, A
store 2, B
store 3, C

Total Store Ordering (e.g. x86)

Stores are guaranteed to occur in FIFO order

CPU0

Cache

…
Store
mutex

…
Store
count

….

CPU 1 sees
count updated
mutex = 0

/* counter++ */
load r1, count
add r1, r1, 1
store r1, counter

/* unlock(mutex) */
store zero, mutex

Total Store Ordering (e.g. x86)

Assume X = Y = 0 initially

What is the problem here?

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering (e.g. x86)

Stores are buffered in write-buffer and don’t appear on other CPU in time.

Can get X=0, Y=0!!!!

Loads can “appear” re-ordered with preceding stores

load r2, Y
load r2, X
store 1, X
store 1, Y

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Memory “fences”
Also called “barriers”

The provide a “fence” between instructions to
prevent apparent re-ordering

Effectively, they drain the local CPU’s write-
buffer before proceeding.

CPU 0
store 1, X
fence
load r2, Y

CPU 1
store 1, Y
fence
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering

Stores are guaranteed to occur in FIFO order

Atomic operations?

• Need hardware support, e.g.
• atomic swap
• test & set
• load-linked + store-conditional

• Stall pipeline and drain (and/or bypass) write buffer
• Ensures addr1 held exclusively

CPU 0
ll r1, addr1
sc r1, addr1

CPU 1
ll r1, addr1
sc r1, addr1

CPU

Cache

Store A
…

Store B
…

Store A
….

Partial Store Ordering (e.g. ARM MPcore)

All stores go to write buffer

Loads read from write buffer if possible

Redundant stores are cancelled or merged

• Stores can appear to overtake (be re-ordered) other
stores
• Need to use memory barrier

CPU

Cache

Store A
…

Store B
…

Store A
….

CPU 1 sees
addr2 = VAL
addr1 = IDLE

CPU 0
store BUSY, addr1
store VAL, addr2
store IDLE, addr1

Partial Store Ordering (e.g. ARM MPcore)

The barriers prevent preceding stores appearing after
successive stores

• Note: Reality is a little more complex (read barriers, write barriers),
but principle similar.

• Store to counter can overtake store to mutex
• i.e. update move outside the lock

• Need to use memory barrier
• Failure to do so will introduce subtle bugs:

• Critical section “leaking” outside the lock

load r1, counter
add r1, r1, 1
store r1, counter
barrier
store zero, mutex

CPU

Cache

Store A
…

Store B
…

Store A
….

MP Hardware Take Away

Each core/cpu sees sequential execution of own code

Other cores see execution affected by

• Store order and write buffers

• Cache coherence model

• Out-of-order execution

Systems software needs to understand:

• Specific system (cache, coherence, etc..)

• Synch mechanisms (barriers, test_n_set, load_linked – store_cond).

…to build cooperative, correct, and scalable parallel code

MP Hardware Take Away

Existing sync primitives (e.g. locks) will have
appropriate fences/barriers in place

• In practice, correctly synchronised code can ignore memory model.

However, racey code, i.e. code that updates shared memory
outside a lock (e.g. lock free algorithms) must use
fences/barriers.

• You need a detailed understanding of the memory coherence model.

• Not easy, especially for partial store order (ARM).

Memory ordering for various Architectures

Type Alpha ARMv7 PA-RISC POWER
SPARC
RMO

SPARC
PSO

SPARC
TSO

x86
x86
oostore

AMD64 IA-64 zSeries

Loads
reordered
after loads

Y Y Y Y Y Y Y

Loads
reordered
after stores

Y Y Y Y Y Y Y

Stores
reordered
after stores

Y Y Y Y Y Y Y Y

Stores
reordered
after loads

Y Y Y Y Y Y Y Y Y Y Y Y

Atomic
reordered
with loads

Y Y Y Y Y

Atomic
reordered
with stores

Y Y Y Y Y Y

Dependent
loads
reordered

Y

Incoherent
instruction
cache
pipeline

Y Y Y Y Y Y Y Y Y Y

Concurrency Observations

Locking primitives require exclusive access to the “lock”

• Care required to avoid excessive bus/interconnect traffic

Kernel Locking

Several CPUs can be executing kernel code
concurrently.

Need mutual exclusion on shared kernel data.

Issues:
• Lock implementation

• Granularity of locking (i.e. parallelism)

Mutual Exclusion Techniques

Disabling interrupts (CLI — STI).

• Insufficient for multiprocessor systems.

Spin locks.

• Busy-waiting wastes cycles.

Lock objects (locks, semaphores).

• Flag (or a particular state) indicates object is locked.

• Manipulating lock requires mutual exclusion.

Hardware Provided Locking Primitives

int test_and_set(lock *);

int compare_and_swap(int c,

int v, lock *);

int exchange(int v, lock *)

int atomic_inc(lock *)

v = load_linked(lock *) / bool
store_conditional(int, lock *)

• LL/SC can be used to implement all of the above

Spin locks

void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

void unlock (volatile lock_t *l) {

*l = 0;

}

Busy waits. Good idea?

Spin Lock Busy-waits Until Lock Is Released

Stupid on uniprocessors, as nothing will change while
spinning.

• Should release (block) thread on CPU immediately.

Maybe ok on SMPs: locker may execute on other CPU.
• Minimal overhead (if contention low).

• Should only spin for short time.

Generally restrict spin locking to:
• short critical sections,

• unlikely to (or preferably can’t) be contended by thread on same CPU.
– local contention can be prevented

» by design (per-CPU data structure)

» by turning off interrupts

Spinning versus Switching

• Blocking and switching
– to another process takes time

» Save context and restore another
» Cache contains current process not new

 Adjusting the cache working set also takes time
» TLB is similar to cache

– Switching back when the lock is free encounters the same again

• Spinning wastes CPU time directly

Trade off
• If lock is held for less time than the overhead of switching

to and back
 It’s more efficient to spin

Spinning versus Switching

The general approaches taken are

• Spin forever

• Spin for some period of time, if the lock is not acquired,
block and switch

– The spin time can be

» Fixed (related to the switch overhead)

» Dynamic

 Based on previous observations of the lock
acquisition time

Interrupt Disabling

Assume no local contention by design, is disabling interrupt
important?

Hint: What happens if a lock holder is preempted (e.g., at
end of its timeslice)?

All other processors spin until the lock holder is re-scheduled

Alternative to spinning:
Conditional Lock (TryLock)
bool cond_lock (volatile lock t *l) {

if (test_and_set(l))

return FALSE; //couldn’t lock

else

return TRUE; //acquired lock

}

Can do useful work if fail to acquire lock.

But may not have much else to do.

Livelock: May never get lock!

Another alternative to spinining.
void mutex lock (volatile lock t *l) {

while (1) {

for (int i=0; i<MUTEX N; i++)

if (!test and set(l))

return;

yield();

}

}

Spins for limited time only
• assumes enough for other CPU to exit critical section

Useful if critical section is shorter than N iterations.

Starvation possible.

