HITACHI

Inspire the Next

Effective Source Code Analysis
with Minimization

July 5, 2016

Geet Tapan Telang

Research Engineer — IT Platform
Hitachi India Pvt. Ltd.

© Hitachi, Ltd. 2016. All rights reserved.

HITACHI

Inspire the Next

Contents

1. Introduction
2. Results

3. Conclusion

1

© Hitachi, Ltd. 2016. All rights reserved.

HITACHI

Inspire the Next

1. Introduction

© Hitachi, Ltd. 2016. All rights reserved. 2

OSS Demand n'flpl-rﬁlcl'\f'!f

« Growing demand for OSS/Linux in Safety Critical domain.

« Size of code Is approximately 20 million lines of code (Linux
0S).

« Validation and analysis makes traditional methods difficult
to follow.

« Code coverage and analysis is major part of verification and
validation.

« Scoping the target code is a big challenge.

© Hitachi, Ltd. 2016. All rights reserved. 3

HITACHI

Inspire the Next

Problem

© Hitachi, Ltd. 2016. All rights reserved. 4

‘“ffifdef disasters”

> The #ifdefs makes
the code hard to:

 Review
« Debug

« Maintain
« Verify

HITACHI

Inspire the Next

/drivers/dma/dmaengine. c

device_has_all_tx_types(struct

#ifdef CONFIG_ASYNC_TX_DM&

if (!dma_has_cap(DMA_INTERRUPT, device-=>cap_mask))
return g

#endif

#1f defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
if (!dma_has_cap(DMA_MEMCPY, device-=cap_mask))

return g
#endif

#1f defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
if (!dma_has_cap(DMA_XOR, dewvice-=cap_mask))
return 7

#ifndef COMFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA

if (!dma_has_cap(DMA_XOR_VAL, device-=cap_mask)})
return g

#endif

#endif

#if defined({CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_P{_MODULE)
if (!dma_has_cap(DMA_PQ, device-=cap_mask))
return A

#ifndef CONMFIG_ASYNC_TX_DISABLE_PQ VAL_DMA
if (!dma_has_cap(DMA_PQ VAL, device-=cap_mask))
return A

#endif
#endif

return

© Hitachi, Ltd. 2016. All rights reserved. 5

‘“ifdef disasters” HITACHI

Inspire the Next

/drivers/dma/dmaengine. c

static device_has_all_tx_types(struct

{

if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
return '

if (!dma_has_cap(DMA_PQ, device-=cap_mask))
return -

return

If code is free from #ifdef blocks then, analysis shall be more
effective.

Is there a way ?

© Hitachi, Ltd. 2016. All rights reserved. 6

HITACHI

Inspire the Next

Approach

© Hitachi, Ltd. 2016. All rights reserved. 7

The Minimization Approach

HITACHI

Inspire the Next

 The minimization approach tweaks integrated MakeFile options to

produce compilable stripped code.

« Signifies efficient way to get a set of stripped kernel source code based

on a .config file.

« Generate source tree where;

— Unused #ifdef, #if blocks have
been removed

— #include and #define lines are
preserved

— Only used source files exist

— Produces the same binary file as
the original tree

Target
Source Code

GCC preprocessor
et ’| with #ifdef and

Configuration
File

Minimization
Process

Preprocessed
source code

#if-block

Hard to review, debug,
maintain

Preprocessed
source code

without #ifdef
and #if-block

/

Efficient static analysis and
narrow search space

© Hitachi, Ltd. 2016. All rights reserved.

8

The Minimization Approach HITACHI

Inspire the Next

0) -8 (sysname) */

uname (funame_info.name); /* never failas */

if defined(_sparc_) && defined(_limux_)
it (uu spaxc &t (fake_sparc(0] | 0:20) YL
uname infc.name.machine, " c”) ;

strcpy (uname_info.processor, unknown_str): 132 scrcpy (uname_info.processor, unkmown_str)
strcpy (uname info.platform, unknown str); screpy (uname info.platform, unknown str);
4 strcpy {uname info.os, CONFIG UNAME OSNAME) : 13 strcpy (uname info.os, CONFIG UNAME OSNAME)
5#if O N i : -

/* Fedora does something like this *

strcpy (uname info.processor, uname MQ name.machine) : o .

u:ep!r(m " info. phv.zou - uname_ Infc.name.machine);

if (uname info.platform[0] == 'i' mlnlmlze

&& uname_ nto puttontzl

&& m—g :.nh pln:!on(:] -0

&6 uname infc. platform[3] == '6*

)t

uname infeo.platform(l] = '3';

delta = utsname offset:
fme = " S3" - 1;

delta ~ utsname offset:
fmt = " A3* + 1;

This code transformation is what we term as Minimization.

Original idea of using GREP (Approach-I)

Too much user

» Requires complete build in advance.
Involvement!!!

« Text parsing has to be acquired from build log.

 Source code modification to remove redundant code.

© Hitachi, Ltd. 2016. All rights reserved. 9

Road to Minimization n',"JT%,C]'\T'!f

Minimize.py script (Approach-Il)

restoration
« Binary verification

« MakeFile integration Overriding Replace CHECK
_ " Inherit MakeFile existing CHECK with minimization
— Override existing flag feature in _script
MakeFile (minimize.py)
CHECK flag feature
. |\/||n|m|Z|ng procedure Minimization Process
— Preprocess | Remove i
’ ! : Construct and
. | Restore#include expanded !
expanded header | sentences headers and runcg:ﬁﬁ]rgsgss |
| blank lines |

— Compare “minimized (o
ompilable
binary” and the minimized code
et » Easy to read,
O”gmal efficient code
inspection.
Y J

© Hitachi, Ltd. 2016. All rights reserved. 10

MakeFile Integration HITACHI

Inspire the Next

« Override existing CHECK feature in kernel MakeFile

cotaro@kotaro-OptiPlex-7020:~/Minimization/1linux-4.3.35 make help | grep CHECK
make C=1 [targets] Check all c source with $ (sparse by default)

make C=2 [targets] Force check of all c source with §

« Makefile of the root directory:

sparse

-D__1linux__ -Dlinux -D__ STDC__ -Dunix -D__unix__ \
-Wbitwise -Wno-return-void S$(CF)

« Minimization script(minimize.py) usage:
Replace CHECK with minimize.py so make can process minimization

S make C=1 CHECK=minimize.py CF="-mindir ../minimized-tree/"

— . N

In make process, “minimize.py” will receive the same option as the compile flags of each
source file, plus $CHECKFLAGS variable.

ON THE FLY GENERATION (no post processing)!!!

© Hitachi, Ltd. 2016. All rights reserved. 11

Minimization procedure HITACHI

Inspire the Next

1. Preprocess the source files
gcc —E —fdirectives-only
#ifdef block disappears, #include gets expanded,
but #define macros are preserved, also removes empty lines
2. ldentify & delete the expanded header contents
— Use clues(linemarkers) that exist in the preprocessed file
— Example of linemarkers: # 30 “/usr/include/sys/stsname.h” 2

3. Restore #include sentences
— Copy relevant #include lines from the original source

12

© Hitachi, Ltd. 2016. All rights reserved.

Preprocess the source file

HITACHI

Inspire the Next

e preprocess() function in minimize.py
— Takes gcc options passed via Makefile
— Appends “-E —fdirectives-only” flags
— Perform preprocess for the target C file

Users\khashimoto\Desktop\hogeriuname.c

ChUsers\khashimoto\Desktop\hoger\uname.c.preprocessed

50

51 //usage: #define uname trivial usage

" [—amnrspvio] ™

53 /fusage:#define uname full usage "\n\n"
"Print system informationi\n™

52 //usage:

54 //usage:
55 //u=age:
56 //u=age:
57 //usage:
58 //usage:
59 //usage:
60 //usage:
61 //usage:
62 //u=age:
63 //u=age:
64 //usage:

"\n
"\n
"
"y
"\n
"\n
"\n
"\n
"\n

Print all"™

The machine (hardware})
Hostname"™

EKernel release”™

Eernel name (defaultc)™
Processor type"

Eernel wversion"™

The hardware placform™
C5 names"

65 //usage:#define uname example usage
"$ uname -—-a\n"
"Linux debian 2.4.23 #2 Tue Dec

66 //usage:
67 //usage:
65

69 ¥include

70 /=~ Rfter
71 #include

"libbb.h™

type™

23 17

libbbk.h, since it needs sys/types.h on some
<sys/utsname.h>

43773 $#define BEUNIT ASSERT STRNOTEQ(STR1,STR2) do { if (stromp(STR1, S5TR2) -
43774 # 2121 "include/libbb.h"
43775

preprocess()

:09:10 M5T 2003 1

systems */

43776

43777 POP_SAVED FUNCTION VISIBILITY

43778

43779 # 70 "coreutils/uname.c"™ 2

43780 /* After libbb.h, since it needs sys/types.h on some systems =/
43781 # 1 "fusr/include/x86 64-linux-gnu/sys/utsname.h”™ 1 3

43782 /* Copyright (C) 1991-2014 Free Software Foundation, Inc.

43783 This file is part of the GNUO C Library.

43784 -

© Hitachi, Ltd. 2016. All rights reserved. 13

Identify & delete the expanded headers HITACHI

Inspire the Next

e stripHeaders() function in minimize.py
— Takes preprocessed C file
— Search Preprocessor Output relevant to #include lines
— Delete included contents guided by the linemarkers

Included file name and line number information is conveyed in the preprocessor output;
linemarkers

LineMarker Ex. # 30 “/usr/include/sys/utsname.h” 2

_— f /

linenum filename flags
It means, the following lines originated in line Flags:
30 of utsname.h, after having included another 1: indicates the start of the new file
file(flag:2). 2: indicates returning to the file.

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

© Hitachi, Ltd. 2016. All rights reserved. 14

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

Identify & delete the expanded headers HITACHI

Inspire the Next

 stripHeaders() algorithm

— Find linemakers (starting with ‘# number “filename™)

— If flename is the target C file:
 copy the following lines

« And if flag in the linemaker is 2:
— Mark "TO BE REPLACED” that means “there is #include line”

Flag 2 indicates returning to the file
(after having included another file).

43768 # 2100 "include/libbb.h" 64 //u=sage:

43769 65 //usage:#define uname example usage

43770 #define BBUNIT ASSERT STREQ(STR1,STR2) do { if (strcmp(STR1, STR2) != 66 //usage: "% uname —a\n"

43771 # 2110 "include/libbb.h" 67 //fu=age: "Linux debian 2.4.23 #2 Tue Dec 23 17:09:10 MST 2003 ise
43772

43773 #define BBUNIT ASSERT STRNOTEQ(STR1,S5TR2) do { if (strcmp(STR1, STRZ)

43774 # 2121 "include/libbb.h" .

stripHeaders()

43776

43777 POP_SAVED FUNCTION VISIBILITY

43778 68

‘13?'?‘2[# 70 "coreutils/uname.c” 2 I \&BTD BE REPLACED: "include/libbb.h"

43780 /7 LAfter Libbb.h, since it needs sys/types.h on some systems */ 70 /* Afrer libbb.h, since it needs sys/types.h on some systems */
43781 # 1 "/fusr/include/x86 6€4-linux-gnu/sys/utsname.h" 1 3 71 TC BE REPLACED: "/usr/include/x86 64-linux-gnu/sys/utsname.h"
43782 /* Copyright (C) 1991-2014 Free Software Foundation, Inc.

43783 This file is part of the GNU C Library.

43784

43785 The GNU C Library is free software; you can redistribute it and/or

43786 modify it under the terms of the GHU Lesser General Public

© Hitachi, Ltd. 2016. All rights reserved. 15

Restore #include sentences

HITACHI

Inspire the Next

« restoreHeaderInclude() function in minimize.py

— Takes header-stripped preprocessed file
— Look for “TO BE REPLACED” marks
— Compare with the original C file, copy original #include lines

restoreHeaderInclude()

64 //usage:
65 //usage:#define uname example usage

66 //usage: "% uname -a\n"
67 //usage: "Linux debian 2.4.23 #2 Tue Dec 23 17:08:1
of

69 TO BE REPLACED: "include/libbb.h"

70 /* After libbb.h, since it needs sys/types.h on some syst
71TO BE REPLACED: "/usr/include/x86 64-linux-gnu/sys/utsnam
12

13 typedef struct {

74 struct utsname hname;
15 char processor[sizeof(((struct utsname*)NULL)->machin
16 char platform[sizeof (((struct utsname*)NULL)->machine

64 //usage:
65 //usage:#define uname example usage

66 //usage: "% uname -a\n"
67 //usage: "Linux debian 2.4.23 #2 Tue Dec 23 17:05:
of

69 #include "libbb.h"
70 /* After libbb.h, since it needs sys/types.h on some sys
71 #include <sys/utsname.h>

12

13 typedef struct {

74 struct utsname name;

15 char processor[sizeof(((struct utsname*)NULL)->machi
16 char platform[sizeof (((struct utsname*)NULL)->machin|

16

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Diff HITACHI

 Finally, diff result is only deletions of the unused code.

— Without changing #include, #define lines.
— Minimization also removes blank lines which comprised of
unused code

#if defined(sparc_) && defined(_ linux_)
if (fake_sparc && (fake_sparc[@] | 0x20) == "y'){
strepy(uname_info.name.machine, “"sparc™); Minimization
}
ftendif

strepy(uname_info.processor, unknown str); strepy(uname_info.processor, unknown str);

strcpy(uname_info.platform,unknown_str); strepy(uname_info.platform,unknown_str);

strcpy(uname_info.os, CONFIG_UNAME_OSNAME); strepy(uname_info.os, CONFIG_UNAME_OSNAME);
#if 0

/* Fedora does something Like this */

strcpy(uname_info.processor, uname_info.name.machine);

strcpy(uname_info.platform, uname_info.name.machine);

if (uname_info.platform[@] == "1’

&& uname_info.platform[1]

&& uname_info.platform[2]

&& uname info.platform[3]

g
6

) {
uname_info.platform[1] = "3';
}
fendif
delta = utsname_offset; delta = utsname_offset;
fmt = " %s" + 1; fmt = " %s" + 1;

© Hitachi, Ltd. 2016. All rights reserved. 17

HITACHI

Inspire the Next

2. Results

© Hitachi, Ltd. 2016. All rights reserved. 18

Minimization Results n',"p'T%,C]'\Tl)!f

Linux Kernel Tree

» allnoconfig: 64684 unused lines were removed - 22% of original C
code.

« defconfig: 103144 unused lines were removed - 5% of original C
code.

BusyBox Tree

« allnoconfig: 51 out of 112 compiled C files have been minimized 5945
lines unused lines were removed - 34% of original C code

 defconfig: 296 out of 505 compiled C files have been minimized. 20453
lines unused lines were removed = 11% of original C code

ARCTIC Core source code

« Statistics shows approximately 5.5 times higher chances of eliminating
unused #ifdef switches.

© Hitachi, Ltd. 2016. All rights reserved.

19

HITACHI

Inspire the Next

Evaluation

© Hitachi, Ltd. 2016. All rights reserved. 20

Minimization Evaluation ﬂﬂ%‘?’\ﬂf

Disassembled code(“objdump —d”)

Complexity Statistics

matches
» To analyze the complexity of “C” » Between the binaries built from
program function. minimized source and original one.
 Linux with PREEMPT _RT patch, » Confirmed configuration & target:
Linux Kernel source, BusyBox tree « BusyBox-1.24.1: defconfig,
as shown in table below. allnoconfig
« Complexity (a GNU utility) tool has * busybox (executable)
been used. e Linux kernel 4.4.1: allnoconfig

 vmlinux.o

Minimized code is compilable and produces same binary

Complexity Linux Kernel BusyBox Tree PREEMFPT_RT
Metrics Original Source | Minimizedix86_defconfig) | Minimized(allnoconfizg) | Original Source | Minimized(x86_defconfiz) | Minimizediallnoconfig) | Owriginal | Minimized
Average Line Scome 23 7 5) 21 19 10 7
50%-ile score 4 3 2 9 9 5 4 3
Highest Scom 1846 194 158 283 283 283 530 194]

Measured complexity in terms of average line score, 50%-ile score and highest score.

© Hitachi, Ltd. 2016. All rights reserved. 21

HITACHI

Inspire the Next

Benefits

© Hitachi, Ltd. 2016. All rights reserved. 22

Benefits HITACHI

Inspire the Next

« Verification time and cost improvement
— Static analysis through Coccinelle

— Executed a semantic patch for detecting functions have different
return type values

— Statistics
« Comparison of execution time and minimization was faster.
« 12[s] and 2.24]s] for original and minimized kernel respectively.
» False positive reduction
— Wrong indication about presence of particular condition.
— Statistics
» Original kernel source: 126
* Minimized kernel source: 82
* Pruning function call graph

— Analysis requires every possible call path to establish and trace
relationship between program and subroutines.

— Call graph is a directed graph that represents this relationship.

© Hitachi, Ltd. 2016. All rights reserved. 23

HITACHI
Inspire the Next

Benefits

c
=

t

inimiza

~ M

f Jw@@:S@DL-m.

v

i

: -
._ .-_m.m:_m
\ |3 =

q)l B

|m_n,.,um.‘w....| J..uw. |

m-mmm 0 m

reset_sighandiers_md_unblock_sigs

No. of nodes: 85

No. of nodes: 94

No. of edges: 123

No. of edges: 140

24

© Hitachi, Ltd. 2016. All rights reserved.

Benefits HITACHI

Inspire the Next

Extracting Minimal Subtarget Sources

$ cd busybox-1.24.1

$ make [1nit C=2| CHECK=minimize.py CF=“-mindir ../min-init”

If subtarget is specified in the minimized command,
Only the used source files will be extracted.

—_

min-init/

applets * . . . e
L pplets.c Depended *.c files in minimized form.

include Actually included *.h files
applet_metadata.h
autoconf.h
busybox.h
grp_.h
libbb.h o
latform.h (+ &\
Pud . &) Easy to identify which files are used
shadow_.h

xatonun. h (&) Helps efficient software walk-through

bootchartd.c
halt.c
init.c

mesg.c
reboot.h

© Hitachi, Ltd. 2016. All rights reserved. 25

HITACHI

Inspire the Next

3. Conclusion

© Hitachi, Ltd. 2016. All rights reserved. 26

Conclusion HITACHI

Inspire the Next

* Improves readability for human.
— Helps efficient code review / inspection.

* Narrows down “search space”.
— Gives evidence for unused code.
— Saves verification cost (time & space).
— Achieves higher test coverage.
— Reduces false-positives.

« From analysis stand-point, this provides
— Reduction in verification time
— False-positive reduction

 Much more potential for domains like safety and mission
critical systems.

© Hitachi, Ltd. 2016. All rights reserved. 27

Future Work HITACHI

Inspire the Next

To adapt more config / architecture
— More than allnoconfig, defconfig / x86, arm
« To adapt more projects
— For different build system (automake, CMake etc.)
« To prove minimized tree is “equal” to original one
— How to formally verify equivalence???
« To find out more applications
— Something that enhances existing tools / techniques
« Available in:

— https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

© Hitachi, Ltd. 2016. All rights reserved. 28

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

HITACHI

Inspire the Next

END

Effective Source Code Analysis with Minimization

July 5, 2016

Geet Tapan Telang
Hitachi India Pvt. Ltd.

© Hitachi, Ltd. 2016. All rights reserved. 29

