
Towards versatile Models for Contemporary
Hardware Platforms

Hendrik Borghorst, Karen Bieling and Olaf Spinczyk
Department of Computer Science 12

Technische Universität Dortmund, Germany
e-mail: {hendrik.borghorst, karen.bieling, olaf.spinczyk}@tu-dortmund.de

Abstract—The demand for computationally intensive work-
loads in the domain of real-time systems is growing which
needs to be satisfied with more capable hardware. Cheap but
powerful multi-core hardware seems to be a good solution but
these processors often lack a good predictability. An operating
system can hide measures to regain the predictability, like cache
management but to do so a good knowledge of the hardware
is required. A problem with these measures is that they are
usually not portable and require a lot of work to adapt them to
new platforms. It is desirable to generate the platform-specific
code from abstract architecture descriptions to get a portable
operating system that adapts itself to the specific hardware
properties of modern hardware to provide a predictable execution
environment.

I. INTRODUCTION

Workloads within the real-time domain are getting more and
more computationally intensive with the automotive industry
pushing for autonomous cars, real-time face detection systems
in security systems or power supply line monitoring for smart-
grids. To meet this demand and at the same time reduce the cost
of the hardware it is preferred to use cheap standard hardware
with capable multi-core processors. But the low price for high
performance computing power comes at the cost of loss of
predictability.

These multi-core processors are usually designed to share
resources to keep both the energy consumption and the
price low. As a result of this, the timing behavior of these
processors is not predictable and therefore they are not directly
suitable for the use in real-time systems. The primary sources
of unpredictability are caches [1], buses [2] and the main
memory [3]. These sources of unpredictability have been in
the focus of research for some time. Software-based control
of the content of the shared caches has been proven to be an
effective instrument to reduce the unpredictability of caches [4].
Rescheduling of memory accesses also was shown to be a
viable mean to improve the memory access behavior [3].

These approaches can be used to reduce the unpredictability
of modern hardware but often require special knowledge of
the hardware and software a system uses. This could lead to
an additional complexity for the system developers because
they have to take into account on what hardware their code
runs. One example is the alignment of data structures to cache
line sizes. Instead these platform-specific measures should be
handled by the operating system. In the past we presented an
operating system concept that explicitly manages what data is

in the cache, to get a more predictable system[5]. A problem
with an approach like this is that it adds even more platform-
specific code to the operating system which should be avoided.
Instead we would like to write code that is normally platform-
specific, in a new generic way to reuse it for all platforms. To
do so we present an approach that uses an domain-specific
language to describe an hardware architecture that can be used
to generate code for low-level operating system functions like
context switching, cache management, memory protection and
other low-level functions that need to be written for every new
hardware platform.

On the other hand an operating system also needs good
information about the hardware it uses to fully utilize all the
resources as good as possible. To achieve this the system
needs a comprehensive model about the available resources
and the timing behavior of a platform. An empirical approach
to generate such a model can be used and the methods to do
so can also be generated by the code generation. Profiling of
a hardware architecture is used as a case study for this paper
as it is usually a complex task because the profiling code has
to be written in a low-level assembly language [6]. The model
that is generated should provide essential information to the
operating system at runtime and during the compilation to
optimize it as much as possible.

In the following section we present an approach that utilizes
a generic domain-specific language to describe hardware
architectures with all their details needed to generate platform-
specific code that can be used instead of manually written
hardware-adaption code.

II. APPROACH

To specify an architecture we chose an approach with
a domain-specific language (DSL). A language to model a
hardware architecture, needs to be flexible enough to be able
to specify current and upcoming architectures. This means
that it should not have limitations, how the memory system
of a architecture is structured. The language should be able
to model a processor with multiple scratchpad memories for
one processor core and a NUMA-based architecture just as
well. To completely model a memory hierarchy it is also
important to represent the interconnects between components
like memories or processor cores correctly to ensure that the
operating system can later take full advantage of measures to
increase the performance and predictability of the hardware.

a r c h i t e c t u r e ExampleArch {
Memory RAM {}
Memory L2Cache : RAM {}
Memory Cache0 : L2Cache {}
Memory Cache1 : L2Cache {}
P r o c e s s o r CPU0 : Cache0 {}
P r o c e s s o r CPU1 : Cache1 {}

ISA {
r e g i s t e r s { R% [0 . . 1 5] }
i n s t r u c t i o n s {

a d d _ c o n s t ADD: d e s t , arg , # a r g c o n s t
add_reg ADD: d e s t , arg , a r g

}
}

}

Fig. 1: Example of an architecture description

Besides the memories, interconnects and computing units
the architecture description needs to specify the instruction
set architecture (ISA) of the available computing units. This
ISA description is used for the code generator and contains
details about the available registers, with the names used by
the assembler for the architecture, and a basic set of assembly
instructions. For heterogeneous architectures it is also possible
to specify multiple ISAs for one architecture. So that different
processor cores could use different ISAs.

An example representation of an architecture is shown by
Figure 1. It consists of two processors which are each connected
to a private cache, that is connected to a shared level-2 cache.
The last item in the memory hierarchy is a main memory
called RAM. The example architecture also included the register
specification for the registers R0 to R15. The interconnects
between multiple components are directly derived from the
inheritances, for example in Figure 1 level-2 cache is connected
to both the private Cache0 and Cache1.

The instructions block includes all platform-specific
assembly instructions needed for the abstract assembly language
for the code generator. As an example Figure 1 only shows two
instructions to add two values. Once with a constant and once
with a value residing in another register. This language also
allows to model a NUMA-based architecture by specifying
multiple RAM-components that are only connected to one
processor unit.

Figure 2 lists an example of a memory component. It
describes a exemplary memory of the example architecture.
To generate low-level operating system code it is necessary to
specify some parameters that the operating system can use to
optimize itself to the target architecture. These parameters in-
clude properties like the cache-line length (minAccessSize)
or where a memory is mapped to in the address space.

In addition to the architecture description an abstract low-
level development language needs to be defined. This language

RAM {
wordLength : 4 / / B y t e s
minAccessSize : 16 / / B y t e s
s t a r t A d d r e s s : 0 x40000000
s i z e : 2G

}

Fig. 2: Example of a memory component description

ram_benchmark {
move (d e s t reg : 0 , arg %[bmStar t_ <BM>])
move (d e s t reg : 1 , arg %[bmEnd_<BM>])

jmp_mark (arg " l o o p _ b e g i n : ")
m e a s u r e _ s t a r t
load (d e s t reg : 3 , s r c ∗ reg : 0)
measure_end

add_const (d e s t reg : 1 , arg reg : 1 ,
arg <WordLength >)
cmp (arg reg : 0 , arg reg : 1)
cond_jump_lt (arg " l o o p _ b e g i n ")

}

Fig. 3: Simple memory benchmark in abstract assembly code

is an abstract form of an assembly language that can be
translated to platform-specific assembly code via the code
generator. To do so the architecture description has to specify
a minimal set of assembly instructions that are necessary for
the code generator. The abstract assembly language can then
be used to write low-level operating system code like context
switching, cache flushing and time measurements in an abstract
way so that it has to be done only once.

An example how to use the abstract assembly language is
given with Figure 3. It depicts a memory read performance
profiler. The profiling starts with the preparation of several
constant values that are necessary to run the code like such as
limits of the benchmark range. The next step is the creation
of a label to create a loop over a certain benchmark range.
Inside this loop is an abstract load instruction surrounded with
two abstract methods that handle the measurement of elapsed
clock cycles. The content of these functions is omitted here to
keep the listing short. Each assembler instruction needs certain
arguments. Some of them are register values and some of them
constants which has to be annotated at the moment. Also the
registers need to be allocated manually but we like to improve
this in the feature with register allocation techniques borrowed
from compiler research.

With the architecture description and the abstract assembly
code it is possible to develop a code generator that creates
the operating system code for a specific hardware platform. A
simplified overview of the process is given with Figure 4. The

Platform
specification

Abstract low-level
OS-code

Code generation

Platform-specific
OS-code Generic OS-code

Operating system executable

Profiling code

Platform
model

Generates Code/Model data

Uses Code/Model data

Fig. 4: Concept of operating system with abstract code

code generation combines one specific platform architecture
with the abstract code and generates the assembler code for the
architecture. This is then integrated with the generic program
code of the operating system. The code generator can also be
used to create comprehensive profiling code for the creation
of a timing behavior description for the platform, that can also
be used by the operating system as a base for optimizations
like cache management to get a predictable system.

III. EVALUATION

As a proof of concept we chose to develop a memory read
performance profiler with the abstract language, because it is
essential for the operating system to have information on the
platforms memory performance to get predictable execution
times. We want to use the generated information within our
prototype operating system for the cache management [5].

We implemented the presented languages with the Eclipse
Modeling Framework (EMF) and Xtext [7] as this allows
rapid prototyping of our domain specific languages and code
generation which is helpful to quickly adapt the language to the
changing demand as we developed our requirements to develop
an operating system with abstract low-level code. We evaluated
our implementation of the code generation with a Samsung
Exynos 4412 ARM-processor on a prototype operating system
where no other load is simultaneously active.

The results of two generated benchmarks are shown on Fig-
ure 5. We evaluated two abstract benchmarks. One benchmark
warms up the private cache of a processor by iterating over a
memory range with the size of the private cache and finally
iterates over the same range and measure the access times.
The results are shown in Figure 5a. Another test is shown in
Figure 5b where the main memory is tested without warming
up so that we get many more cache misses.

Although the profiling code for now was only generated for
an ARM processor, it is possible to adapt it to other processors
in the future.

IV. CONCLUSION & FUTURE WORK

We demonstrated that it is possible to create abstract low-
level code that can be transformed to architecture-specific

0 500 1000

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(a) L1-Cache profiling

0 500 1000

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(b) RAM accesses

Fig. 5: Memory read benchmarks

assembly code by providing a simple architecture description.
Although we could only present some preliminary results for
now we intend to improve on this in the future.

One use case for the code generation process can be to
write abstract profiling code once and then run it on many
hardware platforms. To do so would require a good execution
base to get reliable results. We intend to run profiling code on
our prototype operating system [5]. But it would be interesting
to see if it is possible to generate code that could be run on
a operating system like Linux to get much better hardware
support right away. A possible solution would be to generate
Linux kernel modules that take control over the system and
run the profiler code exclusively for a limited time. This would
allow a broad range of hardware architectures to be analyzed.
These models could be used by real-time operating systems to
adapt them on specific hardware properties.

As hardware platforms are getting more difficult to develop
for it would be handy to write low-level operating system
code for hardware features like memory management, memory
address translation and other things only once. To achieve this
our abstract languages need to evolve to provide the necessary
means.

A distant goal we would like to aim for is to generate an
open source database with hardware models that describe the
hardware in a way that is especially useful for the design and
implementation of operating systems.

REFERENCES

[1] J. M. Calandrino and J. H. Anderson, “Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study,” in 20th Euromicro
Conf. on Real-Time Sys. (ECRTS ’08), Jul. 2008, pp. 299–308.

[2] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in COTS-based multicore systems,” in 08th
IEEE Int. Symp. on Industrial Embedded Systems (SIES 2013), Jun. 2013,
pp. 39–48.

[3] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
access scheduling,” in 27th Int. Symp. on Comp. Arch. (ISCA ’00). New
York, NY, USA: ACM, 2000, pp. 128–138.

[4] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making
shared caches more predictable on multicore platforms,” in 25th Euromicro
Conf. on Real-Time Sys. (ECRTS ’13). IEEE, Jul. 2013, pp. 157–167.

[5] H. Borghorst and O. Spinczyk, “Increasing the predictability of modern
COTS hardware through cache-aware OS-design,” in 11th W’shop on OS
Platf. for Emb. Real-Time App. (OSPERT ’15), Jul. 2015.

[6] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory perfor-
mance and cache coherency effects on an Intel Nehalem multiprocessor
system,” in Parallel Architectures and Compilation Techniques, 2009.
PACT ’09. 18th International Conference on, Sep. 2009, pp. 261–270.

[7] “Xtext,” https://eclipse.org/Xtext/, accessed: 2016-05-23.

https://eclipse.org/Xtext/

	Introduction
	Approach
	Evaluation
	Conclusion & Future Work
	References

