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Abstract—Recently, the flexible spin-lock model (FSLM) has
been introduced, unifying spin-based and suspension-based re-
source sharing protocols for real-time multiprocessor platforms
by explicitly identifying the spin-lock priority as a parameter.
Earlier work focused on the definition of a protocol for FSLM
and its corresponding analysis under the assumption that various
types of implementation overhead could be ignored.

In this paper, we briefly describe an implementation of the
FSLM for a selected range of spin-lock priorities in the ERIKA
Enterprise RTOS as instantiated on an Altera Nios II platform
using 4 soft-core processors. Moreover, we present measurement
results for the protocol specific overhead of FSLM as well as the
natively provided multiprocessor stack resource policy (MSRP).
Given these results, we are now in a position to judge when it
is advantageous to use either MSRP or FMLP for our system
set-up for given global resource access times of tasks.

I. INTRODUCTION

In traditional lock-based resource-sharing protocols for real-
time multiprocessor platforms, a task that is blocked on a
global resource either performs a non-preemptive busy wait,
i.e. spins, or releases the processor, i.e. suspends. The flexible
spin-lock model (FSLM) [1] unifies these two traditional
approaches. By viewing suspension on a core as spinning
on a priority lower than any other priority on a core, the
spin-lock priority can be treated as a parameter. Spin-based
protocols, such as the multiprocessor stack resource policy
(MSRP) [15], can be viewed to use the highest priority (HP)
as spin-lock priority, and suspension-based protocols, such as
the multiprocessor priority ceiling protocol (MPCP) [21], to
use the lowest priority (LP). By being able to use an arbitrary
priority for spinning rather than the two extremes, the FSLM
is expected to improve schedulability.

The resource sharing rules for the FSLM have been defined
in [1], assuming partitioned, fixed-priority preemptive schedul-
ing, FIFO-based global-resource queues and both non-nested
as well as non-preemptive global resource access, similar
to MSRP and MPCP. These rules are complemented with
schedulability analysis for specific spin-lock priorities, such
as the HP, the LP, and the highest resource ceiling of global
resources on a core, also called the ceiling priority (CP).
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Initial simulation results based on the developed theory [2]
confirm the expectations with respect to improved schedula-
bility. In particular, CP turned out to significantly improve
schedulability compared to HP. The schedulability analysis
developed in [1] does not take implementation overhead into
account, however. The simulation results may therefore be
biased.

In this paper, we present an implementation of the FSLM
for a selected range of spin-lock priorities [26], in particular
the range from CP until HP in Erika Enterprise [13],
as instantiated on an Altera DEO board from Terasic [24]
using 4 soft-core processors. Erika Enterprise is a free of
charge, open-source real-time operating system (RTOS) im-
plementation, which was originally developed for small-scale
OSEK/VDX [18] compatible embedded systems for the auto-
motive market. Erika Enterprise has been ported to the Altera
Nios II environment [11], supporting multiple soft-cores. We
have ported Erika Enterprise to the Altera DEO board. Based
on our implementation, we compare the overhead of HP, as
originally implemented in Erika Enterprise, and CP.

The remainder of this paper is organized as follows. In
Section II, we briefly present related work. Next, in Section III,
we present our real-time scheduling model and system. Sec-
tions IV and V describe the design and implementation of
FSLM in Erika Enterprise. Section VI describes the experi-
ments performed and briefly presents the measurement results.
We conclude the paper in Section VII.

II. RELATED WORK

In [17], two-phase waiting algorithms [19] are investigated
through analysis and experiments, with the aim to minimize
the cost of synchronization in large-scale multiprocessors. A
two-phase waiting protocol is a combination of a spin-based
and a suspension-based protocol. A task first spins for a
statically determined amount of time, and subsequently blocks
if further waiting is required. The MIT Alewife distributed-
memory multiprocessor [3], which supports a shared-memory
programming model, has been used for experimental mea-
surements. The paper suggests to use knowledge about wait-
time characteristics and the cost of blocking (i.e. the context-
switching overhead) to set the maximum spinning time.

In [14], an experimental evaluation of MPCP and MSRP
is presented based on a Janus dual-processor architecture. For



random period generation of tasks the results show MSRP to
be better than MPCP, although the results are not conclusive.
For a more application-specific architecture representing a
typical automotive application, MSRP has shown to clearly
perform better. Moreover, they observed that MSRP is signif-
icantly simpler to implement, has lower overhead, and can
achieve RAM memory optimization. Similar to this work,
interrupt-based inter-processor mechanisms have been used
for communication among tasks on different processors and
atomic test-and-set mechanisms have been used for shared
memory.

A first implementation of the PCP [22], SRP [5], M-PCP
(an extension of PCP for multiprocessors), D-PCP [20] (a
variant of MPCP used for distributed systems) and FMLP [6]
synchronization protocols has been discussed in [7]. FMLP
uses suspension-based mechanism for access to long resources
and spin-based mechanism for access to short resources. A
LITMUSET [10] platform has been selected for implementa-
tion which is a real-time extension of Linux operating system.
In [8] a schedulability comparison has been made among
MPCP, D-PCP and FMLP considering runtime overheads on
LITMUS?”. The experiments showed that the spin-based
FMLP variant always had the best performance. The results
confirmed their earlier results in [9] regarding preferability of
spin-based approach to suspension-based approach under EDF
scheduling.

This work complements earlier work by evaluating preempt-
able spinning, as supported by FSLM, through experimental
measurements.

III. SCHEDULING MODEL AND SYSTEM

In this section we describe our real-time scheduling model,
the Altera DEO board and development environment, and the
Erika Enterprise and accompanying tool-suite RT-Druid.

A. Real-time scheduling model

We assume a set P of m identical cores Fy,...,P,_1,
a set 7 of n sporadic tasks 79,...,7,—1, and a set R of
resources other than cores used by tasks. Tasks are statically
allocated to cores, assigned unique priorities on each core, and
scheduled using fixed-priority pre-emptive scheduling. Tasks
do not suspend themselves.

Resources are categorized as private, local, or global based
on task usage and task allocation. Private resources are used by
a single task. Local resources are used by multiple tasks, and
all those tasks are allocated to the same core. Global resources
are also used by multiple tasks, but that set of tasks is allocated
to at least two different cores. In this paper, the focus will be
on global resources. Example 1 illustrates a configuration with
a global resource.

Example 1. Consider a set P of two cores Py and Py, a set
T of 4 tasks 1q, ... T3, and a singleton set R of one resource
R. As also indicated in Table I, R is used by tasks 1y, 11, and
73. Task 13 is allocated to core Py and tasks 1o, T1, and o to
Py. As a result, R becomes a global resource.

| [ resource usage allocation |

T3 R PO
T2 Py
T1 R P1
T0 R P1

TABLE I: Resource usage and allocation of tasks of 7.

Moreover, we assume that the priority 7; of task 7; is higher
than the priority 7; of task 7; if and only if 7 > j. An activation
of a task is also called a job. We assume constrained deadlines,
i.e. deadlines of tasks equal or smaller than their periods.

For FSLM, we assume FIFO-based resource queues and
both non-nested as well as non-preemptive global resource
access, similar to MSRP and MPCP. When a task is blocked on
a global resource, it will perform a busy-wait on a core-specific
spin-lock priority. That spin-lock priority is determined stati-
cally, and may range from the lowest to the highest priority
on the core. In this paper, we assume the spin-lock priority
is taken from the range [CP, HP], where HP represents the
highest priority on the core and CP represents the highest
resource ceiling of the global resources used on that core.
Example 2 illustrates FSLM for the configuration described
in Example 1.

Example 2. For the configuration of Example 1, the highest
resource ceiling of the global resources used on core Py is
equal to the priority w3 of task Ts. Similarly, the highest
resource ceiling on Py is equal to the priority w1 of task 7.

For the same arrival pattern of tasks, Figure I illustrates
FSLM for two different spin-lock priority assignments; one
conform MSRP (Figure 1(a)), i.e. using HP, and one using
CP on each core (Figure 1(b)). Because task T35 accesses
the global resource R in the time interval [1,8), task T
starts spinning upon its resource request to R at time 3 for
both cases. Spinning is performed non-preemptively for MSRP
(Figure 1(a)), i.e. using HP, and preemptively when using CP
(Figure 1(b)). Using HP, 1o is blocked from its arrival at
time 6 until task Ty releases the global resource R at time 12.
Conversely, using CP, task To can preempt 1y at time 6 during
spinning. Task T can execute till time 8, when 13 releases R,
To is granted R, and 1o subsequently accesses R till time 12.
When task Ty releases R at time 12, 19 is resumed.

This example shows that tasks with a priority higher than
the spin-lock priority, e.g. T2 on P, experience less blocking
due to global resource arbitration under FSLM using CP than
using HP as spin-lock priority.

By restricting the range to [CP, HP], the protocol maintains
two attractive properties of MSRP. Firstly, at any moment in
time, at most one job on a core can have a pending request
for or access to a global resource. As a result, a job that is
spinning on a global resource will have to wait for at most
m — 1 jobs on remote cores. Consequently, the length of any
global resource queue, even the sum of the length of all global
resource queues, is at most m — 1. Secondly, any job of a task
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Fig. 1: Timelines for the same arrival pattern of tasks of 7, illustrating the FSLM for an assignment of (a) HP (conform

MSRP) and (b) CP to the spin-lock priorities of each core.

on a core can be blocked at most once due to global resource
requests of lower priority tasks on that core. Another attractive
property of MSRP, i.e. the ability to use a single stack for all
tasks on a core, is no longer maintained, however, as illustrated
by the preemption of task 75 by 7 in Figure 1(b) at time 8.

B. Altera DEO board and development environment

The Altera DEO development and education board
is equipped with the Altera Cyclone III 3C16 field-
programmable gate array (FPGA) device, which offers 15,408
logical elements (LEs). The FPGA device can be configured
by means of Altera’s Quartus II Web Edition Software and
Altera’s Nios II Embedded design suite.

Using Altera’s tools, we created a hardware design consist-
ing of 4 Nios II processors (cores) and added internal (RAM)
and external (SDRAM) memory, a mutex (to support mutual
exclusive access), inter-core interrupt communication between
every pair of cores, and performance counters (to enable high-
resolution measurements) to the design, amongst others.

The resulting multi-core platform can communicate through
a shared memory interconnect [23] and via inter-core in-
terrupts. The connections for the inter-core interrupts are
illustrated in Figure 2.

C. Erika Enterprise and RT-Druid

As mentioned above, Erika Enterprise was originally de-
veloped for OSEK/VDX-based systems. We used the multi-
core extension [11] of the so-called “multistack” configuration
of the “BCC2” conformance class of the OO (OSEK OS)
kernel [13] of Erika Enterprise. RT-Druid [12] is a tool-suite
developed for Erika Enterprise providing a system modeler,
code-generator plugins for the open-source Eclipse frame-
work [25] and schedulability analysis plug-ins. The RT-Druid
Modeler is used for configuring both the application as well as
Erika Enterprise, using the OSEK Implementation Language
(OIL).

Both Erika Enterprise as well as RT-Druid have been
extended for multiprocessor systems. To that end, the standard
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Fig. 2: The connections for inter-core interrupts

OIL has been extended to facilitate allocation of tasks to cores,
amongst others.

Below, we first briefly describe the structure of a multi-core
Erika Enterprise and its mapping on the Altera DEO board.
Next, we describe some key characteristics of Erika Enterprise.

1) Structure and mapping: The multi-core Erika Enterprise
is a kernel-layer on top of Altera’s hardware abstraction
layer (HAL); see Figure 3. For our instantiation, the kernel-
layer consists of approximately 20 standard files and 3 files
generated per core by RT-Druid. The input for RT-Druid is a
CONFIG.OIL file. The actual application is described by a
set op files in the API-layer next to the CONFIG.OIL file.

2) Characteristics of Erika Enterprise: Erika Enterprise
supports MSRP. To that end, it maintains a data structure in
shared memory. When a task is busy waiting for a global
resource, it spins on, i.e. polls, data in shared memory using
the G-T algorithm [16].

Erika Enterprise also support event-based communication
between cores using inter-core interrupts. As an example, a
remote activation of a task can be accomplished through a
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so-called remote notification (RN). The sending core builds
an RN message in shared memory and subsequently raises an
interrupt at the receiving core. The interrupt handler of the
receiving core inspects and processes the RN message asyn-
chronously. Message buffers for RN require mutual exclusion.

IV. DESIGN OF THE FLEXIBLE SPIN-LOCK MODEL

For the implementation of FSLM, five main aspects need to
be considered:

1) Static selection of the spin-lock priority per core;

2) Dynamic change of the system ceiling to the spin-lock
priority when a task blocks on a global resource;

3) Notification of a (blocked) task on a remote core that a
global resource became available, when applicable;

4) Preemption of a higher priority task upon global re-
source access, when applicable.

5) Resumption of the preempted, higher priority task, when
applicable.

We consider each of these aspects in more detail below.

A. Selection of spin-lock priorities

On each core where one or more tasks use a global resource,
a spin-lock priority must be selected. In this paper, we only
consider spin-lock priorities from the range [CP, HP], and
we therefore need to derive CP and HP from the system
configuration. RT-Druid therefore needs to be extended with
means (i) to determine C'P and HP from the CONFIG.OIL
file, (ii) to interact with a user to allow selection of spin-lock
priorities per core, and (iii) to configure the kernel-layer of
the RTOS with the spin-lock priorities.

B. Blocking on a global resource

When a task blocks on a global resource, the system ceiling
on that core is raised to the spin-lock priority and the task
starts spinning. This is illustrated in Figure 1(b) at time 3.
Raising the system ceiling upon blocking is similar to the
regular behavior upon a local resource access, which is based
on the stack resource policy (SRP) [5].

C. Notification of a (blocked) task

Unlike MSRP, a task may be preempted during spinning,
as illustrated in Figure 1(b) at time 6. As a result, the
blocked task may not be aware that the global resource is
released and becomes available. The design therefore has to
be adapted from a polling-approach by the spinning task to
a notification-approach by the releasing task. The existing
remote notification mechanism present in Erika Enterprise can
be used for FSLM as well. The first blocked job in the FIFO-
queue of a global resource R, if any, will therefore be notified
upon release of R by means of an interrupt, as illustrated in
Figure 1(b) at time 8.

D. Preemption of the preempting task

Whenever a task 75 spinning on a global resource is
preempted by a task 7, with a higher priority than the spin-
lock priority, the preempting task 7, must be preempted when
the 7 is granted the resource, as illustrated in Figure 1(b) at
time 8. Although this gives rise to a preemption that disallows
tasks to use a single stack, this behavior is supported by Erika
Enterprise.

E. Resumption of the preempting task

When the task releases a global resource, it is checked
whether or not the task preempted a task with a higher priority
than the spin-lock was executing at the moment the resource
was granted. In the former case, the preempted task is resumed,
as illustrated in Figure 1(b) at time 12. In any case, the system
ceiling is adapted, removing the traces of the request and
access to the global resource.

V. IMPLEMENTATION OF THE FLEXIBLE SPIN-LOCK
MODEL

In this section, we first briefly present the implementation of
MSREP in Erika Enterprise. Next, we will present the necessary
changes for the generalization of MSRP to FSLM for the
restricted range [CP, HP] of spin-lock priorities.

A. Existing Implementation of MSRP in Erika Enterprise

In MSRP, a task requiring access to a global resource busy
waits non-preemptively until (i) it is the first in line (first-in-
first-out) waiting for the resource and (ii) the resource is free.
Because spinning in MSRP is non-preemptive, at most one
task per core can spin on a global resource. It is therefore
also possible to associate a FIFO-queue of cores with every
global resource.

To implement MSRP, Erika Enterprise essentially maintains
a distributed polling-bit queue for each global resource (G-
T algorithm [16]), i.e. a (non-empty) FIFO queue of polling
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bits used by cores that want to access that global resource.
The polling bits are stored as global data and the addresses
of queue elements are stored in local data. To enable access
to the queue, the tail of the queue is also stored as global
data, containing the address of the global polling bit that needs
to be inspected by the next core that requires access to the
global resource. Access to the tail of the queue requires mutual
exclusion. Releasing a global resource requires toggling the
related polling bit only.

B. From MSRP to FSLM in Erika Enterprise

In the MSRP implementation of Erika Enterprise, a task
that is accessing a global resource is unaware of the fact
that another task on a remote core may (or may not) have
requested the same resource, i.e. it is unaware of successors
in the polling-bit queue. A task that is waiting for a global
resource to become available is aware of the task in front of
it in the polling-bit queue.

To facilitate notification for FSLM, the releasing task must
know which task/core needs to be granted the global resource.
The “knowledge” of the order in the queue must therefore
become bi-directional. Rather than using a global polling-bit,
we therefore used a global field representing both locked and
unlocked as well as the task to be notified upon release of
the global resource, if any. This global field requires mutual
exclusive access. To reduce contention on shared data, we
implemented an additional local bit for spinning.

Upon a global resource release, a task first checks whether
or not tasks are blocked on that resource. The resource is
subsequently released. In case tasks are blocked, the first in
line, i.e. the successor of the releasing task, is notified through
a dedicated remote notification (RN).

When an RN is received, it is first checked if the task
blocked on the global resource is still spinning or has been
preempted by a (or actually one or more) task(s) with a higher
priority than the spin-lock priority. In the former case, the
system ceiling is raised to reflect non-preemptive execution
and the local bit is toggled, enabling the spinning task to
access the global resource. In the latter case, the currently
executing task must be preempted in addition, and the blocked
task allowed to continue.

When a task has released a global resource, it has to check
whether or not its access to the global resource induced the
preemption of a task. In the former case, the preempted task
(or any other task with a yet higher priority), is allowed to be
resumed (or started).

For the original implementation of MSRP, a single low-
level spin-lock is used for both the access to the shared data
structures for global resources as well the RN message buffers.
For the implementation of FSLM we added a low-level spin-
lock, allowing parallel access to these two types of shared
data.

VI. EXPERIMENTAL EVALUATIONS

We performed a comparative evaluation of the implementa-
tion of MSRP and FSLM by measuring the overhead of both
protocols. Overhead occurs at three specific moments during
the protocols (see also Figure 4), i.e.

A) upon global resource request,
B) when the access to a global resource is granted, and
C) when a global resource is released.

A global resource request requires mutual exclusive access to
the shared data structures for global resources for both MSRP
and FSLM. Because all m cores may simultaneously perform
a request to that data, a core may have to wait on m — 1 other
cores before it is granted access. Under FSLM, the release of
a global resource also requires mutual exclusive access to that
shared data. Under MSRP, releasing a resource only requires
toggling a bit.

Under FSLM, releasing a resource may require the submis-
sion of a RN, and therefor mutual exclusive access to the RN
message buffers. Similarly, access to the RN message buffers
is required when a global resource is granted to a task while it
is waiting. Upon release, all cores, except the waiting core(s),
may require access to the RN message buffers, i.e. at most
m — 1. Upon access, all cores may require access to the RN
message buffers.

Measurements using performance counter cores [4] were
performed for two scenarios, one without preemption during
spinning (from time O until time 8 in Figures 4(a) and 4(b)) and
one with preemption during spinning (from time 10 onwards



in Figures 4(a) and 4(b)). We have repeated the experiments
100 times. The measurement results are given in Table II.

I MSRP I FSLM
Request || A | 160 +79® [ A [ 189 + 146
Access || B | 18 By | 127 + 538(®)
By | 140 + 538®) + 700(©)
Release || C' | 255 C: | 3224 94®@ 4 560
Cs | 255 4 94
Cs | 255 4 94@ 4 700(<)

TABLE II: Measurement results in cycles. The superscripts
(a) and (b) are added to the values of the worst-case critical
section length for access to shared data structures for global
resources and to the RN message buffers, respectively. The
superscript (c) denotes context-switching overhead.

From these results, we conclude that the overhead for a
global resource request is roughly the same for MSRP and
FSLM. Compared to MSRP, the overhead for a global resource
access and a global resource release is significantly higher for
FSLM, however. As indicated in the table, this is mainly due
to additional logic, reading and writing RN message buffers,
and the additional context switches.

As described in Section III, FSLM reduces the blocking
time due to spinning for tasks with a higher priority than the
spin-lock priority. Based on our measurements, we are now in
a position to determine when to use MSRP or FSLM for those
tasks. The sum of the additional overheads for MSRP is 512
cycles, whereas this sum for FSLM is 2,762 cycles, which
corresponds to 10us and 55us on our 50M H z platform. The
break-even is therefore when the sum of the remote global
resource access times of tasks on our multi-core platform
exceeds 2,250 cycles, or 45us.

VII. CONCLUSIONS

In this paper, we presented an implementation of FSLM
in Erika Enterprise on an Altera Nios II platform and a
comparative evaluation of the protocol specific overheads of
the native MSRP supported by Erika Enterprise and FSLM.
Our experiments reveal that the overhead of global resource
access and global resource release is significantly increased
for FSLM. Based on these results, we are now in a position to
judge when it is advantageous to use either MSRP or FSLM
for such a system set-up for given resource access times.
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