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Abstract—During embedded software development using open
source, there exists substantial amount of code that is ineffective
which reduces the debugging efficiency, readability for human
inspection and increase in search space for analysis. In domains
like real-time embedded system and mission critical systems,
this may result in inefficiency and inconsistencies affecting lower
quality of service, enhanced readability, increased verification and
validation efforts. To mitigate these shortcomings, we propose the
method of minimization with an easy to use tool support that
leverages preprocessor directives with GCC for cutting out ifdef
blocks. Case studies of Linux kernel tree, Busybox and industry-
strength OSS projects are evaluated indicating average reduction
in lines of code roughly around 5%-22% in base kernel using
minimization technique. This results in increased efficiency for
analysis, testing and human inspections that may help in assuring
dependability of systems.

I. INTRODUCTION

The outgrowth of Linux operating system and other real-
time embedded systems in dependable computing has raised
concern in possible areas such as mission critical system. The
size of code has grown to approximately 20 million lines of
code (Linux) and with this scale and complexity, it becomes
impossible to follow traditional methods for meeting the safety
and real-time requirements.

Since tools for analysis and testing are getting advanced,
the safety and time requirements can be verified and validated
by capturing evidence and justifications. Most of these tools
are interested in meeting the coverage expectations in terms
of code, execution times, resources, throughput and fault
tolerance that define the overall dependability of systems.

Code coverage with different analysis and test tools be-
comes the major part of verification and validation, in order to
perform this effectively, we propose method of minimization
devised for keeping functional safety and real-timeliness into
consideration for narrowed search space verification, false pos-
itive reduction, easier human inspection and shorter verification
time. The term minimization as shown in figure 1 signifies
removal of unused piece of code comprising of #ifdef and
#if blocks. The target code along with configuration file
when executed using minimization process produces compi-
lable code without #ifdef and #if block and other unused
lines of code, which is different from execution with GCC
preprocessor where compiled code comprises of #ifdefs.

The evaluation is exercised on targets such as Linux Kernel
source tree, BusyBox [1] tree and similar quantification of
other OSS projects.

Fig. 1: Overview of minimization.

II. BACKGROUND

In OSS software domain, there are many developers con-
tributing towards the common goal such as real-time, safety-
mitigation etc. because of which, the source code developed
lacks strict guidelines. Although, there are checks made with
semantic patches [2] and other utilities before the source code
is committed, no clear coding guidelines are followed that will
make the source code easy to inspect and analyze.

Primary problem with the OSS code in embedded domain
is the usage of pre-processor directives and conditional code
compilations that are used due to varying configuration op-
tions. In case of Linux kernel alone, there are more than 10,000
different configuration flags that have to enabled/disabled and
thereby used as part of the pre-processor directive in the source
code [3].

The configurations of OSS code is easy to enumerate
and apply depending on the configuration flags and configure
command. However, the source code is still having all of con-
ditional compilation code with pre-processor directives. Too
much of conditional compilation code based on configuration,
is difficult to inspect and analyze for different static analysis
tools. As the configuration options increase, the usage of
same in code also increases significantly resulting in analysis
complexity.

To solve this problem, there are few tools that are built
with pre-processor directives awareness so that during the
source code analysis these tools read system configuration and
directives to selectively analyze relevant code and skip the



disabled code automatically. Some of these tools are GNU
cflow, Coccinelle etc. Problem here is that dead code elim-
ination is not the main purpose of these tools. Pre-processor
handling is best done with its corresponding compiler in place.
Standalone tools cannot do a good job with this as they do not
have required constructs configured for effective application of
conditional compilation. Hence, a standardized method needs
to be made available that can suffice minimization agnostic to
other static analysis tools and human inspection. However, the
proposed method needs to leverage compiler technology that
can best apply the pre-processor directives.

For this purpose, the GCC [4] compiler based pre-processor
is selected for realizing the minimization technique. GCC is the
choice due to its immense usage in OSS community including
Linux, Busybox etc.

A. Linux kernel configuration

Configuration plays a very important role in building any
software. In case of OSS, it becomes an essential pre-requisite
as the software is developed by different developers with
multiple configurations concurrently. To illustrate the same,
Linux kernel is a classic example for showing the varied
configuration it supports.
The Linux kernel configurations are available in
arch/*/configs. To alter configuration, integrated
options such as make config, make menuconfig and
make xconfig are available. Once configuration is done,
it gets saved in .config file. The indication available in
.config file has option =y illustrating driver is built into
the kernel, =m for built as a module or it is not selected [5].
The .config file appears as below:

#General setup
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_CROSS_COMPILE=""
# CONFIG_COMPILE_TEST is not set
CONFIG_LOCALVERSION=""
# CONFIG_LOCALVERSION_AUTO is not set
CONFIG_HAVE_KERNEL_GZIP=y

B. GCC preprocessor

GCC [4] is the compiler choice that is used from utils
to operating system level and rigorously tested for several
years using tools such as CSMITH [6]. Hence, configuration
based pre-processor is best applied with GCC and is choice
for realizing our methodology.
The GCC preprocessor implements macro language that is
utilized to change C programs before they are compiled. The
output is similar to input however, the preprocessor directive
lines are replaced with blank lines and spaces are appended
instead of comments based on the configuration. Certain time
some directives may be duplicated in output of the preproces-
sor, majority of these are #define and #undef that contains
certain debugging options [7].

III. RELATED WORK

The proposed minimization methodology improves static
analysis efficiency and easier code inspection. As per prior
work regarding source code stripping [8], the GCC options are

used to tweak pre-processor directives such that conditional
compilation code is stripped as per enabled configurations.
This helps in generating .c code that has conditional directives
applied to remove the redundant code. Limitation here is that,
the approach is not generalized for complete source code tree.

One alternative can be Cflow [9], [10] a GNU based tool,
which can preprocess input files before analyzing them and
it is integrated with pre-processing option itself, however it
renders difficulty because all the required preprocess options
needs to be copied and pasted for execution of Cflow leading
to incorrectness.

Other alternative can have GCC compilation log and then
tweak the log options for each file with required pre-processor
options using GREP. Based on which the required .c and
.h files with the stripped code based on the pre-processor
options can be generated. In subsequent sections, an approach
is proposed with Makefile integration and subsequent post
processing for easier code inspection and narrowed down
search space.

IV. MINIMIZATION APPROACH

A. Minimization Process

Minimization approach emphasizes on a collection of pro-
cesses which tweaks integrated MakeFile options to produce
compilable minimized code.

1) Definition: The term minimization signifies an efficient
way to get a set of stripped source code, where all the code
which is not required according to .config file is left out.
Often it is observed that it becomes hard to debug, maintain
and verify the code because of macros and preprocessor
directives that are expanded during compilation through GCC.
This difficulty is subdued with our approach where target
source code is free from selected preprocessor options and
macros expansion, thereby reducing source code. The approach
that has been used for minimization of source code follows
the use of GREP command. This filters GCC (used compiler
commands) and generates the source tree consisting of limited
or useful internal components which are available in shortlisted
configuration .config file as dedicated output.

The GCC compiler: In general scenario the source code
modules are compiled with certain GCC options to make them
work [11]. Typical GCC option looks like given snippet of
kernel modules:

gcc -Wp,-MD,
arch/x86/tools/.relocs_32.o.d
-Wall -Wmissing-prototypes
-Wstrict-prototypes -O2
-fomit-frame-pointer -std=gnu89
-I./tools/include -c -o
arch/x86/tools/relocs_32.o
arch/x86/tools/relocs_32.c

For reduction of unused code the above illustrated options are
further added with -E -fdirectives-only to produce
human readable output for easier review, debug, maintain and
verify.



2) Problem: The major difficulties with GREP based ap-
proach is illustrated below:

• It requires a complete build in advance to obtain full
set of used GCC commands written in build log.

• The text parsing (grep and gcc commands) is required
and has to be acquired from the build log.

• Finally source code needs to be modified to remove
#include lines.

However with the help of minimization approach code re-
duction can be achieved by executing minimize.py script
which requires no pre-build, no build log parsing and no code
modification.

The minimization approach is implemented using python
script with a stripping technique [12] as below:

• Elimination of configuration conditionals such as
#ifdef #if #endif.

• Preservation of #define macros.
• Preservation of #include sentences.

The stripping is initiated and exercised by initially focusing
on Linux kernel source code through tweaking the GCC
preprocessor options for complete kernel source tree.

Fig. 2: Minimization technique process flow.

3) Solution: As depicted in figure 2, the MakeFile is inher-
ited and CHECK option is tweaked, where existing CHECK
feature in kernel MakeFile is replaced with minimize.py
script, which processes the minimization on the fly with single
execution pass. In make process, minimize.py receives
options that are completely similar as the compile flag of each
source file along with $CHECKFLAGS variable. Below snippet
shows on the fly approach:

$ make C=1 CHECK=minimize.py
CF="-mindir ../minimized-tree/"

The pre-process tweaks the source files with the gcc options
gcc -E -fdirectives-only. This command allows re-
moval of #ifdef, followed by expansion of #include but
preserving #define macros.

The preprocess() function available in minimization tech-
nique, takes gcc options that are passed via Makefile as in-
puts, which then appends gcc -E -fdirectives-only
flags and performs preprocess for target C files.
Next is identification and deletion of the expanded header
contents that is present in used compiler commands once
make command is executed. To remove header con-
tent, line-markers are used as clues that exists in the
preprocessed file of kernel source. For example: #30
"/usr/include/sys/stsname.h" 2.
The stripHeaders() function in minimization script ac-
quires the preprocessed C file and then search for preprocessor
output which is relevant to #include lines and is accom-
panied by deletion of #include contents guided by line-
markers. #include content file name and line number infor-
mation is conveyed in preprocessor output, for example: In fol-
lowing syntax #30 "/usr/include/sys/stsname.h"
2, 30 signifies that this line originates in line 30 of file
utsname.h after having included in another file which is
signified by flag 2. The flag which in this example is indicated
by 2 represents returning to the file. However flag 1 signifies
start of the file.
This stripHeader() algorithm finds the line-markers that
starts with # number file name and if file name is the
target C file then it copies the line and searches for flag.
If flag in the line marker is 2 the algorithm marks it "TO
BE REPLACED" which illustrates ”there is #include line”.
Finally the #include sentences are restored from the original
source code by copying relevant #include lines.
The restoreHeaderInclude() function in minimization
technique carry out header-stripped preprocessed files and
searches for "TO BE REPLACED" mark, followed by com-
paring with the original C file and copy original #include
lines. Once the above steps are accomplished the diff result is
only deletion of the unused code without changing #include
and #define lines.

Fig. 3: Code reduction through minimization technique.

Figure 3 illustrates the minimized code after the make
process where the #ifdef and #if blocks are removed.
The minimization script minimize.py does not support
minimization of include files. The main motive behind this
exclusion is that, a single include file is referred from multiple
C files and resulting minimized include file is not identical for
all C files referring the include file. Consequently, if compile
option for each C file differ, effective definitions at compile
time shall differ too and this differentiate #ifdef blocks in
the included file.



B. Minimization methodology

1) Prerequisites: The script which is developed to exercise
minimization approach requires following commands execut-
ing in the host machine:

• diffstat
• diff
• echo
• file
• gcc (Other options that are required to build Linux

Kernel or BusyBox)
• python (2.x and 3.x compatibility is supported by

minimization technique)
2) Usage: Proposed minimization technique needs

following points for execution of script:

1) Navigate to source directory. Example:
$ cd linux-4.4.9

2) Copy minimize.py to kernel directory.
3) Prepare configuration file by tuning the .config file

and storing it in kernel tree directory. The .config
can also be generated by executing make command.
Example:
$ make allnoconfig

4) Add the script directory path. For example:
$ export PATH=$PATH:‘pwd‘

5) Execute make with the following CHECK options:
$ make C=1 CHECK=minimize.py
CF="-mindir ../minimized-tree/"
Parameter value C=1 signifies minimization only for
(re)compilation target files. C=2 is used to perform
minimization for all the source files regardless of
whether they are compilation target or not. Similarly
to specify output directory -mindir option in CF
flag is used.

On other hand minimization is also applicable
for sub target sources. For example: $ make
drivers C=1 CHECK=minimize.py CF="-mindir
../minimized-tree/".
In addition, the script has been modified in such a way that
on successful execution, compilation and minimization will
be performed at the same time and minimized source tree will
be generated under directory ../minimized-tree/. One
thing that needs to be known is that only the target C source
files will be minimized. The other file contents(included
header etc) remain as they are.

V. RESULTS

Minimization technique [12] has been experimented and
evaluated on platforms such as Linux kernel and BusyBox
Tree. The experiment is basically conducted to check reduction
metrics after executing minimization technique on original
code base.

The evaluation of minimization technique has been im-
plemented on hardware specifications: Processor: 3600MHz,
width-64bits, cores-8. Memory: size-7891MiB. Architecture:
x86 64.

It has been performed by comparing different configu-
rations of target source, particularly "allnoconfig" and

"defconfig". Main motivation for using different configu-
ration is to comply minimization with expectations, as follows:

• In case of "allnoconfig" most features are dis-
abled. This signifies substantial amount of disabled
#ifdef causing large amount of code reduction.
Eventually, it leads to higher minimization ratio.

• Similarly, in case of "defconfig", only a part of
features are disabled which leads to less number of
disabled #ifdef resulting in less amount of code
reduction. Hence in case of "defconfig" reduction
is expected to be lower than "allnoconfig".

A. Linux Kernel

Implementation on Linux kernel with "allnoconfig"
and "defconfig" option results in substantial reduction of
unnecessary code has been achieved as shown in figure 4. The
metrics are as follows:

• allnoconfig: 64684 unused lines were removed
from kernel source which constitutes around 22% of
original C code in kernel source.

• defconfig: With this option 103144 unused lines
were removed from kernel source that comprises about
5% of original C code.

Fig. 4: Minimization technique execution on Linux Kernel.

The minimization script minimize.py executes not only
for limited configurations, but also other customized ones
including PREEMPT RT patch.

B. BusyBox Tree

On executing minimization technique in BusyBox tree
having "allnoconfig" and "defconfig" configuration
options, the reduction metrics obtained are as follows:

• allnoconfig: 51 out of 112 compiled C files have
been minimized. 5945 lines (34% of original C code)
unused lines were removed.

• defconfig: 296 out of 505 compiled C files have
been minimized. 20453 lines (11% of original C code)
unused lines were removed.

C. Quantification of other OSS projects

Apart from Linux Kernel and BusyBox tree, quantification
of #ifdef and #if-blocks that could potentially be
removed from open-source project ARCTIC Core source code
[13] as compared to Linux Kernel has been exercised.
The motive is to quantify how much beneficial can Minimiza-
tion approach be for OSS projects such as ARCTIC Core.
The quantification is carried out by finding total number of
#ifdef and #if-block and calculating the ratio with total
lines of code as below:



Complexity
Metrics

Linux Kernel BusyBox Tree PREEMPT RT

Original Source Minimized(x86 defconfig) Minimized(allnoconfig) Original Source Minimized(x86 defconfig) Minimized(allnoconfig) Original Minimized

Average Line Score 23 7 5 22 21 19 10 7

50%-ile score 4 3 2 9 9 5 4 3

Highest Score 1846 194 158 283 283 283 530 194

TABLE I: Complexity metrics in original and minimized targets.

Total number of lines in all C files
of Arctic Core source code = 407994 lines.
Total number of #ifdef existing = 12744.
Number of lines that can
be reduced = 12744/407994*100 = 3.12%

Similarly, in Linux Kernel,

Total number of lines in all
C files = 15086494 lines.
Total number of #ifdef existing = 85728.
Number of lines that can be reduced =
85728/15086494*100 = 0.568%

The statistics above indicates that there are more (approxi-
mately 5.5 times higher) chances in Arctic Core of eliminating
unused #ifdef switches. This can be stated as a possible
advantage of Minimization technique, however port implemen-
tation is yet to be realised.

VI. EVALUATION

A. Complexity statistics

To analyze the complexity of ”C” program function, Linux
with PREEMPT RT patch, Linux Kernel source and BusyBox
tree has been evaluated by comparing complexities of C
program functions of minimized and original source code of
these targets respectively. The statistics have been acquired
using ”Complexity” tool [14].
The complexity tool has been used because it helps extensively
in getting an idea of how much effort may be required to
understand and maintain the code. Higher the score, more
complex is the procedure, and minimization shows comparably
lower complexity score which signifies it is easy to read and
maintain [14].

Table I illustrates the measured complexities of original
and minimized targets (Linux kernel, BusyBox tree and PRE-
EMPT RT Kernel) respectively. For Linux kernel and Busy-
Box allnoconfig and x86_defconfig configurations
has been evaluated for minimized code. The minimized code
demonstrate decreased complexity in terms of average line
score, 50%-ile score and highest score in all three targets.

B. Verification for the minimized built binary

The disassembled code (”objdump -d”) matches the bina-
ries that are built from minimized and original source code.
Also the configuration and target has been confirmed based on
Busybox and Linux kernel as below:

• BusyBox-1.24.1: Checked configuration options in-
clude defconfig and allnoconfig.

• Linux kernel-4.4.1: Configuration options verified
allnoconfig.

VII. BENEFITS

A. Verification time and cost improvement

For verification time improvement static analysis has been
implemented by comparing results of original and minimized
kernel source tree using Coccinelle which is a program match-
ing and transformation engine for C code and has many
semantic patches to the new submissions to the mainline kernel
repository [15], [16]. The verification has been implemented by
executing a semantic patch [2] which detects functions whose
declared return value type and actually returned type differs
by scanning source files (*.c and *.h) that are referred from
init/main.c in kernel tree. Results of the static verification
in terms of time parameter are illustrated below:
Average spatch execution time:

Original Kernel Source: 12.37[s]
Minimized Kernel Source: 2.24[s]

The minimized technique provide around 5.5 times faster
analysis as compared to original kernel source tree.

B. False Positive reduction

False positive is a test result which wrongly indicates that
a particular condition or attribute is present. To mitigate such
situation static analysis [15] was conducted on original and
minimized kernel source tree. The number of meaningless
detection were mitigated as follows in the minimized kernel
source. Number of detection using Coccinelle:

Original Kernel Source: 126
Minimized Kernel Source: 82

C. Easy Code Inspection

The minimization technique generates easy to read source
code by implementing following assimilation:

• Unused #ifdef, #if blocks are removed.
• #include and #define lines are preserved.
• Producing same binary file as that of original source

tree.

D. Pruning function call graph:

During analysis, it is required to identify every possible call
path to establish and trace relationship between program and
subroutines, callgraph is a directed graph that represents this
relationship [17]. The call graph displays every function call
regardless of #ifdef switches which results in substantially
complex graph which is difficult to trace. With minimization
technique, call graph display illustrates only used function calls



Fig. 5: Call graph for Linux kernel before (left) and after (right)
minimization.

thereby providing minimized search space. Figure 5 illustrates
call graph transformation before and after minimization.

With minimization the number of nodes reduced from 94
to 85 followed by edges which are from 140 to 123 hence a
narrow search space.

E. Extracting minimal subtarget sources:

To easily identify which files are used in source tree for
efficient software walk-through, subtarget can be specified in
the minimized command in result of which minimization will
extract only the used source files. The following snippet shows
addition of subtarget init in minimized command:

$ make init C=2 CHECK=minimize.py
CF="-mindir ../min-init"

This results in extraction of only used source files when
subtarget is defined and is shown in figure 6.

Fig. 6: Depended *.c files of Linux kernel in minimized form.
Actually included *.h files.

VIII. CONCLUSION

The minimization technique helps substantially in improv-
ing the readability of source code which results in efficient
code review and inspection. It helps in narrowing down search

space by giving evidence for unused code. The evaluation of
this technique has been performed on target platform such
as Linux Kernel, BusyBox Tree and PREEMPT RT Ker-
nel. Minimization reduction of approximately 5% is achieved
across the PREEMPT RT Linux kernel, Linux kernel and
the Busybox software. From analysis stand-point, this provide
essential benefits such as reduction in verification time (spatch
execution) from 12.37[s] in original kernel source to 2.24[s] in
minimized kernel, false positive reduction where the number
of detection relating to bugs using Coccinelle (static analysis)
reduces from 126 to 82.
This helps in application domains such as automotive, rail-
ways, industry etc. The future work for minimization technique
includes extension to other compilers such as LLVM [18]
followed by adaption with architecture such as ARM; various
build system e.g. CMake, automake. Binary equivalence is
checked, however formal equivalence between the original and
minimized source code tree is still a future work. The source
code is available at GitHub [12].
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