
Towards Real-Time Operating Systems for
Heterogeneous Reconfigurable Platforms
Marco Pagani, Mauro Marinoni, Alessandro Biondi, Alessio Balsini, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy
Email: {name.surname}@sssup.it

Abstract—Heterogeneous platforms equipped with proces-
sors and field programmable gate arrays (FPGA) can be
exploited to accelerate specific functions triggered by soft-
ware activities. Thanks to dynamic partial reconfiguration
(DPR) capabilities of modern FPGAs, such functions can be
programmed at run-time, thus opening a new dimension in
the resource management problems for such platforms. To
properly exploit the DPR feature, novel operating system
supports are needed. With the aim of investigating this
direction, we developed a prototype implementation of a
timesharing mechanism that can be used to dynamically
reconfigure predefined FPGA areas for accelerating different
functions associated with real-time recurrent tasks.

This work reports some preliminary experimental studies
conducted to evaluate the feasibility of the proposed approach,
profile the temporal parameters involved in such systems (e.g.,
reconfiguration and execution times) and identify possible
bottlenecks. The achieved results are encouraging and clearly
show that, in spite of the relatively high reconfiguration times
of FPGAs, a timesharing mechanism can significantly improve
the performance of real-time applications with respect to fully
static approaches.

I. INTRODUCTION

Modern computing architectures integrate heterogeneous
components, like different types of processors and field pro-
grammable gate array (FPGA) modules that can be exploited
to accelerate specific functions to improve the application
performance. FPGAs with dynamic partial reconfiguration
(DPR) capabilities allow the user to reconfigure a portion of
the FPGA at runtime, while the rest of the device continues
to operate [1]. This is especially valuable in mission-critical
systems that cannot be disrupted while some subsystems
are being redefined [2].

Such a DPR feature opens a new scheduling dimension
for systems running on such heterogeneous platforms, giving
the possibility of virtualizing the FPGA, using timesharing
techniques, so that it can be used to accelerate a number
of hardware functions that is higher than that allowed by
static partitioning, thus further improving the application
performance.

Today, however, reconfiguration times are about three
orders of magnitude higher than context switch times in
multitasking, therefore FPGA virtualization can only be
used for a limited set of applications. As shown in the next
section, reconfiguration times significantly reduced in the
recent years and are expected to further decrease in the near
future. This enables the development of a new generation
of operating systems that can manage the FPGA module,
handling both software tasks (SW-tasks) and hardware tasks
(HW-tasks) in a uniform fashion.

To investigate this issue, this paper presents a prototype
implementation of a timesharing mechanism that can be
used to dynamically reconfigure predefined FPGA areas for

accelerating different functions associated with real-time
periodic tasks. The results achieved on such a prototype are
encouraging and clearly show that, in spite of the relatively
high reconfiguration times, a timesharing mechanism on the
FPGA can significantly improve the performance of real-
time applications with respect to a fully static approach.

A. Trend of Partial Reconfiguration Performance

During a partial reconfiguration process, different hard-
ware modules are involved, such as the memory, the bus,
and the FPGA reconfiguration port. As a reconfiguration
bitstream traverses such series of modules, the performance
of the reconfiguration processes is limited by the slowest
element, which represents the DPR bottleneck. Since the
DPR feature was introduced in FPGAs, all such elements
were improved during the years. In the early 2001, Xilinx
developed the Virtex-II FPGA device, which was able to
store data on 64x8 bits DDR memory at 294 MHz and write
the configuration to the logic elements with a peripheral
(denoted as Slave SelectMAP) running at 50 MHz with a
data size of 8 bits. The DPR throughput of this device was
measured as 60 Mbps.

Nowadays, one of the top gamma products is represented
by the Xilinx Zynq Ultrascale+, compatible with DDR4
memory and able to reach a maximum transfer rate of 2400
Mbps. It is connected with the ARM AMBA AXI4 and
its logic elements are configured by an evolution of the
SelectMAP reconfiguration port, called ICAP, running at a
maximum frequency of 200 MHz with a data size of 32
bits.

In addition to the improvements achieved on the memory
and the communication bus, a performance boost from the
memory storage side has also been obtained through a
bitstreams compression [3], moving the actual bottleneck to
the reconfiguration interface.

Estimating the throughput of the reconfiguration process
is not trivial, as it requires a precise ad-hoc orchestration
of each hardware module involved in the process and also
requires the availability of all the hardware devices that are
intended to be compared. Figure 1 shows the evolution of
the FPGA reconfiguration performance during the last years,
obtained by comparing the theoretical maximum throughput
estimations calculated from the device’s datasheets.

Since a higher throughput corresponds to smaller reconfig-
uration times (for a given bitstream size), the positive trend
shown in Figure 1 enables a more dynamic management
of the FPGA, allowing the implementation of virtualization
mechanisms that can provide great advantages to real-time
applications, with respect to fully static approaches.



2000 2002 2004 2006 2008 2010 2012 2014 2016

100

300

500

700

900

1100

1300

1500

V
ir

te
x-

II
V

ir
te

x-
II

Pr
o

V
ir

te
x-

4

V
ir

te
x-

5
V

ir
te

x-
6

St
ra

tix
-V

V
ir

te
x-

7

V
ir

te
x-

7-
U

ltr
aS

ca
le Z
yn

q
U

ltr
aS

ca
le

+

Year

T
he

or
et

ic
al

T
hr

ou
gh

pu
t

(M
B

/s
)

Figure 1: Reconfiguration interface throughput evolution.

II. RELATED WORK

The reduction of reconfiguration times resulting from
the FPGA technology evolution allowed exploiting the
advantages of DPR for handling applications with a dynamic
behavior. For example, a HW-task that could only be
statically allocated in the earlier platforms, can now be
reconfigured at runtime to implement mode changes in the
application. More recently, some authors proposed methods
for supporting a reconfiguration that can be periodically
requested by SW-task at every job execution. This approach
is referred to as job-level reconfiguration.

A few approaches have been proposed to provide an
operating system support for DPR in platforms including an
FPGA. The common adopted solution for exchanging data
between SW-task and HW-tasks is through proper software
stubs interacting with the kernel scheduler and handling the
HW-tasks using a dedicated library.

For instance, Lübbers and Platzner [4] proposed the
ReconOS operating system, which extends the classic multi-
threading programming model to hardware activities exe-
cuted on an FPGA. HW-tasks interact with SW-tasks threads
trough a custom developed POSIX-style API, using the same
operating system mechanisms, like semaphores, condition
variables, and message queues. Originally designed for fully-
reconfigurable FPGAs, this solution has then been extended
by the same authors to support partial reconfiguration [5],
with a cooperative multitasking approach dealing with the
contentions on a set of predefined reconfiguration slots. More
recently, Happe et. al. [6] extended the ReconOS execution
environment to provide HW-tasks preemptability. However,
the focus of this work is on hardware enabling technologies,
rather than kernel support mechanisms.

Iturbe et al. [7] presented the R3TOS operating system to
support dynamic task allocation on an FPGA without relying
on predefined slot partitioning and static communication
channels. In their solution, scheduling and allocation of
HW-tasks are performed by a module, called HWuK, which
is also in charge of controlling the programming interface
in an exclusive manner. The authors proposed a HW-task
model, as well as algorithms for scheduling and allocation.
However, a worst-case analysis is not provided and nothing
is said on the schedulability of SW-tasks. Such a dynamic
slot partitioning increases flexibility in the FPGA allocation
at the cost of a higher complexity of the reconfiguration

algorithms, reflecting in higher worst-case reconfiguration
times.

The major problem in such kernel extensions is that
they have been designed to improve the average system
performance, without providing tight worst-case response
times bounds. As a consequence, a model of the FPGA
runtime behavior based on these methods leads to huge
pessimism if used for a real-time scheduling analysis.

In the context of real-time systems, Di Natale and Bini [8]
proposed an optimization method to partition the FPGA area
between slots allocated to HW-tasks and softcores in charge
of executing the remaining tasks. Pellizzoni and Caccamo [9]
considered a more dynamic scenario proposing an allocation
scheme coupled with an admission test to provide real-
time guarantees of applications supporting mode changes.
Other authors [10], [11] presented scheduling algorithms to
manage job-level reconfiguration of the FPGA, but assuming
reconfiguration times negligible or fixed. Dittmann and
Frank [12] addressed the issue of scheduling reconfiguration
requests as a uniprocessor scheduling problem. However,
their model can manage only HW-tasks and it is not suitable
for platforms that also integrate softcores or processors.
Although these works were aimed at providing real-time
bounds, the models used for the reconfiguration infrastruc-
ture are too simplistic to describe the complexity of real
platforms, hence the corresponding approaches cannot be
used for analyzing real implementations with DPR features.

This paper. In summary, none of the presented papers
addressed the problem of modelling the timing behavior of
the reconfiguration interface and the interaction between
SW-tasks and HW-tasks in such a way that they can be
used for a tight real-time analysis. To address this issue, a
prototype implementation of a job-level FPGA management
has been developed to (i) profile the timing behavior
of the reconfiguration port with the purpose of deriving
such a model, (ii) investigate the practical feasibility of
the job-level approach for real-time applications, and (iii)
identify possible bottlenecks. Section V reports the results
of some experimental studies conducted on such a prototype
implementation.

III. SYSTEM DESCRIPTION

This work considers a heterogeneous computing system
consisting of one processor and a DPR-enabled FPGA fabric,
both sharing a common DRAM memory. A representative
block diagram of the considered system is illustrated in
Figure 2.

Possible representative platforms compatible with the
considered system include the Zynq-7000 family by Xilinx,
which provides ARM Cortex A9 processors and a FPGA
fabric ranging from 28K up to 444K logic cells. Two types
of computational activities can run on such a system:

• software tasks (SW-tasks): they are computational
activities running on the processor; and

• hardware tasks (HW-tasks): they are functions imple-
mented in programmable logic and executed on the
FPGA fabric.

SW-tasks can speedup parts of their computation by re-
questing the execution of HW-tasks, which can be considered
as hardware accelerated functions.



The area of the FPGA fabric is divided into a reconfig-
urable region and a static region. The reconfigurable region
hosts the HW-tasks while the static region includes support
modules for the HW-tasks, such as communication devices.
The reconfigurable region is partitioned into slots, each
including the same number of logic blocks. A HW-task can
execute only if it has been programmed into a slot. Each
slot can be reconfigured at run-time by means of a FPGA
reconfiguration interface (FRI) and can accommodate at
most one HW-task.

As typical for most real-world platforms (e.g., [13], [14]),
the FRI

(i) can reconfigure a slot without affecting the execution
of the HW-tasks currently programmed in other slots;

(ii) is a peripheral device external to the processor (e.g.,
like a DMA [15]) and hence does not consume
processor cycles to reconfigure slots; and

(iii) can program at most one slot at a time.
To program a given HW-task into a slot, the FRI has to

program all the logic blocks of the slot. This is because
unused logic blocks have to be disabled to “clean” possible
previous configurations. The FRI is characterized by a
throughput ρ, meaning that a time r = bS/ρ is needed to
reconfigure a slot, where bS is the number of logic blocks
in each slot.

Each SW-task uses a set of HW-tasks by alternating
execution phases with suspension phases where the SW-task
is descheduled to wait for the completion of the requested
HW-task. The same HW-task cannot be used by more than
one SW-task. Each SW-task is periodically (or sporadically)
released, thus generating an infinite sequence of execution
instances (denoted as jobs). SW-tasks are also subject to
timing constraints, meaning that each of its jobs must
complete its execution within a deadline relative to its
activation. Figure 3 reports the pseudo-code defining the
implementation skeleton of a SW-task that calls a single
HW-task.

The HW-task is initialized at line 7, where the label
sample_hw_task is used to refer its implementation stored
in memory. At line 15, the SW-task configures the HW-
task by specifying two memory locations: (i) input_ptr,
that contains the input data for the HW-task and (ii)
output_ptr, prepared to contain the output data produced
by the HW-task. Finally, at line 18, the SW-task executes a

Figure 2: Block diagram of the considered system.

1 void sample_software_task()
2 {
3 // Task initialization (executed only once)
4 << Initialization part >>
5

6 // Define an instance of an HW-task
7 Hw_Task hw_task = hw_task_init(sample_hw_task);
8

9 // Task body
10 while (1)
11 {
12 << Software elaborations chunk >>
13

14 // Configure input and output data for the HW-task
15 hw_task_set_args(hw_task, input_ptr, output_ptr);
16

17 // Reconfigure and execute the HW-task
18 rcfg_manager_execute_hw_task(hw_task);
19

20 << Software elaborations chunk >>
21

22 // Wait for the next job
23 suspend_until(period);
24 }
25 }

Figure 3: Pseudocode of a SW-task calling a HW-task.

blocking call that triggers the reconfiguration and executes
the HW-task. The SW-task correspondingly suspends its
execution until the completion of the HW-task. The inter-
task communication mechanism is discussed in the following
section.

IV. SYSTEM PROTOTYPE

This section presents the implementation of a system
prototype to handle HW-tasks under DPR on a real platform.
The prototype has been used to conduct some preliminary
experiments to evaluate the feasibility and the performance
of the proposed approach.

A. Reference platform

The Zynq-7000 SoC family has been chosen as a reference
platform for developing a working prototype of the system.
It includes a dual-core ARM Cortex-A9 processor and a
DPR-enabled FPGA fabric integrated on the same die.

The internal structure of a Zynq SoC comprises two main
functional blocks referred to as processing system (PS) and
programmable logic (PL) [15]. The PS block includes the
ARM Cortex-A9 MPCore, the memory interfaces and the
I/O peripherals, while the PL block includes the FPGA
fabric. The subsystems in the PS are interconnected among
themselves, and to the PL side, through an ARM AMBA AXI
Interconnect.

The Interconnect can be accessed by custom logic
modules (configured on the PL side) through a set of master
and slave AXI interfaces exported by the PS to the PL side.
In particular, the slave interfaces allow hardware modules
hosted on the PL to access the global memory space where
the physical RAM memory is mapped. This is achieved by
implementing an AXI master interface inside the module
logic. Such a master interface can be connected to the
corresponding slave interfaces offered by the PS. In this way
it is possible to implement a shared-memory infrastructure
between the processor and the custom modules deployed
on the PL.

The SoCs of the Zynq family supports dynamic partial
reconfiguration under the control of the software running on



the PS. The FPGA fabric included in the PL can be fully or
partially reconfigured via the device configuration interface
(DevC) subsystem. The DevC includes a DMA engine that
can be programmed to transfer bitstreams (i.e., images of
custom modules to be configured onto the FPGA) from the
main memory to the PL. This is achieved by means of the
the processor configuration access port (PCAP).

B. Prototype architecture

In the system prototype, the area of the FPGA fabric
included in the PL is divided into a static region and a
reconfigurable region. The static region contains the static
portion of the communication infrastructure (consisting
in interconnection blocks similar to switches) and other
support modules, while the reconfigurable region hosts
the hardware modules that implement the HW-tasks and a
common communication interface.

Such a common interface is similar to the one adopted by
Sadri et al. [16] and includes (i) an AXI master interface for
accessing the system memory, (ii) an AXI slave interface
through which the HW-task can be controlled by the PS,
and (iii) an interrupt signal to notify the PS when the
computation has been completed. In the current setup, the
AXI master interfaces included in the HW-tasks are attached
to high-performance (HP) ports exported by the PS, while
the AXI slave control interfaces are attached to the PS AXI
master general purpose ports.

The reconfigurable region is partitioned into a fixed
number of slots, each containing an equal number of logic
resources. Each slot can accommodate a single HW-task.
Since bitstreams relocation is not supported by the Xilinx’s
standard tools [13] [14] (i.e., the same bitstream cannot be
used for multiple slots), each HW-task is synthesized as a
set of bitstreams, one for each slot defined in the PL.

C. Software support

The software part of the system prototype has been
developed as a user-level library for the FreeRTOS [17]
operating system. The library facilitates the reconfiguration
and the execution of HW-tasks by providing a simple API
that enables the client programmer to exploit hardware
acceleration.

From the client programmer perspective, the library mod-
els the concept of hardware acceleration with a set of HW-
task objects and a software module named reconfiguration
service. The interface of the reconfiguration service offers
a single function to request the execution of a HW-task (as
shown in Figure 3, line 18). Each HW-task object includes
the following information: (i) a set of bistreams, one for
each slot; (ii) the input parameters (memory pointers or
data); (iii) two optional callbacks (linked to the start and
the completion of the HW-task) that can be used to ensure
memory coherence. The library has been build on top of
the Xilinx software support library [18].

Before executing a HW-task, our implementation flushes
the portion of cache containing the input data prepared by
the SW-task, thus ensuring that the HW-task can access
coherent data from the RAM memory.

Once the input data have been prepared, the SW-task
checks for a vacant slot performing a wait operation on a
FreeRTOS counting semaphore (initialized with the number
of available slots). If all the slots are busy, the calling task

is suspended until one of the slots will be released. When at
least one slot is available, the function searches if any of the
vacant slots already contains the requested HW-task. If none
of the vacant slots contains the required HW-task, one of the
vacant slots is reconfigured with the corresponding bistream.
The calling task is suspended until the reconfiguration has
been completed.

As soon as the requested HW-task is configured, it starts
executing. The calling SW-task suspends its execution until
the completion of the HW-task. When the HW-task com-
pletes, the calling SW-task is resumed and performs a signal
operation on the slots counting semaphore. The completion
is notified to the PS with the interrupt signal predisposed
in the common interface described in Section IV-B. Once
the SW-task is resumed, our implementation invalidates the
cache portion corresponding to the output data produced by
the HW-task, thus ensuring that the processor can access
coherent data.

D. Experimental setup

To perform a set of experiments, the system prototype has
been deployed on a ZYBO board that includes the Z-7010
Zynq SoC and 512 MB of DDR3 memory. The ARM core
included in the PS of the Z-7010 runs at 650 MHz, while
the clock frequency for the PL is set to 100 MHz.

In the experimental setup, 50% of the logic resources of
the PL are allocated to the reconfigurable partition, while
the remaining 50% are allocated to the static part. The
reconfigurable partition is divided into two slots of equal
size. Each slot contains half of the resources available in the
reconfigurable partition. Since both slots contain an equal
number of resource, the corresponding bitstreams (resulting
from the logic synthesis of HW-task in each slot) have
the same size, equal to 338 KB. Considering the size of
the RAM memory available on the platform (512 MB), a
large number of partial bitstreams can be stored without any
relevant impact on the available memory.

V. EXPERIMENTAL RESULTS

This section reports the results of a set of experiments
that have been conducted to evaluate the proposed approach
on a case study application.

To test the system, four standard algorithms have been
implemented as both HW-tasks and equivalent software
procedures. The test set includes tree simple implementations
of image convolution filters (Sobel, Sharp and Blur) and an
integer matrix multiplier (referred to as Mult). The HW-tasks
have been designed with the Vivado high-level synthesis
tool, while the software versions have been implemented in
the C language.

The Blur and the Sharp filters have been configured to
process images of size 800× 600 pixels, while the Sobel
filter has been configured to process images of size 640×480
pixels. All the three filters process images with 24-bit color
depth. The matrix multiplier processes matrices of size
64× 64 elements.

A. Speed-up evaluation

A first experiment has been carried out to measure the
speed-up factors achievable by the HW-task implementation
of the four algorithms used in the case study. For each of
such algorithms, the execution time of the corresponding



HW-task has been compared with the equivalent full software
implementation for more 1000 runs. The results of this
test are reported in Table I. The minimum speedup has
been computed as the ratio between the minimum observed
execution time of the software implementation and the
maximum observed execution time for the HW-task.

As can be seen from the table, even though the FPGA is
running at a lower clock frequency (100 MHz) compared
to the processor (650 MHz), HW-tasks provide a consistent
speed-up ranging from 2.5 to 15.2. The small differences
between average and worst-case execution times can be
explained by the fact that the functions are essentially stream
processing operations with no branches depending on the
input data.

Algorithm Mult Sobel Sharp Blur
Observed HW
execution times

Average [ms] 0.785 12.710 24.631 24.628
Longest [ms] 0.785 12.712 24.633 24.629

Observed SW
execution times

Average [ms] 1.980 115.518 304.975 374.785
Longest [ms] 2.017 115.521 304.994 374.811

Speedup Average 2.523 9.089 12.381 15.217
Minimum 2.515 9.087 12.380 15.216

Table I: Speed-up evaluation.

B. Response-time evaluation

A second experiment has been performed to evaluate the
system behavior in a scenario where the number of HW-
tasks to be executed exceeds the number of slots available
on the FPGA fabric. Please note that such a scenario is
only possible by exploiting DPR. The task set used for this
experiment consists of four periodic SW-tasks with implicit
deadline (i.e., deadlines equal to task periods). Each SW-task
requests the execution of the HW-task corresponding to the
algorithm of the case study (Section V). SW-tasks priorities
are assigned according to the Rate-Monotonic algorithm. As
mentioned in Section IV-C, each SW-task executes a flush
operation (denoted as cache flush) before calling the HW-
task and invalidates the cache when the HW-task completes
(cache invalidate operation).

Table II reports the periods of the SW-tasks, the execution
times of the cache flush and cache invalidate operations,
and the response-times of the SW-tasks observed in 8 hours
of execution.

Based on the collected data, it is worth observing that the
considered application cannot be scheduled without DPR
for the following reasons:

• due to the large execution times (see Table I), the
application cannot be scheduled with a full software
implementation;

• since the FPGA fabric has only two slots, it is not
possible to statically configure all the four HW-tasks
of the application;

• if the algorithms that cannot be allocated on the FPGA
as HW-tasks are executed on the processor as pure
software implementation, any possible combination of
HW-tasks and software implementations leads to a non
schedulable system.

This example shows that virtualizing the FPGA by the
proposed timesharing mechanism can effectively improve
the schedulability of applications on current heterogenous
platforms.

The longest observed response time for the Mult SW-task
shows that, even if this task has the highest priority in the
system, it may experience high delays due to slot contention
with other HW-tasks issued by lower-priority SW-tasks.

This happens because of the FIFO ordering of the
semaphores used in the implementation. The execution of
HW-tasks can hence be delayed by the reconfiguration and
the execution of all the HW-tasks requested by other SW-
tasks (independently of their priority). The analysis of such
a delay is beyond the scope of this paper.

For some applications, the response-times can be im-
proved by adopting different scheduling policies (i.e.,
different from FIFO) to manage HW-tasks. However, since
HW-tasks execute in a non-preemptive manner, the largest
execution time of the HW-tasks will always impose a lower-
bound for the slot contention delay.

SW-task Mult Sobel Sharp Blur
Period [ms] 30 50 80 100
Cache flush [ms] 0.030 1.123 1.754 1.754
Cache invalidate [ms] 0.017 1.240 1.939 1.939
Observed
Response time

Average [ms] 3.829 17.603 31.416 35.624
Longest [ms] 24.017 20.418 33.086 43.160

Table II: Hardware accelerated task-set.

2.8 2.85 2.9 2.95 3
0

1

2

3

4

·105

Reconfiguration time [ms]

O
cc

ur
re

nc
es

4 tasks

2.8 2.85 2.9 2.95 3
0

0.25
0.5

0.75
1

1.25
·105

Reconfiguration time [ms]

O
cc

ur
re

nc
es

4 tasks + MemDisturb

Figure 4: Distribution of reconfiguration times.

C. Reconfiguration times profiling

Finally, a third experiment has been conducted to profile
reconfiguration times. The reconfiguration of the FPGA
fabric is performed by the DevC subsystem described in
Section IV-A. Such a module transfers bitstreams from the
main memory to the PL configuration memory trough the
PCAP port, which exploits the DevC DMA engine. The
DMA accesses the system memory (where bistreams are
stored) through an AXI master interface connected to the
internal AXI Interconnect. Unlike the processor and the HW-
tasks connected to the AXI slave ports, the DevC subsystem
is not directly connected to the DRAM controller. In fact,



it contends the access to the DRAM controller with other
peripherals in the PS side.

In general, the throughput achievable by the DevC DMA
depends on the traffic conditions on the AXI Interconnect,
and the load on the DRAM controller. Modeling the bus
contention on the AXI Interconnect and evaluating its
performance goes beyond the scope of this paper. However,
a first test was carried out to evaluate how a memory
intensive SW-task interferes with the DevC, and hence
affects reconfiguration times.

The task set used for this test includes the four tasks
described in the experiment of Section V-B, and an addi-
tional memory intensive software activity (referred to as
MemDisturb) continuously running in background without
invoking HW-tasks. The MemDisturb software activity
performs memory transfers between two memory buffers
of 32 MB. The sizes of the buffers exceed the size of the
processor L2 cache. Therefore, such a memory transfers
generate a continuous stream of request to the DRAM
controller that simulates a memory intensive SW-task.

Table III compares the reconfiguration times with and
without the MemDisturb activity. Figure 4 illustrates the
reconfiguration times distribution in both cases. The results
of this experiment show that, despite a memory intensive
software activity can affect reconfiguration times, its impact
is very small and in the order of 0.1 ms. We believe that this
result, although preliminary and far from being complete,
is encouraging for exploiting partial reconfiguration in real-
time systems, where bounded reconfiguration delays are
essential to guarantee the system predictability. Given the
size of the partial bistreams (338 KB), the average observed
throughput for the DevC amounts to 117 MB/s without
MemDisturb and to 113 MB/s with MemDisturb.

Experiment Reconfiguration time [ms]
Min Avg Max

4 tasks (Section V-B) 2.791 2.820 2.846
4 tasks + MemDisturb 2.795 2.910 3.012

Table III: Observed reconfiguration times.

VI. CONCLUSIONS

This work presented an experimental study aimed at
evaluating the use of dynamic partial reconfiguration for
implementing a timesharing mechanism to virtualize the
FPGA resource in heterogeneous platforms that also include
a processor. Hence, an application consists of both software
computational activities (running on the processor) and
hardware modules implemented in programmable logic to
be dynamically allocated on the FPGA, as requested by the
software tasks. The temporal parameters involved in such
a system (e.g., reconfiguration and execution times) have
been profiled for a case study application. The achieved
results are encouraging and clearly show that, in spite
of the relatively high reconfiguration times of FPGAs,
a timesharing mechanism can significantly improve the
performance of real-time applications with respect to a fully
static approach.

Besides the encouraging results, the experimental studies
highlighted two major bottlenecks of today’s platforms.
First, all the evaluated FPGA platforms provide only a
single reconfiguration interface, which is then contended

by all the HW-tasks. Second, when the main memory
is used to store both data and bistreams, an additional
contention there exists on the Interconnect and the DRAM
controller, which introduces further complications in the
timing analysis. As a consequence, the presence of memories
dedicated to bitstream storage would significantly improve
both performance and predictability.

Future challenges include (i) the design and the analysis
of scheduling algorithms for HW-tasks, (ii) the inves-
tigation of partitioning approaches for the FPGA area
to limit contention on the reconfiguration interface, (iii)
the implementation of improved inter-task communication
mechanisms, and (iv) the design of real-time operating
system mechanisms to support such a dynamic approach.

REFERENCES

[1] M. Goosman, N. Dorairaj, and E. Shiflet. (2006) How to take
advantage of partial reconfiguration in fpga designs. [Online].
Available: www.eetimes.com/document.asp?doc id=1274489

[2] S. Altmeyer and G. Gebhard, “WCET analysis for preemptive
scheduling,” in Proceedings of the 8th Int. Workshop on Worst-Case
Execution Time (WCET) Analysis, July 2008.

[3] R. Stefan and S. D. Cotofana, “Bitstream compression techniques for
virtex 4 FPGAs,” in International Conference on Field Programmable
Logic and Applications (FPL 2008), 2008.

[4] E. Lübbers and M. Platzner, “Reconos: Multithreaded programming
for reconfigurable computers,” ACM Transactions on Embedded
Computing Systems, vol. 9, no. 1, pp. 8:1–8:33, October 2009.

[5] ——, “Cooperative multithreading in dynamically reconfigurable
systems.” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), August 2009.

[6] M. Happe, A. Traber, and A. Keller, Proceedings of the 11th
International Symposium on Applied Reconfigurable Computing
(ARC). Springer International Publishing, April 2015, ch. in
Preemptive Hardware Multitasking in ReconOS, pp. 79–90.

[7] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,
“Microkernel architecture and hardware abstraction layer of a reliable
reconfigurable real-time operating system (r3tos),” ACM Transactions
on Reconfigurable Technology and Systems, vol. 8, no. 1, pp. 5:1–5:35,
March 2015.

[8] M. D. Natale and E. Bini, “Optimizing the fpga implementation of hrt
systems,” in Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS), April 2007.

[9] R. Pellizzoni and M. Caccamo, “Real-time management of hardware
and software tasks for fpga-based embedded systems,” IEEE Trans-
actions on Computers, vol. 56, no. 12, pp. 1666–1680, December
2007.

[10] K. Danne and M. Platzner, “Periodic real-time scheduling for fpga
computers,” in Proceedings of the 3rd International Workshop on
Intelligent Solutions in Embedded System, May 2005.

[11] S. Saha, A. Sarkar, and A. Chakrabarti, “Scheduling dynamic hard
real-time task sets on fully and partially reconfigurable platforms,”
IEEE Embedded Systems Letters, vol. 7, no. 1, pp. 23–26, March
2015.

[12] F. Dittmann and S. Frank, “Hard real-time reconfiguration port
scheduling,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), April 2007.

[13] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools
and Applications. Springer-Verlag New York, February 2012.

[14] Vivado Design Suite User Guide: Partial Reconfiguration, Xilinx,
2015, v2015.4.

[15] Zynq-7000 AP SoC Technical Reference Manual, Xilinx, 2015, v1.10.
[16] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and performance

exploration of accelerator coherency port using xilinx zynq,” in
Proceedings of the 10th FPGAworld Conference, September 2013.

[17] R. T. E. Ltd. Freertos real-time operating system. [Online]. Available:
http://www.freertos.org/

[18] OS and Libraries Document Collection, Xilinx, 2015, v2015.3.

www.eetimes.com/document.asp?doc_id=1274489
http://www.freertos.org/

