
cba

Kaiser, Doerner (Hrsg.): SENSYBLE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

Unified Approach to Static & Runtime Verification

Extended Abstract

Olga Dedi, Andreas Werner, Robert Kaiser, Reinhold Kroeger 1

Abstract: Today’s systems become more and more complex, and even domain experts are sometimes
in doubt regarding their correct behaviour in rare / non-standard situations. Especially embedded
systems incorporate increasing functionality and have to interact with the environment through a
wide spectrum of sensors and actors. Real-time properties requiring a guaranteed reaction of the
system within a given limited time window are often associated as well, and safety is taken for
granted by customers all-the-time when using them. Furthermore, these critical systems often have
to face uncertainty, which may originate from unknown device configurations at design time or
from unforeseen changes of the environment during operation. Uncertainty may also exist in control
algorithms. For example, to guarantee a safe behaviour of trained AI algorithms in previously unseen
situations is inherently difficult, if not impossible.

Under these conditions it is a complex and highly responsible task for developers to thoroughly
test, or even to formally prove correct behaviour of the system’s properties. Formal verification is
often regarded as the ultimate way to achieve the highest levels of trust, therefore safety certification
standards demand such proof for the highest Safety Integrity Levels. However, due to the ever-increasing
complexity of current software and due to the non-deterministic nature of some mechanisms of the
underlying hardware architecture, static verification, though sound in theory, is often impractical.

We do not believe that a full static verification and validation at design time is always possible. Instead,
we have started to work on a methodology which distinguishes between verification activities carried
out at design time and those at runtime. In a nutshell, at design time static verification takes place, i.e.
specified system properties are formally proven to the highest possible degree at a reasonable effort.
For properties which cannot be proven statically in this way, sufficiently strong monitors are generated
which are executed at runtime to monitor correct system behaviour. Interestingly, this methodology
can be applied to functional as well as non-functional (i.e. timing) properties. In the undesired case of
detecting a property violation at runtime, the underlying system architecture is prepared to reconfigure
the application to ensure acceptable behaviour. This adaptivity has to be supported by the application
design.

In this paper, we report on an ongoing effort for tool-supported verification of functional and
non-functional properties by combining static and runtime verification techniques.

Keywords: SPARK; WCET; static verification; runtime verification; OS microkernel; AQUAS

1 RheinMain University of Applied Sciences; firstname.lastname@hs-rm.de

https://creativecommons.org/licenses/by-sa/4.0/
firstname.lastname@hs-rm.de

