
© Hitachi, Ltd. 2016. All rights reserved.

Effective Source Code Analysis

with Minimization

Research Engineer – IT Platform
Hitachi India Pvt. Ltd.

July 5, 2016

Geet Tapan Telang

© Hitachi, Ltd. 2016. All rights reserved.

1. Introduction

2. Results

3. Conclusion

Contents

1

© Hitachi, Ltd. 2016. All rights reserved.

1. Introduction

2

© Hitachi, Ltd. 2016. All rights reserved.

OSS Demand

3

• Growing demand for OSS/Linux in Safety Critical domain.

• Size of code is approximately 20 million lines of code (Linux

OS).

• Validation and analysis makes traditional methods difficult

to follow.

• Code coverage and analysis is major part of verification and

validation.

• Scoping the target code is a big challenge.

© Hitachi, Ltd. 2016. All rights reserved.

Problem

4

© Hitachi, Ltd. 2016. All rights reserved.

“#ifdef disasters”

5

/drivers/dma/dmaengine.c

 The #ifdefs makes
the code hard to:

• Review

• Debug

• Maintain

• Verify

© Hitachi, Ltd. 2016. All rights reserved. 6

/drivers/dma/dmaengine.c

If code is free from #ifdef blocks then, analysis shall be more
effective.

Is there a way ?

“#ifdef disasters”

© Hitachi, Ltd. 2016. All rights reserved.

Approach

7

© Hitachi, Ltd. 2016. All rights reserved.

The Minimization Approach

8

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

• The minimization approach tweaks integrated MakeFile options to

produce compilable stripped code.

• Signifies efficient way to get a set of stripped kernel source code based

on a .config file.

• Generate source tree where;

– Unused #ifdef, #if blocks have

been removed

– #include and #define lines are

preserved

– Only used source files exist

– Produces the same binary file as

the original tree

© Hitachi, Ltd. 2016. All rights reserved. 9 9

minimize

Note that we don’t mean
“minimal configuration” here.

The Minimization Approach

This code transformation is what we term as Minimization.

Original idea of using GREP (Approach-I)

• Requires complete build in advance.

• Text parsing has to be acquired from build log.

• Source code modification to remove redundant code.

Too much user
Involvement!!!

© Hitachi, Ltd. 2016. All rights reserved. 10

• MakeFile integration

– Override existing

CHECK flag feature

• Minimizing procedure

– Preprocess,

expanded header

restoration

• Binary verification

– Compare “minimized

binary” and the

original

Road to Minimization

Minimize.py script (Approach-II)

© Hitachi, Ltd. 2016. All rights reserved.

• Override existing CHECK feature in kernel MakeFile

• Minimization script(minimize.py) usage:

 Replace CHECK with minimize.py so make can process minimization

• Makefile of the root directory:

In make process, “minimize.py” will receive the same option as the compile flags of each
source file, plus $CHECKFLAGS variable.

ON THE FLY GENERATION (no post processing)!!!

11

MakeFile Integration

© Hitachi, Ltd. 2016. All rights reserved.

1. Preprocess the source files

gcc –E –fdirectives-only

2. Identify & delete the expanded header contents

– Use clues(linemarkers) that exist in the preprocessed file

– Example of linemarkers: # 30 “/usr/include/sys/stsname.h” 2

3. Restore #include sentences

– Copy relevant #include lines from the original source

#ifdef block disappears, #include gets expanded,
but #define macros are preserved, also removes empty lines

12

Minimization procedure

© Hitachi, Ltd. 2016. All rights reserved.

• preprocess() function in minimize.py

– Takes gcc options passed via Makefile

– Appends “-E –fdirectives-only” flags

– Perform preprocess for the target C file

preprocess()

13

Preprocess the source file

© Hitachi, Ltd. 2016. All rights reserved.

• stripHeaders() function in minimize.py

– Takes preprocessed C file

– Search Preprocessor Output relevant to #include lines

– Delete included contents guided by the linemarkers

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

Included file name and line number information is conveyed in the preprocessor output;
linemarkers

LineMarker Ex. # 30 “/usr/include/sys/utsname.h” 2

linenum filename flags

Flags:
 1: indicates the start of the new file
 2: indicates returning to the file.

It means, the following lines originated in line
30 of utsname.h, after having included another
file(flag:2).

14

Identify & delete the expanded headers

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

© Hitachi, Ltd. 2016. All rights reserved.

• stripHeaders() algorithm

– Find linemakers (starting with ‘# number “filename”’)

– If filename is the target C file:

• copy the following lines

• And if flag in the linemaker is 2:

– Mark ”TO BE REPLACED” that means “there is #include line”

stripHeaders()

Flag 2 indicates returning to the file
(after having included another file).

15

Identify & delete the expanded headers

© Hitachi, Ltd. 2016. All rights reserved.

• restoreHeaderInclude() function in minimize.py

– Takes header-stripped preprocessed file

– Look for “TO BE REPLACED” marks

– Compare with the original C file, copy original #include lines

restoreHeaderInclude()

16

Restore #include sentences

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Diff

17

• Finally, diff result is only deletions of the unused code.

– Without changing #include, #define lines.

– Minimization also removes blank lines which comprised of

unused code.

© Hitachi, Ltd. 2016. All rights reserved.

2. Results

18

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Results

19

• allnoconfig: 64684 unused lines were removed  22% of original C
code.

• defconfig: 103144 unused lines were removed  5% of original C
code.

Linux Kernel Tree

• allnoconfig: 51 out of 112 compiled C files have been minimized 5945
lines unused lines were removed  34% of original C code

• defconfig: 296 out of 505 compiled C files have been minimized. 20453
lines unused lines were removed  11% of original C code

BusyBox Tree

• Statistics shows approximately 5.5 times higher chances of eliminating
unused #ifdef switches.

ARCTIC Core source code

• Likewise, quantification of ARCTIC Core source code was
quantified
─ Statistics shows approximately 5.5 times higher chances of

eliminating unused #ifdef switches.

© Hitachi, Ltd. 2016. All rights reserved.

Evaluation

20

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Evaluation

21

• Complexity Statistics
• To analyze the complexity of “C” program function.

• Linux with PREEMPT_RT patch, Linux Kernel source, BusyBox

tree as shown in table below.

• Complexity (a GNU utility) tool has been used.

• Disassembled code(“objdump –d”) matches

– Between the binaries built from minimized source and original one.

– Confirmed configuration & target:

• BusyBox-1.24.1: defconfig, allnoconfig

– busybox (executable)

• Linux kernel 4.4.1: allnoconfig

– vmlinux.o

Minimized code is compilable and produces same binary

Measured complexity in terms of average line score, 50%-ile score and highest score.

Complexity Statistics

• To analyze the complexity of “C”
program function.

• Linux with PREEMPT_RT patch,
Linux Kernel source, BusyBox tree
as shown in table below.

• Complexity (a GNU utility) tool has
been used.

Disassembled code(“objdump –d”)
matches

• Between the binaries built from
minimized source and original one.

• Confirmed configuration & target:

• BusyBox-1.24.1: defconfig,
allnoconfig

• busybox (executable)

• Linux kernel 4.4.1: allnoconfig

• vmlinux.o

© Hitachi, Ltd. 2016. All rights reserved.

Benefits

22

© Hitachi, Ltd. 2016. All rights reserved.

Benefits

23

• Verification time and cost improvement
– Static analysis through Coccinelle

– Executed a semantic patch for detecting functions have different
return type values

– Statistics

• Comparison of execution time and minimization was faster.

• 12[s] and 2.24[s] for original and minimized kernel respectively.

• False positive reduction
– Wrong indication about presence of particular condition.

– Statistics

• Original kernel source: 126

• Minimized kernel source: 82

• Pruning function call graph
– Analysis requires every possible call path to establish and trace

relationship between program and subroutines.

– Call graph is a directed graph that represents this relationship.

© Hitachi, Ltd. 2016. All rights reserved. 24

No. of nodes: 85
No. of edges: 123

No. of nodes: 94
No. of edges: 140

Minimization

Benefits

© Hitachi, Ltd. 2016. All rights reserved. 25

Extracting Minimal Subtarget Sources

$ cd busybox-1.24.1
$ make init C=2 CHECK=minimize.py CF=“-mindir ../min-init”

If subtarget is specified in the minimized command,
Only the used source files will be extracted.

Depended *.c files in minimized form.
Actually included *.h files

• Easy to identify which files are used

• Helps efficient software walk-through

Benefits

© Hitachi, Ltd. 2016. All rights reserved.

3. Conclusion

26

© Hitachi, Ltd. 2016. All rights reserved. 27

Conclusion

• Improves readability for human.
– Helps efficient code review / inspection.

• Narrows down “search space”.
– Gives evidence for unused code.

– Saves verification cost (time & space).

– Achieves higher test coverage.

– Reduces false-positives.

• From analysis stand-point, this provides
– Reduction in verification time

– False-positive reduction

• Much more potential for domains like safety and mission
critical systems.

© Hitachi, Ltd. 2016. All rights reserved.

 Future Work

• To adapt more config / architecture

– More than allnoconfig, defconfig / x86, arm

• To adapt more projects

– For different build system (automake, CMake etc.)

• To prove minimized tree is “equal” to original one

– How to formally verify equivalence???

• To find out more applications

– Something that enhances existing tools / techniques

• Available in:

– https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

28

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

© Hitachi, Ltd. 2016. All rights reserved.

Effective Source Code Analysis with Minimization

July 5, 2016

Geet Tapan Telang

END

Hitachi India Pvt. Ltd.

29

