
Tightening Critical Section Bounds in
Mixed-Criticality Systems through Preemptible

Hardware Transactional Memory

Benjamin Engel
Operating-Systems Group

Department of Computer Science
Technische Universität Dresden

Email: 〈name〉.〈surname〉@tu-dresden.de

Abstract—Ideally, mixed criticality systems should allow archi-
tects to consolidate separately certified tasks with differing safety
requirements into a single system. Consolidated, they are able to
share resources (even across criticality levels) and reduce the
system’s size, weight and power demand. To achieve this, higher
criticality tasks are also subjected to the analysis methods suitable
for lower criticality tasks and the system is prepared to relocate
resources from lower to higher criticality tasks in case the latter
risk missing their deadlines. However, non-preemptible shared
resources defy separate certification because higher criticality
tasks may become dependent not only on the functional behavior
of lower criticality tasks but also on their timing behavior.
For shared memory resources, hardware transactional memory
(HTM) allows to discard changes made to the resource and roll
back to a previous state. But instead of using HTM for conflict
detection and synchronization, we use this hardware feature to
abort low critical shared resource accesses in case they overrun
their time budget.

In this paper, we present the results from extending HTM
to allow transactions to become preemptible in order to support
mixed criticality real-time shared resource access protocols. We
implemented a lightweight cache-based HTM implementation
suitable for embedded systems in the cycle accurate model
of an out-of-order CPU in the Gem5 simulation framework.
The software implementation using this extension in a priority-
ceiling shared resource access protocol complements our work
and demonstrates how transactional memory can be used to
protect higher criticality tasks from untimely lower criticality
tasks despite shared resources. Our simulation with synthetically
generated tasksets show a reduction in system load of up to 22 %
compared to scheduling LO resource accesses with HI bounds and
a schedulability improvement of up to 54 % for state-of-the art
real-time locking protocols. We used a LO-to-HI ratio of 1:1.2 –
1:2 and loaded the system between 50 % – 75 %.

I. INTRODUCTION

Announced in 2007, but later cancelled, Sun’s Rock pro-
cessor [1] was supposed to be the first production-ready CPU
to include hardware transactional memory (HTM) [2]. Four
years later, IBM’s 3rd generation BlueGene/Q [3] fulfilled this
promise by providing HTM functionality to high-performance
computing, followed in 2014 with Intel’s implementation [4]
for general-purpose desktop and server systems. We expect
cache-based HTM implementations to soon make their way
into embedded processor architectures. For example, the open-
source RISC-V ISA [5] already contains a placeholder for
transactional memory instructions. Ferri et al. [6] identified

energy and throughput improvements for accessing contented
resources in a simulated ARM multiprocessor system-on-a-
chip of 30 % and 60 %, respectively.

In its simplest version, cache-based HTM implementations
keep transactional data stored in the cache until the transaction
is committed. The cache will continue to respond normally
to coherence requests, but accesses from other CPUs (writes
to cached transactional data and reads to dirty transactional
state) will cause an local abort and the invalidation of all
cached transactional state. The result is either that the complete
transaction becomes visible (in case the cache returns to
normal operation) or the core reacts as if the transaction did
not happen (by invalidating all transactional state).

In this paper, we exploit this all-or-nothing effect of trans-
actions in mixed criticality systems to protect resources that
are shared across criticality levels.

Mixed criticality is about consolidating tasks with different
certification requirements into a single system. In his seminal
work, Vestal [7] observes that independent tasks can be inte-
grated in such a way by ensuring that higher criticality tasks
can still meet their deadlines, even if they have failed to do
so when they were scheduled with more optimistic scheduling
parameters of lower criticality levels. Baruah et al. [8] calls
this interpretation of mixed criticality systems certification
cognisant as it maintains the increasing pessimism that is
imposed by evaluation criteria to assert correct and timely
operation of more safety critical tasks. In this paper, we adopt
this certification cognisant interpretation of mixed criticality
systems.

Unfortunately, the independence assumption is not very
realistic in practical systems because in general tasks share
resources that are not as easily preemptible as the CPU. For
single criticality systems, a wealth of resource access protocols
have been proposed following the early works of Baker [9]
and Sha et al. [10] to bound priority inversion 1 and minimise
blocking times. Priority inversion occurs if a lower prioritised
job prevents a higher prioritised job from running because it is
holding a resource that the latter needs or because the resource
is otherwise inaccessible due to the mechanics of the resource
access protocol.

1For ease of presentation, we use a priority based formulation for all
preemption conditions and leave it as future work to adjust this formulation
to preemption levels for EDF-based locking protocols.



In mixed criticality systems arises a second problem, which
has led to a debate whether resources should actually be shared
across criticality levels: the trustworthiness of the resource
after a lower criticality access. For example, in [11], Burns
takes the view that with the exception of some cryptographic
protocols, resources should not be shared across criticality
levels. He introduces MC-PCP to prevent unbounded priority
inversion among jobs of the same criticality level. Bran-
denburg [12] on the other hand takes a much more radical
approach and requires all resource accesses to be executed
in a server, which assumes the criticality level of the highest
criticality resource accessing task.

We take the view that resource sharing across criticality
levels should be possible without having to subject resource
accesses to a timing analysis at this highest criticality level.
Instead we use available hardware features, namely transac-
tional memory, to enforce timely bounds on shared resource
accessed from low criticality tasks. Unfortunately, IBM Blue-
Gene, although successful in high-performance computing is
typically not widely used in real-time and mixed criticality
systems. We therefore extend a simple x86 cache-based HTM
implementation with support for a single preempted transaction
and report in Section III about the implementation of this HTM
variant in the cycle accurate model of an out-of-order CPU in
the Gem5 hardware simulator. In Section IV, we evaluate the
performance of our approach before we draw conclusions in
Section V.

We are confident that it is much easier to establish partial
correctness (i.e., that if the resource access terminates, the re-
source will be in a good state) than establishing the timeliness
of such accesses. In particular, establishing partial correctness
with sufficient confidence is still possible if the code is
incompatible with sophisticated timing analysis tools. Our
main contribution of this paper is to provide a means to ensure
the timeliness of lower criticality accesses by executing them
transactionally. We use the hardware feature of transactional
memory not for synchronizing access to shared resources (the
usual locks are still in place), but to quickly abort low critical
shared resource accesses that violate their time bounds.

II. BACKGROUND AND RELATED WORK

In this section we describe the foundations our research
builds upon, namely hardware transactional memory (HTM)
as a feature of modern processors and real-time locking
protocols like immediate-ceiling or inheritance based protocols
for controlling the access to a shared resource. We combine
both in a mixed criticality system, where low critical tasks can
be aborted if they overstep their temporal bounds or if higher
critical tasks overstep their optimistic scheduling parameters
and actually need to be scheduled with more pessimistic ones.

A. Hardware Transactional Memory

As of today, IBM Blue Gene/Q [3] has the most elaborate
HTM implementation. By versioning data in the shared L2
cache, Blue Gene/Q is able to maintain multiple transac-
tional states in parallel, which allows them to roll back later
transactions if they conflict with earlier ones. Both, IBM’s
and Intel’s HTM, have dedicated instructions to start and
end a transaction. Within a transactional region, updates to

memory are kept local to the CPU and are not visible to other
processors. When the transaction finishes, it tries to commit all
changes atomically and thereby makes them visible to other
CPUs. If this commit fails, no changes are written back at
all, the transaction is said to be aborted and the CPU state is
rolled back to the state before the transaction was started to
do proper error handling. We use this all-or-nothing approach
when accessing shared resources within temporal bounds.

Cain et al. [13] give a very detailed description of the
transactional memory system, its hardware implementation and
suggested OS, and application programming models for the
IBM Power architecture. Interestingly, this paper also explains
in detail how and why they allow suspending and resum-
ing transactions. Rather than aborting transactions, interrupts
preempt transactions. In addition, transaction preemption and
resuming is made available to developers through explicit in-
structions: tsuspend and tresume. The authors thoroughly
evaluate the costs and benefits and show that transaction
suspension is a valuable feature when building robust and
reliable systems.

In this work, we propose a more lightweight implementa-
tion of transaction suspension for x86 that advances Intel’s
Transactional Synchronization Extensions (TSX). Although
most implementation details of TSX [4] remain confidential,
some parts may be inferred from released information in the
Intel developer and optimisation manuals, which indicate a
L1D cache-based implementation.

B. Real-Time Locking Protocols

In this paper, we consider both single and mixed criticality
resource protocols, which we classify by the mechanism used
to guarantee bounded priority inversion:

• immediate-ceiling based protocols, such as the stack
resource [9] (or ceiling priority [14]) protocol (SRP), im-
mediately raise the priority of resource acquiring threads
to a resource dependent ceiling priority. By preventing
released threads at a lower priority from executing, they
seek to ensure that all resources are readily available once
the thread starts executing.
• inheritance based protocols, such as the priority in-

heritance protocol (PI) and the original priority ceiling
protocol (OPCP) by Sha et al. [10], allow preemptions of
resource holders by higher prioritised threads but help out
the resource holder in case a thread requests a resource by
raising its priority to the priority of the higher prioritised,
blocked thread. We distinguish between local helping
(i.e., helping out a resource holder on the same CPU)
and global helping (i.e., pulling the resource access from
a remote CPU to the local CPU) and restrict ourselves to
local helping protocols only. The rationale is that global
helping would require transferring transactional state from
one CPU to another, a complexity we are not willing to
take into account when extending our cache-based HTM
implementation.

Single criticality protocols of the first class are the mul-
tiprocessor variants MRSP by Gai et al. [15] and FMLP by
Brandenburg et al. [16]. Both execute global resource accesses
(i.e., resources accessed from threads on multiple cores) non-
preemptively, which corresponds to raising the priority of



non-transactional

transactional

preempted

tbegin
(n=0)

tabort
tend (n = 0),
tresume

tbegin,
tpreempt,
tabort,
tend

tpreempt tresume

tbegin
(n > 0)

tend
(n > 0)

Fig. 1: States of cache controller for preemptible transactions.

the resource accessing thread to the maximum priority of
threads on its core. Zhao et al. [17] extend the stack resource
protocol to work with EDF schemes in which threads have
more than one deadline to accommodate mode changes. As a
member of the second class, Burns [11] extends the analysis
of OPCP to consider criticality dependent blocking terms.
Avoiding resource sharing across criticality levels, Burns al-
lows local helping only between tasks of the same criticality.
Single criticality protocols with local helping include the
partitioned multiprocessor priority inheritance protocol [18]
and similar variants for EDF [19]. The clustered O(m) locking
protocol [20] and Brandenburg’s inter-process communication
scheme [12] apply global helping and are therefore not consid-
ered in this work in their original form. However, it is possible
to modify the former to apply local helping (i.e., inheritance)
only and we address this variant. Lakshmanan et al. [21]
integrate ceiling (PCCP) and inheritance (PCIP) in their slack
based scheduling approach to allow resource sharing across
criticality levels. In addition to inheriting priority, they propose
to also inherit criticality to prevent tasks from being suspended
by low criticality tasks. Both PCIP and PCCP are single
processor variants with local helping and ceiling, respectively.

III. PREEMPTIBLE TRANSACTIONS IN THE GEM5
OUT-OF-ORDER MODEL

Gem5 is a modular simulation framework with various
CPU, memory, device and cache models. At the time of writ-
ing, there was already an HTM implementation [22] in Gem5,
which is based on LogTM [23]. However, it was not built for
the cycle accurate Out-of-Order CPU model (O3CPU) but for a
simpler, less timing precise model. Moreover, its implementa-
tion was based on an undo log (like PARs [24]) whereas we fo-
cus on cache-based implementations, since available hardware
(IBM, Intel) most likely implements transactions in the cache.
We therefore started a new implementation in the O3CPU
model, which we will introduce shortly in the following before
we return to our implementation in Section III-B. Like most
modern simulators, Gem5 decouples the internal architecture
from the instruction set architecture (ISA) exposed to the
user. In this way, Gem5 unifies different CPU models, like
AtomicSimple, TimingSimple, and the 5-stage Out-of-Order
model we use. Internally, Gem5’s O3CPU makes use of a
RISC like ISA, called M5, whereas user ISAs can be x86,
ARM and others.

A. Out-of-Order CPU Model

Currently the most advanced CPU model in Gem5 is the
5 stage pipelined Out-of-Order CPU model, which loosely
resembles an Alpha 21264. It implements the following usual
pipeline stages: fetch, decode, rename, issue + execute +
writeback, and commit. Issue forwards instructions to specific
queues where they are processed by the execution units and
the memory subsystem in the order in which their parameters
become ready. Relevant for this work is the load/store queue
and the ordering enforced by the memory barrier instruction.

The CPU model is event-driven and timing costs are
attached and accumulated at each individual step. An external
clock drives the CPU and creates ’ticks’ for each of its stages
to advance the model in a cycle-precise fashion. The number of
instructions that can be fetched, decoded, issued and sent to the
execution units is configurable. The delay and the bandwidth
in each step, the delay of caches, the traversing of multiple
ports, and the accumulating lookup-, forward- or data-copying
delay are also subject to configuration. For our evaluation in
Section IV, we use the default configuration for the Out-of-
Order CPU, with a L1 instruction and L1 data cache of 32KB
each and a 256 kB unified L2 cache. Cachelines store 64 bytes.
The associativity of L1D is 4, 8 for L1I, and 16 for the L2
cache. Although modern CPUs have shared L3 cache, we did
not add it, since transactional data will solely be placed in
the L1 data cache. The cache one level beneath is important
for the simulation, but multiple levels do not add any further
detail.

B. Preemptible transactions in O3CPU

Based on publicly available information, we recreated part
of the restricted transactional memory (RTM) implementation
proposed by Intel [4]2. More precisely, we augmented the
L1 data cache with additional state —the T bit— to distin-
guish transactional from non-transactional data and extended
the logic for the MOESI cache coherence protocol to react
accordingly.

We chose to implement basic RTM functionality on top
of MOESI although Intel CPUs implement MESIF because a
MOESI protocol implementation was already present in Gem5.
Common to both protocols are the cacheline states Invalid for
empty cachelines, Exclusive for data that has not yet been
modified and that is present only in this cache, Modified for
exclusive data that has been modified and Shared for data that
may exist with the same value in multiple caches. Owned
cachelines allow sharing of dirty data by delaying the write
back to the time of eviction. The data in memory might be
stale, but the cacheline is shared. Forward is a similar variant
of S, which allows the forwarding cache to respond, instead
of the underlying memory.

We first describe the modifications required to put the
CPU and the caches in transactional and transaction preempted
state before returning to the coherence protocol and how
transactions change the state machine of the cache controller.

2Notice, while we added the full user functionality of RTM, including
nested transactions, we leave the triggering of transaction aborts in all kind
of exceptional cases as a future engineering task. For example, we added all
instructions to begin, end and abort a transaction but do not trigger the abort
mechanism when the page-table walker experiences a page fault.



Figure 1 illustrates the transaction states and the transitions
assuming aborts are eager. To implement these state changes,
we added three control signals to the CPU —HTM-ENABLE,
HTM-COMMIT and HTM-ABORT— and interpret them in the
load/store unit and in the cache controller. The outermost TBE-
GIN instruction transitions the CPU into transactional mode
and informs the cache to start a new transaction. From now
on, until the outermost TEND commits or aborts the transaction,
all memory accesses will be stored transactionally in the L1
cache with the T bit set. Subsequent execution of TBEGIN
stays in this state but increases the transaction nesting level,
which TEND decreases. The outermost TEND with nesting level
n = 0 sends a HTM-COMMIT-request to the underlying cache.
The TEND instruction will retire not before the cache responds,
either with commit or abort. TABORT triggers the abort directly
through HTM-ABORT. In all three cases, the cache and the
CPU return to non-transactional operation.

To add transaction preemption, we implemented two fur-
ther instructions TPREEMPT and TRESUME and introduced one
additional control signal HTM-PREEMPT to signal that the
cache and the CPU are not in preempted transaction mode.
TPREEMPT sets this signal, so that further memory-requests
are no longer transactional and TRESUME clears it, returning
to the previous transaction. Depending on the desired abort
behavior, TRESUME will return an error if the transaction was
aborted and immediate aborts should be supported. For lazy
aborts, TRESUME returns normally but transactions will no
longer commit. All other variants (including TBEGIN while
a transaction is preempted) map to an abort. Aborts always
affect all transactions up to the outermost one.

Special attention needs to be payed on in-flight memory
operations and outstanding cache misses, since we cannot com-
mit or abort a transaction that has pending memory requests.
For this reason, all transaction instructions have to behave
like a full memory barrier, which ensures that earlier memory
accesses (including outstanding cache misses) are completed
before a mode change is triggered and that later instructions are
not started before the instruction is commited by the processor
pipeline. In particular, we cannot execute these instructions
speculatively because they change the behaviour of the CPU
and the cache.

What remains is to ensure that the cache controller reacts
appropriately depending on the state it is in and, in particular,
that it detects all conflicts that lead to transaction aborts. For
that we augment the cache with a vector of Transaction bits
(one for each cacheline). To enable HTM, the snoop logic
changes its behavior depending on the state of the T bit of the
affected cacheline. While the cache executes in transactional
mode, the snoop logic responds normally to external reads
to exclusive (E), shared (S, O) or modified M cachelines.
However, if the read origins from the local core and targets an
Exclusive, Shared or Owned cacheline, it sets the T bit to mark
these lines as belonging to the read set. Writes put cachelines
to the write set by setting the T bit in the M state. When
an external snoop request hits a cacheline that is transactional
(i.e. belongs to the read or write set and thus has its T bit set),
the transaction will be aborted if the snoop request signals an
external write (rfo) or a read (busrd) of modified data. An abort
unconditionally invalidates all modified cachelines and returns
to non-transactional operation.

M

E

I

S

O

M

E

S

O

T

T

T

T

rdT /wb

rdT/busrd=t

wrT /wb/rfo

rdT

rdT

wrT/rfo

rdT wrT /wb/rfo

rdT/busrd = f

rd/wr/
busrd/rfo/evict
=> tabort

wr/rfo/evict
=> tabort

Fig. 2: Augmented coherence protocol for preemptible transac-
tions. We omit the standard MOESI transitions and present in
blue (solid) the behavior or transactional reads and writes and
in red (dashed) the effect of non-transactional reads and writes
on ntransactional data while the transaction is preempted.
·T denotes transactional operations and state, wb indicates a
required write back, evict a cache eviction and rfo and busrd
are events indicating external writes and reads.

Special care must be taken for non-transactional dirty
cachelines that become transactional. Because aborts will
unconditionally discard cachelines, we first have to write
back dirty cachelines to not lose the old data when abort-
ing the transaction. More precisely, we have to write back
Owned cachelines before they are written in a transaction and
Modified lines before they are read or written.

Now, if the cache controller enters preempted transaction
mode, the controller has to react to local accesses as if they
were external. That is, if a local read hits the write set or if
a local write hits this transactional data in the read or write
set, the transaction is aborted prior to executing this request.
Figure 2 shows the modified transitions of the resulting cache
coherence protocol. For better readability, we omitted the
transitions of the normal MOESI protocol and only show the
transitions due to transactional reads and writes accessing non-
transactional data and of non-transactional reads and writes
hitting a preempted transaction. All other transitions among the
non-transactional MOESI states and among their transactional
counterparts are like in the standard MOESI protocol except
that evictions of the latter trigger aborts.

To evaluate the costs of transactions, we annotate all
steps in this execution with the costs we found for similar
instructions (i.e., memory barriers and the signal propagation
delay to the cache).

IV. EVALUATION

For the experimental evaluation we generated 1,000 ran-
dom tasksets with up to 10 tasks and a given maximum util-
isation (0.5, 0.75, and 1.0) using the uunifast algorithm [25].
We use a periodic task model with implicit deadlines, in which
periods are the product of two randomly chosen factors from



the set [2, 3, 4, 6, 8, 9, 12], resulting in a maximum hyper period
of 5184. Randomly choosing arbitrary periods from a given
range typically results in extremely long hyper periods that can
no longer be simulated in a reasonable amount of time. These
tasks access shared resources and split their execution time in
such a way that the first half in each period is spent outside of
the critical section and the second half within. Furthermore we
selected 83%, 67%, and 50% of them to be high-critical and
increased their high-critical WCET by a factor of 1.2, 1.5, or
2.0 respectively. Thus we roughly have the same utilisation for
the low and the high criticality mode. Fig. 3, 4, and 5 show the
histogram of 1,000 tasksets. The solid three plots are almost
overlapping and depict the distribution of tasks when using
preemptible transactional memory, so that low critical tasks
accessing their shared resource can be scheduled with their
low-WCET. The transactional semantic of the cache allows
us to use the more optimistic low criticality bounds when
accessing the shared resource. In the case of overrunning the
time budget, the timer will fire, the resource access will be
aborted and the system changes into its high criticality mode,
dropping all low criticality tasks. If the resource access finishes
within time, the transaction will commit, the job will finish and
the next job will be scheduled.

The dashed three plots show the same taskset when no
transactional memory is used to bound the low critical WCET.
Hence, we have to use their high critical counterpart for low
critical jobs, resulting in a higher overall system load. The
low critical WCET to high critical WCET ratios are 1.2, 1.5,
and 2.0, i.e. a ratio of 1 : 1.2 means high-critical WCETs are
20% higher then their low criticality counterpart, reflecting the
higher trust and associated higher costs.

In the first experiment we chose an utilisation target of
50%, so that the load of all low-critical execution times sums
up to about 50%. Since low-critical tasks share resources with
high-critical ones, their WCET to access the resource needs
the highest confidence of all sharing tasks. Although a task
is low-critical, the resource access has to use its high-critical
WCET, which leads to a higher load on the CPU. In this
setup we observed up to 72% load, compared to the 50%
when not sharing resources between low and high tasks. Even
at an assumed very moderate LO to HI ratio of 1.2, already
1% of the tasksets were no longer schedulable, due to missed
deadlines. With higher low critical to high critical ratios (1.5
and 2.0 respectively) the deadline misses increased to 6% and
21% of all tasksets. With our proposed hardware extension,
we are able to use transactions for low-critical tasks in their
critical section and therefore use the lower but less trustworthy
low criticality bounds and abort jobs if they overrun their
budget. Fig. 4 and Fig 5 show the results when increasing
the initial load in the system to 75% and 100%. At a system
load of 75%, already 4% of all tasksets (at ratio 1.2), 14%
(at ratio 1.5), and 54% (at ratio 2.0) cause deadline misses.
The very extreme is at a maximum utilisation of 100%. Due
to pessimistic WCET for low critical tasks only 55% of all
tasksets were schedulable when assuming a LO to HI ratio of
1.2. At 1.5 or 2.0 virtually 100% were no longer schedulable.
This is not surprising, since adding even minor additional load
to a very loaded system very likely causes deadlines to be
missed. Therefore, we did not plot the actual load, but rather
the theoretical load this system would have to handle, if we
ignore all occurring deadline misses.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

20

40

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 3: Taskset with a maximum CPU load of 0.5 and a ratio of 1:1.2,
1:1.5, and 1:2.0 for low-critical to high-critical WCET. Although all
tasksets are schedulable with EDF on a uniprocessor, it is clear that
the additional pessimism for low critical tasks sharing a resource with
a high critical task significantly increases their WCET and thus leads
to a higher utilisation, i.e. higher resource demands (or less slack).

0.6 0.7 0.8 0.9 1
0

20

40

60

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 4: Taskset with a maximum CPU load of 0.75 and a ratio of
1:1.2, 1:1.5, and 1:2.0 for low-critical to high-critical WCET. At a
ratio of 2.0, 54% of the tasksets are no longer schedulable.

0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 5: Taskset with a maximum CPU load of 1.0 and a ratio of 1:1.2,
1:1.5, and 1:2.0 for low-critical to high-critical WCET. The three solid
plots show the actual load when using transactions to bind low-critical
resource access, whereas the three dashed plots depict the theoretical
system load, since with a ratio of 1.5 and 2.0 virtually no tasksets
were schedulable any longer. So we ignored the deadline misses and
report the load the system would have to handle.

1.4 1.5 1.6 1.7 1.8
0

20

40

60

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 6: Taskset with a CPU load of about 1.5, 20% of the WCET is
spent in a critical section and in high criticality mode tasks require
1.2/1.5/2.0 times their low-WCET.



To substantiate the feasibility of our approach and to
quantify the benefits of using transactional memory in mixed
criticality systems, we evaluate a very simple multiprocessor
setup. We use the same task model as in the uniprocessor case,
generate the tasksets in the same fashion, and use partitioned
EDF with one synchronisation processor for accessing global
resources according to [26]. To generate tasksets that are still
schedulable, the task’s first 80% of its execution time is spent
outside critical sections, the remaining 20% within. Of all
tasks, about 83%, 67%, and 50% of them are classified as
high critical and their high-WCET is 1.2, 1.5, and 2.0 times of
their low-WCET, respectively. We removed all tasksets which
caused deadline misses either in low or high critical mode,
Fig. 6 shows the results. As in the uniprocessor case, reliably
enforcing low-critical WCETs for shared resource accesses
reduces the overall load in the system. Moreover, at a ratio of
1.2, 5% of the tasksets caused deadline misses when not using
transactional memory to enforce timely bounds on critical
sections. At 1.5 this number raises to 26% and with high-
WCETs being twice as long as their low-WCETs counterparts
50% of the tasksets were no longer schedulable. This means
that approximately one half is plotted, the other half was
schedulable with hardware transactional memory enforcing
lower WCET bounds, but could not be scheduled without it.
This clearly shows the benefit of using preemptible transac-
tional memory in combination with mixed criticality systems
to improve schedulability and reduce system utilisation.

V. CONCLUSIONS

In this work, we investigated the use of hardware trans-
actional memory (HTM) in real-time locking protocols to
make low criticality resource access bounds trustworthy at
higher criticality levels. We have seen that although existing
HTM implementations are quite limiting or too complex to
integrate in embedded systems, a lightweight implementation
supporting preemptible transactions significantly broadens the
applicability of our approach.

Future work includes extending our HTM implementation
to an L2 victim cache to increase the amount of data that can
be accessed within a resource access. Also, we did not yet
exploit the optimistic locking behavior of transactions when
a thread finds a resource blocked. To preserve the real-time
guarantees of the legitimate lock holder, support for optimistic
locking requires control over which transaction gets aborted
(the optimistic) and which will be continued (the lockholder’s).

REFERENCES

[1] M. Tremblay and S. Chaudhry, “A third-generation 65nm 16-core 32-
thread plus 32-scout-thread sparc processor,” in International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC 08).
IEEE, 2008, pp. 82–83.

[2] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Computer Architecture, 1993.,
Proceedings of the 20th Annual International Symposium on, May 1993,
pp. 289–300.

[3] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sug-
avanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and C. Kim., “The IBM blue
gene/q compute chip,” IEEE Micro, vol. 32, no. 2, pp. 48–60, April
2012.

[4] I. Corp., “Web resources about intel transactional synchronization
extension,” www.intel.com/software/tsx, July 2014.

[5] A. Waterman, Y. Lee, D. Patterson, and K. Asanović, “The RISC-
V instruction set manual volume i: User-level ISA - version 2.0,”
CS Division, EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2014-54, May 2014.

[6] C. Ferri, A. Viescas, T. Moreshet, I. R. Bahar, and M. Herlihy, “Energy
implications of transactional memory for embedded architectures,” in
Workshop on exploiting parallelism with transactional memory and
other hardwre assisted methods, April 2008.

[7] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, December 2007, pp. 239–243.

[8] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, ser. RTAS. IEEE, April 2010,
pp. 13–22.

[9] T. P. Baker, “A stack-based resource allocation policy for real-time
processes,” in Real-Time Systems Symposium. IEEE, 1991.

[10] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronisation,” in IEEE Transaction on
Computers, 39, 1990.

[11] A. Burns, “The application of the original priority ceiling protocol to
mixed criticality systems,” in L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, 2013, pp. 7–11.

[12] B. Brandenburg, “A synchronous IPC protocol for predictable access to
shared resources in mixed-criticality systems,” in 35th IEEE Real-Time
Systems Symposium (RTSS 2014), 2014, pp. 196–206.

[13] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in the
power architecture,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013, pp. 225–236.

[14] N. H. Cohen, “Ada as a second language, chapter real-time systems
annex.” McGraw-Hill, 1996.

[15] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.”
in Real-Time Systems Symposium. IEEE, 2001, pp. 73–83.

[16] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson,
“A flexible real-time locking protocol for multiprocessors,” in 13th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2007.

[17] Q. Zhao, Z. Gu, and H. Zeng, “Integration of resource synchronization
and preemption-thresholds into EDF-based mixed-criticality scheduling
algorithm,” in RTCSA, 2013.

[18] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” in Real-Time Systems Symposium.
IEEE, 1988, pp. 259–269.

[19] C.-M. Chen and S. K. Tripathi, “Multiprocessor priority ceiling based
protocols,” College Park, MD, USA, Tech. Rep., 1994.

[20] B. B. Brandenburg and J. H. Anderson, “Real-time resource-sharing un-
der clustered scheduling: mutex, reader-writer, and k-exclusion locks,”
in EMSOFT, 2011.

[21] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-criticality task
synchronization in zero-slack scheduling,” in IEEE RTAS, 2011, pp.
47–56.

[22] G. Blake and T. Mudge, “Duplicating and verifying LogTM with os
support in the M5 simulator ABSTRACT.”

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based transactional memory,” in in HPCA, 2006, pp.
254–265.

[24] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,
and J. Vitek, “Preemptible atomic regions for real-time java,” in In 26th
IEEE Real-Time Systems Symposium, 2005.

[25] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, pp. 129–154, 2005.

[26] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” in Real-Time Systems Symposium.
IEEE, 1988, pp. 259–269.


