Common Multiprocessor Spin Lock
void mp_spinlock (volatile lock t *1) {
cli(); // prevent preemption
while (test and set(l)) ; // lock
}
void mp unlock (volatile lock t *1) {
*1 = 0;
sti();
}
Only good for short critical sections
Does not scale for large number of processors
Relies on bus-arbitrator for fairness
Not appropriate for user-level
Used in practice in small SMP systems

Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990

UNSW UNSW
Compares Simple Spinlocks test_and_test_and_set LOCK
Test and Set Avoid bus traffic contention caused by test_and_set until it is likely to succeed
void lock (volatile lock t *1) { Normal read spins in cache
while (test_and set(l)) ; Can starve in pathological cases
}
Test and Test and Set
void lock (volatile lock t *1) {
while (*1 == BUSY || test_and _set(l)) ;
}
UNsw UNsw
Benchmark
for i =1 .. 1,000,000 {
lock (1)
crit_section()
70 1
unlock ()
compute () 60
} § 50 4
i istributi @ 40 — ideal
Compute chosen from uniform random distribution £ it
of mean 5 times critical section E 30 -+ spin on read
Measure elapsed time on Sequent Symmetry (20 g o8
CPU 30386, coherent write-back invalidate 107
caches) 0 . T . T
1 5 k] 13 17
number of processors
UNSW UNSW

Results

Test and set performs poorly once there is enough CPUs to
cause contention for lock

» Expected

Test and Test and Set performs better

« Performance less than expected

« Still significant contention on lock when CPUs notice release and all
attempt acquisition

Critical section performance degenerates

Critical section requires bus traffic to modify shared structure

Lock holder competes with CPU that missed as they test and set

— lock holder is slower

.

Slower lock holder results in more contention

Idea

Can inserting delays reduce bus traffic and improve
performance

Explore 2 dimensions

* Location of delay
— Insert a delay after release prior to attempting acquire
— Insert a delay after each memory reference

 Delay is static or dynamic
— Static — assign delay “slots” to processors
» Issue: delay tuned for expected contention level
— Dynamic — use a back-off scheme to estimate contention
» Similar to ethernet
» Degrades to static case in worst case.

UNSW UNSW
7 8
Examining Inserting Delays Queue Based Locking
Each processor inserts itself into a waiting queue
i A T « It waits for the lock to free by spinning on its own separate
Lk k- BUSY r Temaaser L - OUSTY cache line
Lot + Lock holder frees the lock by “freeing” the next processors
TARLEWW cache line.
% UNSW % UNSW
9 10
Results Results
5 Static backoff has higher overhead when backoff is
] inappropriate
A + spin an read Dynamic backoff has higher overheads when static
] . el . .
T w0 o bl re delay is appropriate
E : :‘iﬁf:m « as collisions are still required to tune the backoff time
o 4 -+ queus . .
s Queue is better when contention occurs, but has
- : : . . higher overhead when it does not.
! ° e c:pmm;: ' * Issue: Preemption of queued CPU blocks rest of queue
(worse than simple spin locks)
UNSW UNSW
11 12

John Mellor-Crummey and Michael Scott, “Algorithms for
Scalable Synchronisation on Shared-Memory
Multiprocessors”, ACM Transactions on Computer
Systems, Vol. 9, No. 1, 1991

MCS Locks

Each CPU enqueues its own private lock variable into a queue and spins
on it

« No contention

On lock release, the releaser unlocks the next lock in the queue

« Only have bus contention on actual unlock

« No livelock (order of lock acquisitions defined by the list)

crus—] 3]
CPU 3 spins on this (private) lock

[CPU 2 spins on this (private) lock

CPU 4 spins on this (private) lock|

e e

_— A [~ When CPU 1 is finished with the
Shared memory / real lock, it releases it and also
CPU 1 releases the private lock CPU 2
m— holds the is spinning on
S e real lock
MCS Lock
type qnode = record
next : “gquode
Requires locked : Boolean
type lock = “qnode
.
compare_and_swap() // parameter I, below, points to a quode racord allocated
// (in an enclosing scope) in shared memery locally-accessible
» exchange() /7 to the invoking processor
— Also called fetch_and_store() procedure acquire_lock (L : -lock, I : -quode)
I->next := nil
predecessor : “gunode := fetch_and store (L, I)
if predecessor il // queve was mon-empty
I->locked ue
predecessor->next = I
repeat wbile I->locked // epan
procedure release_lock (L : “leck, I: “gnode)
3f I->next = nil // no known successor
af conpare_and_swap (L, I, mil)
return
// compare_and_swap returns true iff it swapped
repeat while I->next = nil // spin
T->naxt->locked := false
B unsw B unsw
void mcs_acquire(mes_lock *L, mcs_gqnode_ptr I)
{
I->next = NULL;
MEM_BARRIER ;
mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR(L, (void *)I);
if (pred == NULL)
{ /* lock was free */
MEM_BARRIER;
return;
¥
I->waiting = 1; // word on which to spin
MEM_BARRIER ;
pred->next = I; // make pred point to me
¥
UNSW UNSW

17

18

Selected Benchmark

Compared

« test and test and set

» Anderson’s array based queue

» test and set with exponential back-off
* MCS

Fig. 17, Performance of spin locks on the Sy

UNSW UNSW
19 20
Confirmed Trade-off
Queue locks scale well but have higher overhead Beng-Hong Lim and Anant Agarwal, “Reactive
Spin Locks have low overhead but don't scale well 3>/n1cggin|zat|on Algorithms for Multiprocessors”, ASPLOS
What do we use? '
¥ UNSW [— o UNSW
21 22
S 512 ;
Mo contention Wilh contenion 2 / o
2 256 —e—lg o~
| i g
oot I g AT
! ol I
i— overhead: 220 cyclas T . /
Quess Lok i /] o
o W : 50 50 Lotk ovemean 16 -+ TestBTestaSel w/ backoll
ovarhead: 21 cycles : owvarheart: 100 cycles [ussful work (critical section) i il
UNSW UNSW
23 24

Idea

Can we dynamically switch locking methods to suit
the current contention level???

Issues

How do we determine which protocol to use?
* Must not add significant cost
How do we correctly and efficiently switch protocols?

How do we determine when to switch protocols?

UNSW UNSW
25 26
Protocol Selection Changing Protocol
Keep a “hint” Only lock holder can switch to avoid race conditions
Ensure both TTS and MCS lock a never free at the same * It chooses which lock to free, TTS or MCS.
time
= Only correct selection will get the lock
« Choosing the wrong lock with result in retry which can get it right next
time
« Assumption: Lock mode changes infrequently
— hint cached read-only
— infrequent protocol mismatch retries
/ g
TestaTestaSet Lock Queue Lock U}N%W
27 28
When to change protocol Results
Use threshold scheme
« Repeated acquisition failures will switch mode to queue g sz #
+ Repeated immediate acquisition will switch mode to TTS B e B R
3 il
5 128 1
z ——
B4
i Spin Locks
- TasthSet w' backott
18 4 Tost&TostSSet w' backol
% MCS Quausa Lock
. - Reactive Lock
Tz 4 8 % = &
Processors
UNSW UNSW

29

30

The multicore evolution and
operating systems

Frans Kaashoek

Joint work with: Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, Robert Morris, and Nickolai
Zeldovich

MIT

Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

31

32

How well does Linux scale?

o Experiment:

e Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too)

e Select a few inherent parallel system applications
o Measure throughput on different # of cores
e Use tmpfs to avoid disk bottlenecks

e Insight 1: Short critical sections can lead to
sharp performance collapse

Off-the-shelf 48-core server (AMD)

T T T T
] I I I [
DDD DDD 00 pod
I
‘DDD DDD 00 00
00 oy o0 OO

o g mhe oshr

e Cache-coherent and non-uniform access
e An approximation of a future 48-core chip

33

34

Poor scaling on stock Linux kernel

perfect scaling a4

32
28
24
20
16
12
terrible scaling i l
\ (=] .

memcached Pos(greSQL Psearchy
Xim pach

Y-axis: (throughput with 48 cores)/ (throughput with one core)

Exim on stock Linux: collapse

12000

= Throughput
10000
8000

6000

4000

Throughput (messages/second)

2000

1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

35

36

Exim on stock Linux: collapse

12000 15

= Throughput
~+Kernel time

. .
Exim on stock Linux: collapse
12000
= Throughput
10000
T
§ 8000
g
8
% 6000
£
5
% 4000
g
£
2000
0
1 4 12 16 20 24 32 36 40 44
Cores

Throughput (messages/second)

10000

8000

6000

4000

2000

£y © 3

Kernal CPI tima (millisacnnds/messaga)”

32 36 40 44 48

37

38

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

samples
2616
2329
2197
1488
1348
1182
966

samples
13515
2002
1661
1497
1026
914
896

%
7.3522
6.5456
6.1746
4.1820
3.7885
3.3220
27149

%

34.8657
5.1647
4.2850
3.8619
2.6469
2.3579
23115

app name
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

app name
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

Oprofile shows an obvious problem

symbol name
radix_tree_lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c
unlock_page
page._fault

symbol name
lookup_mnt
radix_tree_lookup_slot
filemap_fault
unmap_vmas
__do_fault

atomic_dec
unlock_page

- -
Oprofile shows an obvious problem
samples % app name symbol name
2616 7.3522 vmlinux radix_tree_lookup_slot
2329 6.5456 vmlinux unmap_vmas
40 cores: 2197 6.1746 vmlinux filemap_fault
10000 msg/sec 1488 41820 | vmlinux __do_fault
1348 3.7885 vmlinux copy_page_c
1182 3.3220 | vmlinux unlock_page
966 2.7149 vmlinux page_fault
samples % app name symbol name
13515 34.8657 vmlinux lookup_mnt
2002 5.1647 vmlinux radix_tree_lookup_slot
48 cores: X
4000 msg/sec 1661 4.2850 vmlinux filemap_fault
1497 3.8619 vmlinux unmap_vmas
1026 2.6469 vmlinux __do_fault
914 2.3579 vmlinux atomic_dec
896 2.3115 vmlinux unlock_page

39

40

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

Oprofile shows an obvious problem

samples % app name symbol name

2616 7.3522 vmlinux radix_tree_lookup_slot
2329 6.5456 vmlinux unmap_vmas

2197 6.1746 vmlinux filemap_fault

1488 41820 | vmlinux __do_fault

1348 3.7885 | vmlinux copy_page_c

1182 33220 | vmlinux unlock_page

966 2.7149 vmlinux page_fault

samples app name symbol name

2002 5.1647 | vmlinux radix_tree_lookup_slot
1661 4.2850 vmlinux filemap_fault

1497 3.8619 | vmlinux unmap_vmas

1026 2.6469 vmlinux __do_fault

914 2.3579 vmlinux atomic_dec

896 23115 | vmlinux unlock_page

e sys_open calls

struct vfsmount *lookup_mnt(struct path *path)

Bottleneck: reading mount table

¢ Delivering an email calls sys_open

{
struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

41

42

Bottleneck: reading mount table

e sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{
struct vfsmount *mnt;
spin_lock(&vfsmount_Tock);
mnt = hash_get(mnts, path);

spin_unlock(&vfsmount_lock);

return mnt;

Bottleneck: reading mount table

e sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{
struct vfsmount *mnt;
spin_lock(&vfsmount_ock); . o
mnt = hash_get(mnts, path); ' Serial section is short. Why does

it cause a scalability bottleneck?
spin_unlock(&vfsmount_lock);

return mnt;

43

44

What causes the sharp
performance collapse?

e Linux uses ticket spin locks, which are non-
scalable

e So we should expect collapse [Anderson 90]

e But why so sudden, and so sharp, for a short
section?

e |s spin lock/unlock implemented incorrectly?
e |s hardware cache-coherence protocol at fault?

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)

{

void spin_unlock(spinlock_t *lock)
while (t !=lock->current_ticket) }
/* Spin */

[struct spinfock_t {

Int current_ticket;
int next_ticket;
}

asegicpiasg.":

|
gl Nl L lan

45

46

Scalability collapse caused by
non-scalable locks [Anderson 90]

{

void spin_lock(spinlock_t *lock)

void spin_unlock(spinlock_t *lock)
{

while (t 1= lock->current_ticket) }

I* Spin */

[struct spinfock_t {
Int current_ticket;

int next_ticket;
] D‘
[]

}
00 [™8
-EDDHDSE%DD |

|
g R L oen

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock_t *lock)

{ {
t = atomic_inc(lock->next_ticket);
while (t = lock->current_ticket) }
I* Spin */

[struct spinfock_t {
Nt current_ticket,
int next_ticket;

47

48

Scalability collapse caused by
non-scalable locks [Anderson 90]

{

}

void spin_lock(spinlock_t *lock)

void spin_unlock(spinlock_t *lock)

{

RS |

[struct spinfock_t {

int current_ticket;
int next_ticket;

}

.
B

[
|
nn

1 ol |

bDD U8 DO
[|

1 I

UOUE UJUy) o)

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock_t *lock)

{ {

t = atomic_inc(lock->next_ticket);

}
o

} Int current_ticket;
int next_ticket;

49

50

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)

{

void spin_unlock(spinlock_t *lock)

{

t = atomic_inc(lock->next_ticket);

-t
[Struct spinfock_t {

Int current_ticket
int next_ticket;

| |
@00 00w
EDinDD 000 000

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock_t *lock)

{ {

t = atomic_inc(lock->next_ticket);

Bt
[Struct spinfock_t {

} Nt current_ticket
int next_ticket;

L
B
|

]
N

51

52

Scalability collapse caused by
non-scalable locks [Anderson 90]

{

void spin_lock(spinlock_t *lock)

void spin_unlock(spinlock_t *lock)

{
= s ek re. sk oo e

}
S

int current_ticket;
int next_ticket;

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock_t *lock)

{ {

t = atomic_inc(lock->next_ticket);

}
S

} int current_ticket;
int next_ticket;

.

Previous lock holder notifies
next lock holder after
sending out N/2 replies

53

54

Why collapse with short sections?

ao ak-1 ak Qk+1 an-1
S0 Sk-1 Sk Sk+1 Sn-1

o Arrival rate is proportional to # non-waiting cores
e Service time is proportional to # cores waiting (k)

e As k increases, waiting time goes up
e As waiting time goes up, k increases

o System gets stuck in states with many waiting cores

Short sections result in collapse

s T T T T
o Model, 400 serial cycles
o Model, 1600 serial cycles
A Model, 25600 serial cycles
—e— Ticket, 400 serial cycles
w | —e— Ticket, 1600 serial cycles
—a— Ticket, 25600 serial cycl

T T

Speedup

Cores

o Experiment: 2% of time spent in critical section
o Critical sections become “longer” with more cores
e Lesson: non-scalable locks fine for long sections

55 56
. . F l/ T T T T ¥ T T T T L T |
¢ Unscalable locks are fine for long sections o | WM
e Unscalable locks collapse for short sections >
e Sudden sharp collapse due to “snowball” effect ? top | =% AT S At by, a
e Scalable locks avoid collapse altogether H el Ly o SRR
e But requires interface change £ T Sl 1

02 6 12 18 24 30 36 42 48
Cores

e It doesn't matter much which one
e But all slower in terms of latency

57

Avoiding lock collapse
is not enough to scale

e “Scalable” locks don't make the kernel scalable

e Main benefit is avoiding collapse: total throughput
will not be lower with more cores

e But, usually want throughput to keep increasing with
more cores

59

58

