Combining Predictable Execution with
Full-Featured Commodity Systems

Adam Lackorzynski, Carsten Weinhold, Hermann Hirtig
Operating Systems Group, Technische Universitdt Dresden
{adam.lackorzynski,carsten.weinhold,hermann.haertig } @tu-dresden.de

Abstract—Predictable execution of programs is required to
satisfy real-time constraints in many use cases, including automa-
tion and controlling tasks. Unfortunately, background activities
of the operating system may influence execution of such work-
loads in unpredictable ways, as do other applications running
on the system concurrently. Separating time-critical workloads
from unrelated activities is thus a common approach to ensure
predictable execution.

Different strategies are used to achieve this separation. On
multi-core systems, developers typically assign work loads to
dedicated cores, which then run completely separate software
stacks. They often do not provide fault isolation nor security
guarantees. Another approach is to co-locate a commodity
operating system with a real-time executive, which hooks into
the interrupt subsystem of the standard kernel to run real-time
code at the highest priority in the system. There are also ongoing
activities to modify commodity kernels such as Linux to enable
more predictable execution. This pairing of the rich and versatile
feature set of Linux with a real-time execution is very compelling,
but it requires significant developer effort to ensure that the huge
monolithic code base does not violate real-time requirements.

In this paper, we present a mechanism that combines pre-
dictable execution and all of Linux’ functionality with much
less effort. It allows unmodified programs to be started on
top of a virtualized Linux kernel and then “pull them out”
of the virtual machine to let them run undisturbed on the
microkernel that hosts Linux. Whenever the program performs
a system call or catches an exception, those are forwarded to
Linux transparently. Experimental results show that execution-
time variation is reduced by two orders of magnitude.

I. INTRODUCTION

Predictable execution, often also called real-time execution,
is a required functionality for a broad range of uses cases.
Common real-time operating systems (RTOS) are simple,
and thus predictable, but lack features commonly offered
by a full-featured commodity operating system (OS), such
as Linux. Unfortunately, full-featured OSes typically cannot
ensure predictable execution. Still, there is ongoing work
on full-featured operating systems aiming to run real-time
workloads. An example are the real-time extensions for Linux
(Linux-RT [1]) which are merged step-by-step into mainline
Linux. However, it is a constant challenge to keep the huge code
base of the kernel preemptible, while hundreds of developers
add new features all the time or rework entire subsystems;
preemptibility and real-time capabilities are typically not the
main concerns for most of these developers.

Another common approach is to use multi-core systems
and to run a commodity OS and an RTOS on the same

system. This provides good temporal isolation but lacks spatial
isolation. Both OSes exist side by side and interaction between
them is usually coarse grained, for example, through mailbox
systems. As each of the two OSes runs with full system
privileges, such setups do not offer effective fault containment
as required for security and safety-critical usage scenarios.
A hypervisor (or microkernel) that virtualizes the platform
can contain faults within each of the two software stacks by
deprivileging their OSes. Adding the virtualization layer may
cause a slight performance degradation, but run-time overheads
are not prohibitive in most cases.

The contribution of this work is a mechanism for combining
the flexibility and feature set of a full-featured commodity
OS with the real-time characteristics of an RTOS. By means
of virtualization, we enable threads of a program to detach
from the unpredictable commodity OS and run in the real-time
capable environment. Whenever such a detached thread needs
to call services of the feature-rich OS (e.g., system calls), those
requests will be forwarded to the commodity OS transparently.
In our prototype, we use the L4Re system, a microkernel-
based operating system framework [2] for building customized
systems. The L4Re microkernel serves both as a hypervisor
and in the role of an RTOS to runs detached threads. We use
[!Linux, a paravirtualized variant of the Linux kernel that
comes with L4Re. It has been adapted to run on the L4Re
system as a deprivileged user-space application.

We are not the first to combine a real-time executive and
a feature-rich commodity operating. However, our approach
represents a new way of building this kind of split OS platform.
We reach this goal without “reinventing the wheel” by enhanc-
ing existing microkernel technology with a simple mechanism.
We believe that our approach is low-effort, maintainable, and it
provides continuous access to the latest releases of the feature-
rich OS. This paper builds on our previous work in the context
of high-performance computing [3].

In the remainder of the paper, we will describe our system
in more detail (Section II) and then discuss the detaching
mechanisms we added in Section III. We evaluate our work in
Section IV before we conclude.

II. VIRTUALIZATION SYSTEM

We build an OS for predictable execution based on the L4Re
microkernel system, which hosts a virtualized Linux kernel
called I*Linux. To get an understanding of L4Re’s capabilities

and the detaching mechanism described in Section III, we will
now introduce the L4Re system architecture.

A. L4Re Microkernel and User Land

The L4Re microkernel is a small and highly portable kernel.
It is the only component of the system running in the most
privileged mode of the CPU. Its main task is to provide isolation
among the programs it runs, in both the spatial and temporal
domains. To do so, the kernel needs to provide mechanisms
for all security-relevant operations, such as building up virtual
memory for programs and scheduling them. To support virtual
machines (VMs), the kernel also provides abstractions for
those virtualization-related CPU instructions that can only be
executed in the most privileged processor mode. Thus it also
takes the role of a hypervisor. Functionality that is not required
to enforce isolation of applications and virtual machines is
built on top of the kernel in user-level components.

The L4Re system is a component-based operating system
framework that provides a set of components on top of the
microkernel. It can be tailored to the needs of applications.
The set of components includes services and libraries for
memory management, application loading, virtual machines,
device drivers, and more. As the L4Re system provides
functionality as components, applications need to rely only
on those services they use, thereby minimizing their Trusted
Computing Base (TCB). The TCB is also application-specific,
as different application to may depend on different services.
This is in contrast to monolithic designs, where, for example,
a malfunction in a file-system leads to a kernel panic that
concerns every application, including those that do not use that
file-system at all.

The L4Re microkernel supports hardware-assisted virtual-
ization such as Intel’s VT and ARM’s VE, as well as a pure
software approach to hosting VMs. The latter only relies on
the memory management unit, which also provides address
spaces for isolating ordinary applications. The kernel provides
interfaces specifically designed so that OS developers can port
their kernels to L4Re with little effort. This paravirtualization
support includes support for mapping guest processes and
threads to the L4 tasks and L4 vCPUs that the microkernel
provides: An L4 task encapsulates address spaces both for
memory and kernel objects such as capabilities; a vCPU is a
thread and thus a unit of execution, however, enriched with
features beneficial for virtualization.

Besides providing address spaces through L4 tasks and
execution through L4 thread and vCPUs, the microkernel
provides a few more mechanisms. Interrupts are abstracted
using Irq objects. Irqs are used for both physical device
interrupts as well as for software-triggered interrupts. The
microkernel also schedules the threads on the system and
offers multiple, compile-time selectable scheduling algorithms.

The whole L4Re system is built around an object capability
model. Any operation on an object outside the current L4
task must be invoked through a capability; this includes the
objects that provide inter-process communication (IPC) and
Irgs. Thus one can state that IPC is used to invoke capabilities.

L4Re uses the same invocation method for all objects in the
system, whether they are implemented in the microkernel itself
or provided by user-level applications.

The L4Re microkernel always runs on all cores of the system
and address spaces span all cores; threads can be migrated.
The microkernel itself will never migrate a thread between
cores on its own; however, user-level applications can request
migrations.

B. L4Linux

In our work, we use [*Linux, a paravirtualized variant of
the Linux kernel that has been adapted to run on the L4Re
system. L!Linux is binary compatible to normal Linux and
runs nearly any Linux binary [4]. We chose [*Linux instead of
a fully-virtualized Linux because I*Linux is integrated more
tightly with the underlying L4Re system and thus allows our
approach to be implemented much more easily. In the following
we will describe I*Linux in sufficient detail to understand our
approach to detaching thread execution.

The I*Linux kernel runs in an L4 task and each Linux user
process is assigned its very own L4 task, too. Thus, the I#Linux
kernel is protected from misbehaving applications like native
Linux is, where user processes run in another privilege level.
There are no dedicated L4 threads for the user processes as
those are provided by the vCPU. A vCPU is like a thread,
but provides additional functionality useful for virtualization.
Such features include an asynchronous execution model with
a virtual interrupt flag and also the ability of a vCPU to
migrate between address spaces which is used to implement
user processes. Thus, from the host’s point of view, an [*Linux
VM comprises multiple vCPUs (one for each virtual CPU in
the guest) and L4 tasks that provide address spaces for the
I*Linux kernel and each user process.

During operation, a vCPU executes both guest kernel code
and the code of the user processes. When the I*Linux kernel
performs a return-to-user operation, the vCPU state is loaded
with the register state of the user process as well as the L4 task
of the user process. The vCPU will then continue execution in
that task. For any exception that occurs during execution (e.g.,
system call invocations or page faults), the vCPU migrates back
to the guest kernel task and resumes execution at a predefined
entry vector, where the exception is analyzed and handled
appropriately. Interrupts are handled similarly: After having
bound a vCPU to an interrupt object, firing the interrupt will
halt current execution and transfer the vCPU to the entry point
of the I*Linux kernel where the interrupt will be processed.

Memory for user processes is exclusively managed by the
Linux kernel. To populate the address spaces of user processes,
[*Linux maps memory from the Linux kernel task into the
respective L4 tasks using L4 system calls to map and unmap
memory pages. When resolving page faults for user processes,
[*Linux traverses the page tables that Linux builds up internally
to look up guest-kernel to user address translations. Note that
those shadow page tables are not used by the CPU. Only the
L4 microkernel manages the hardware page tables; the only

way to establish mappings in Linux user processes (or any
other L4 task) is to use the microkernel’s map functionality.

III. DETACHING WORK

Now we want to pursue how we can separate a thread of a
Linux user program so that it can run undisturbed from the rest
of the I*Linux system. As described in the previous section,
[*Linux does not use separate L4 threads for user processes,
but it multiplexes user threads onto a single vCPU. However,
to isolate execution of a user thread from the unpredictable
[*Linux, we must create a dedicated L4 thread that is not
managed by the Linux scheduler. This detached thread will
run Linux user code, be scheduled by the L4Re microkernel
independently from L*Linux’s scheduler. As a separate L4
thread, we can also move it to a different core, preferably one
that does not share caches with I*Linux. A schematic view of
our architecture is depicted in Figure 1.

I Detached
) Thread
Linux App
| L4Linux |

I L4Re Microkernel |

Fig. 1. A thread detached from ILinux running on a separate core.

P
L*Linux C

Real-Time
Core(s) c

Core(s)

To implement the creation of separate threads we can
leverage infrastructure developed in previous versions of
[*Linux: the thread-based execution model [5], in which Linux
threads are mapped one-to-one to L4 threads. This approach
to threading in I*Linux predates the superior vCPU execution
model, but it is still being maintained. We build upon this
older implementation to add creation of separate L4 threads to
the vCPU model that is now used. Detached processes start as
normal processes, for which a new L4 host thread is created
and placed in the L4 task of the user process. Then, instead of
resuming execution through the vCPU, the execution is resumed
to the L4 thread by using L4 exception IPC. Exception IPC is
a special type of IPC carrying the thread’s register state and
that is used to transfer the exception state between the causing
thread and a handler thread, which is the [*Linux kernel.

After launching the thread, L'Linux puts the kernel-
part of the user thread into uninterruptible state and calls
schedule () so that another context is chosen. While a
context is in state uninterruptible it is not chosen to be
dispatched by the Linux scheduler. Thus, in I!*Linux’s view,
the context is blocked, however, it is running outside and
independent of the virtual machine provided by I*'Linux.

While the detached program is running, it will eventually
cause an exception, such as triggered by issuing a system call,
or causing a page fault. In both cases the thread’s state will
be transferred to the I*Linux kernel using L4 exception IPC.
However, the context that will be active at that time in [*Linux’s
kernel will not be the one of the detached thread as this one

is in uninterruptible state. Thus the I*Linux kernel will just
save the transmitted state in the thread’s corresponding kernel
context and bring the thread out of the uninterruptible state
via a wakeup operation. When L*Linux’s scheduler has chosen
the thread again, the request will be handled. When done,
execution is resumed by replying to the incoming exception
IPC and setting the thread to uninterruptible again.

By using exception IPC, any request made by the detached
user-level thread is transparently forwarded to the I*Linux
kernel. One may also describe that in a way that the user
thread is being reattached while executing requests to the
L*Linux kernel.

A. L4 Interactions

When a thread is running detached, it is not restrained
to run code only but it can also interact with other L4
components or the microkernel. For example, a control loop can
be implemented using absolute timeouts of the L4 system or
the thread can wait on other messages or interrupts, including
device interrupts. Waiting directly for device interrupts in
detached threads might be beneficial to avoid interaction with
the Linux kernel and thus to achieve lower interrupt response
latency.

For doing L4 IPC, the I*Linux kernel needs to provide
the thread information where its User Thread Control Block
(UTCB) is located. The UTCB is a kernel provided memory
area that is used to exchange data with the kernel and
communication partners. The way of retrieving the address
of the UTCB, as used in native L4 programs, does not work
within an *Linux environment as the segment, as used on
x86, registers are managed by [*Linux and might be used by
the libc. Thus an alternative approach must be provided, for
example, by a specifically provided extra system call. As the
UTCB address is fixed for a thread, it can be cached. When
just using one thread in the application, the UTCB address is
always the same and a well-known constant can be used as a
shortcut.

For the program to communicate with other L4 services,
the I'Linux kernel needs to map a base set of capabilities
into the task of the user process. 'Linux must have been
setup accordingly to receive those capabilities itself beforehand.
Further the user program must be able to get information on
where which capabilities have been mapped. In L4Re, this
information is provided through the environment when the
application is started. As application starting is done by the
['Linux kernel, an alternative approach is required, such as a
dedicated system call or a sysfs interface.

B. Implementation Details

In the following we will shortly describe interesting aspects
of the implementation.

1) Signal Handling: As threads run detached from the
[*Linux kernel they are blocked by being in the uninterruptible
state. This affects signal delivery, such as SIGKILL, to take
effect, as the signal will just be processed when the thread is in
the kernel or enters it. When the detached thread never enters

the I*Linux kernel again (“‘attaches” again), any posted signal
will have no effect. For that reason, we added a mechanism
that periodically scans detached threads for pending signals,
and if it finds any, the detached thread is forced to enter the
[*Linux kernel to have the signal processed eventually.

2) Memory: As already described, all memory of a detached
application is managed by I‘Linux. Linux may do page
replacement on the pages given to the application which
in turn affect the undisturbed execution. Thus it is advised
that applications instruct the L*Linux kernel to avoid page
replacement by means of mlock and mlockall system calls.
Generally, using large pages to reduce TLB pressure is also
recommended. [*Linux and the L4Re microkernel support large
pages.

With the possibility of a detached thread to call out to
other L4 services, it could also acquire memory pages. This
is possible, given the application is provided with appropriate
service capabilities, however, care must be taken as the address
space is managed by the I*Linux kernel and Linux is unaware
of other mappings in the address space. Reservations of regions
of the address space can be done via mmap, and given no page
faults are generated in those regions, the pages can be used.
Using memory from elsewhere is useful, for example, to use
shared memory with other L4Re applications.

3) Floating Point Unit: vCPUs also multiplex the state of
the Floating Point Unit (FPU) on behalf of the virtualized
OS kernel. FPU handling for vCPUs is built in a way that
it matches the hardware’s behavior and thus aligns well with
how operating systems handle the FPU natively. Although a
vCPU can handle multiple FPU states, only one at a time can
be active per vCPU. However, with detached threads, there are
additional L4 threads, and thus active FPU states, that need to
be handled.

The FPU-state multiplexing is built in a way that an FPU
state travels between different threads, that is, the set of L4
threads building up a virtual CPU just use one single FPU state.
Additionally, the state is handled lazily so that an FPU state
transfer must only be done when the FPU is actually used. Thus,
when a detached 14 thread enters the [#Linux kernel, its FPU
state cannot be transferred automatically to the I*Linux kernel
because another FPU state might be active there. To resolve this
situation, we extended the L4Re microkernel with an operation
for explicitly retrieving a thread’s FPU state. This way I*Linux
can save the FPU state of a thread to I*Linux kernel’s internal
FPU state for other Linux activities to access it. An operation
for setting the FPU state of an L4 thread is not required because
the FPU state is transferred with the exception IPC upon the
resume operation. This is possible because resumption is done
out of the thread’s context, contrary to the incoming operation,
that is done on a different context.

4) Sysfs Interface: As already described, we use a sysfs-
based interface to control detaching of threads. Contrary to
using an extra system call, this gives use the possibility to
easily use it in wrapper scripts without requiring to modify
the application itself. Noteworthy characteristics is that the

detached state is retained through the execve system call,
allowing to build wrapper scripts that detach an application:

#! /bin/sh
SYSFS_PATH=/sys/kernel/l4/detach

echo $$ > $SYSFS_PATH/detach

echo $HOST_CORE_ID > $SYSFS_PATH/S$S/cpu
"s@"

exec

As seen, specifying the target host CPU of the detached
thread is also possible via the sysfs interface. The sysfs
interface will only detach the first thread of an application, thus
multi-threaded programs will need to take care of detached
threads themselves.

IV. EVALUATION

In the following we will evaluate our detaching mechanism
regarding undisturbed execution. First, we use the FWQ bench-
mark, which is famous in the high performance computing
(HPC) area for measuring OS noise. Then we will implement
a control loop and monitor results for timing deviations. With
both experiments we will generate load in the [*Linux VM.

For all benchmarks, we use the same x86 system, running an
Intel® Core™ i7-4770 quad-core CPU clocked at nominally
3.4GHz, reported with 2993MHz.

A. FWQ Benchmark

First, we run the fixed-work quantum (FWQ) benchmark [6].
The benchmark measures a fixed amount of work multiple
times. Ideally the time it takes to run the work loop is the
same for all runs, however, due to preemptions and other
activities in the OS and the hardware, the measured times
fluctuate. Thus the degree of deviation shows the impact of
those other activities. The benchmark executes the work 10,000
times.

Figure 2 shows a run of FWQ on native Linux-4.6 built with
preemption enabled (CONFIG_PREEMPT=y) and run with
chrt —-f 10 while I/O intensive work is running as well,
comprising network and disk load.

¥ 5100000
§ 5000000 -
= 49000004
@ 4800000+
& 4700000
@ 4600000 -
S 4500000+
Q' 4400000
2 43000004
& 4200000

T T T T T
0 2000 4000 6000 8000 10000

Fig. 2. FWQ results for Linux-4.6 PREEMPT with 1/O load in Linux.

We see, although the FWQ benchmark is running as a real-
time program and the Linux kernel uses its full preemption
mode, deviation goes up to about 18%.

When running the same FWQ benchmark in I'Linux using
our presented mechanism, we measure results as seen in
Figure 3. The maximum deviation is 1152 CPU cycles, or
0.027%.

When we run a Linux kernel compile instead of I/O load
in I'Linux, we see a pattern as in Figure 4 that has larger
deviations: 6500 cycles, or 0.15%. When the [*Linux is idle,

x 42522001

%

9 4252000 *

+ 4251800

@

2 4251600

o

9 4251400

S

3 4251200

D 4251000

a

O 4250800
0

T T T T T
2000 4000 6000 8000 10000

Fig. 3. FWQ results for detached mode with a I/O load in L*Linux-4.6.

we see a behavior as seen in Figure 5 with just 21 cycles
difference.

4258000

T
10000

T T T T
2000 4000 6000 8000

Fig. 4. FWQ results for detached mode with a build load in [*Linux-4.6.

4251030
4251025
4251020+

Ideally, the measured delta between TSC-read operations should
be constant, meaning that the wait_for_time call unblocks
at precisely the specified time. The target for the delta is
2,993,000 cycles, as determined by CPU clock speed of
2,993MHz. We run the loop for 10,000 iterations so that the
benchmark runs for 10 seconds.

On Linux, we implement the blocking using clock_-
nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME,
...). We see results as depicted in Figure 6 for I/O load and
in Figure 7 for a build load. The way to generate the load
has been the same as in the previous experiment. All Linux
programs are pinned to a core and run with real-time priority
(using chrt —-f 10).

Q 3600000

2800000 &
2600000 *

CPU Cycles per

T T T T T
2000 4000 6000 8000 10000

Fig. 6. Control loop results on native Linux with I/O load.

PPIRTOETR bo oo oo 6o o o 06 C56 B E60 ERERE BO & 65 CIEDEEIE BEMHEEOG K M OBBEDS B 65 BOMD MECY CHRED 6 CO M EEEDEDD o
4251010+

4251005

CPU Cycles per Work|

T T T T T
2000 4000 6000 8000 10000

Fig. 5. FWQ results for detached mode with an idle L*Linux-4.6.

Although the FWQ benchmark is so small that it is running
out of L1 cache, effects can be seen in the results. Our
speculation is that due to the inclusiveness of the caches in
Intel’s multi-level cache architecture, cache content can be
evicted due to aliasing. However, whether this explains the
different levels in Figure 3 is unclear and requires further
investigations that are out of scope for this paper.

In summary, the results show for the FWQ benchmark that
our detaching mechanism significantly improves the execution
predictability of programs. It effectively isolates activities of the
Linux kernel and unrelated background load from the detached
real-time program, such that execution-time jitter is reduced
by more than two orders of magnitudes.

B. Host-driven Control Loop

In our second experiment, we emulate a control loop that
blocks repeatedly until an absolute time in the future to execute
some task. In each iteration of the loop, we increment the
programmed wake-up time by 1,000us (delta = 1,000us)
as illustrated in the following code:

next = now()
while (1) {
wait_for_time (next);
/+ do work =*/
next += delta;

+ delta;

While the loop is running, we capture the time-stamp counter
(TSC) and plot the delta of each consecutive loop iteration.

4000000
3 [

A W A0 WS Y. WU VU W WO WS ¥ AREAY
K i

2000000

CPU Cycles per Loop

T T T T T
2000 4000 6000 8000 10000

Fig. 7. Control loop results on native Linux with build load.

The two graphs show an interesting arrow-style pattern.
With about 20 of such outlier events, one each half second,
we suspect an internal activity in the Linux kernel that induces
this result. We see a deviation from the target of about 500,000
CPU cycles in each direction, translating to about 167us. The
results for the I/0O-load experiment look similar to the build-
load case, however, there is an even larger outlier with about
1,300,000 cycles deviation (430us).

With I*Linux, using our detaching mechanism, the control
loop uses L4 system calls to block until a specified point in
time (absolute timeout). Thus, the blocking and unblocking is
directly done by the microkernel and does not use or depend
on Linux. We use the same background load as before; the
results are shown in Figures 8 and 9. Note the change of range
in the y-axis.

CPU Cycles per Loop

T T T T T T
0 2000 4000 6000 8000 10000

Fig. 8. Control loop results on I*Linux with /O load.

The major difference between Linux and I*Linux is the
significantly reduced deviation. With I/O load, we observe that
the biggest outlier is about 1700 cycles away from the target

CPU Cycles per Loop

T T T T T
0 2000 4000 6000 8000 10000

Fig. 9. Control loop results on [*Linux with build load.

while the biggest outlier of the build load is about 4700 cycles
away, translating to 600ns and 1.6us deviation. This is a 2-fold
improvement over the Linux results.

V. RELATED WORK

There is plenty of work regarding the combination of real-
time and general purpose operating systems (GPOS), using
virtualization or co-location approaches. There are also efforts
for enhancing the real-time capabilities of Linux itself [1].

In co-location approaches, a real-time executive is added
to the GPOS that hooks into low-level functions to execute
real-time tasks. Examples are Xenomai [7] and RTAI [8].

Xen-RT [9] adds real-time support to the Xen Hypervi-
sor [10] by adding real-time schedulers. Jailhouse [11] is
a recent development that uses the Jailhouse hypervisor to
partition Linux and an RTOS to different cores on a multi-core
system. Other hypervisors for real-time are Xtratum [12] and
SPUMONE [13], and there are also commercial offerings, such
as Greenhill’s Integrity.

Similar work is also done in the HPC community. Although
the real-time and HPC communities are typically disjunctive,
they strive for similar goals. The focus in HPC is to minimize
the disturbance caused by other software, such as the OS, and
hardware, that is experienced while executing HPC applications.
Uninterrupted execution is required because HPC application
communicate over many nodes where a delay on a single node
also has influences on other nodes. Thus disturbance must be
minimized [14]. Proposed solutions are similar to what is done
in the real-time area: Multi-core systems are partitioned into
“OS Cores” and “Compute Cores”. The OS core(s) typically
run Linux to provide functionality that applications running on
the compute cores require, but that the jitter-free “light-weight
kernel” (LWK) does not implement. Several implementations of
this approach exist, such as mOS [15] and McKernel/THK [16],
as well as our own work [3].

VI. CONCLUSION AND FUTURE WORK

Our experiments show that our detaching mechanism is
capable of improving the predictability of execution by at least
two orders of magnitude compared to using a standard Linux.
As the real-time programs on our system are unmodified Linux
programs, existing development environments and tool can be
used. This allows for an efficient use of developer’s time when
implementing timing sensitive functionality.

Implementing this or a similar mechanism using hardware-
assisted virtualization promises to use any available Linux

version, giving a broader access to platforms. We also plan
evaluation on other architectures than Intel x86.

ACKNOWLEDGMENT

The research and work presented in this paper is supported
by the German priority program 1500 “Dependable Embedded
Software” and the German priority program 1648 “Software
for Exascale Computing” via the research project FFMK [17].
We also thank the cluster of excellence “Center for Advancing
Electronics Dresden” (cfaed) [18].

REFERENCES

[1] Real-Time Linux Project. Real-Time Linux Wiki. https://rt.wiki.kernel.
org.

Alexander Warg and Adam Lackorzynski. The Fiasco.OC Kernel and
the L4 Runtime Environment (L4Re). avail. at https://l4re.org/.

[3] Adam Lackorzynski, Carsten Weinhold, and Hermann Hértig. Decoupled:
Low-Effort Noise-Free Execution on Commodity System. In Proceedings
of the 6th International Workshop on Runtime and Operating Systems
for Supercomputers, ROSS 16, New York, NY, USA, 2016. ACM.
Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.
Porter. A Study of Modern Linux API Usage and Compatibility: What
to Support when You’Re Supporting. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys 16, pages 16:1—
16:16, New York, NY, USA, 2016. ACM.

H. Hirtig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. The
performance of p-kernel-based systems. In Proceedings of the 16th
ACM Symposium on Operating System Principles (SOSP), pages 6677,
Saint-Malo, France, October 1997.

[6] Lawrence Livermore National Laboratory. The FTQ/FWQ Benchmark.
[7] Xenomai Project. https://xenomai.org.

[8] RTAI — Real Time Application Interface. https://www.rtai.org/.

[9] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen:
towards real-time hypervisor scheduling in xen. In Proceedings of the
ninth ACM international conference on Embedded software, EMSOFT
11, pages 39-48. ACM, 2011.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, SOSP 03, pages 164—-177. ACM, 2003.
Jan Kiszka and Team. Jailhouse: Linux-based partitioning hypervisor .
http://www.jailhouse-project.org/.

A. Crespo, I. Ripoll, and M. Masmano. Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach. In Dependable
Computing Conference (EDCC), 2010 European, pages 67-72, April
2010.

Tatsuo Nakajima, Yuki Kinebuchi, Hiromasa Shimada, Alexandre
Courbot, and Tsung-Han Lin. Temporal and spatial isolation in a
virtualization layer for multi-core processor based information appliances.
In Proceedings of the 16th Asia and South Pacific Design Automation
Conference, ASPDAC 11, pages 645-652. IEEE Press, 2011.

T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence
of System Noise on Large-Scale Applications by Simulation. In
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’10), Nov. 2010.

R.W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen. mOS:
An Architecture for Extreme-scale Operating Systems. In Proc. ROSS
’14, pages 2:1-2:8. ACM, 2014.

T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura, T. Shirasawa, Y. Saeki,
M. Shimizu, A. Hori, and Y. Ishikawa. Interface for heterogeneous kernels:
A framework to enable hybrid os designs targeting high performance
computing on manycore architectures. In High Performance Computing
(HiPC), 2014 21st International Conference on, pages 1-10, Dec 2014.
FFMK Website. https://ffmk.tudos.org. Accessed 17 Jun 2016.

cfaed Website. https://www.cfaed.tu-dresden.de/. Accessed 17 Jun 2016.

[2

—

[4

[inar)

[5

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

https://rt.wiki.kernel.org
https://rt.wiki.kernel.org
https://l4re.org/
https://xenomai.org
https://www.rtai.org/
http://www.jailhouse-project.org/
https://ffmk.tudos.org
https://www.cfaed.tu-dresden.de/

	Introduction
	Virtualization System
	L4Re Microkernel and User Land
	L4Linux

	Detaching Work
	L4 Interactions
	Implementation Details
	Signal Handling
	Memory
	Floating Point Unit
	Sysfs Interface

	Evaluation
	FWQ Benchmark
	Host-driven Control Loop

	Related Work
	Conclusion and Future Work
	References

