
cba

(Hrsg.): SENSYBLE-Workshop,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

Bidirectional Transformer Language Models
for Smart Autocompletion of Source Code

Felix Binder, Johannes Villmow, Adrian Ulges1

AI-based support in software engineering has recently emerged as a research field: Recom-
menders for software commits [Da16], predicting code changes [Zh19], semantic code
search [Hu19] or code captioning [ALY18] have been developed. These are usually based on
machine learning components, trained on vast amounts of source code and documentation
from open-source platforms such as GitHub. Another challenge – and the subject of this
paper – is smart autocompletion: As the developer types source code, an AI-based system
suggests names for methods/interfaces to use next. To do so, the system infers the plausibility
of method calls from the local code context. Take a look at the following example: The AI
system (more specifically, a neural method ranking network) analyzes a position in the current
code (red, left), and infers that – out of the class TextField’s methods – addActionListener
seems most plausible. The network has learned this suggestion from a vast training set of
Java projects on GitHub, which contain similar usages of GUI components as the target
code:

public class NameEntry {

 ...
 TextField name;
 ...

 public void setup() {

 name = new TextField(20);
 l = new Label(this.name);
 add(l, Layout.WEST);
 add(name, Layout.EAST);

 h = new NameHandler();
 name. ???
 pack();
 }

 ...

method ranking
 network

1. 92%
2. addNotify 57%
3. setText 7%

addActionListener

We refer to this challenge of ranking an object’s method names by their plausibility in
a given code context as method ranking. While previous work has used n-grams [Hi12],
1 RheinMain University of Applied Sciences, DCSM Department, Wiesbaden/Germany

felix.binder@student.hs-rm.de,[johannes.villmow,adrian.ulges]@hs-rm.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:felix.binder@student.hs-rm.de, [johannes.villmow, adrian.ulges]@hs-rm.de

2 Felix Binder, Johannes Villmow, Adrian Ulges

recurrent networks [Wh15] and left-to-right language modeling [In20], we evaluate the
transformer network BERT [De18] based on masked language modeling. While masked
language modeling has been very successful in natural language processing, it has not
been used for method ranking / smart autocompletion in source code yet. Our approach
first pre-trains a BERT model (more precisely, RoBERTa [Li19]) on a dataset of 10.414
open-source projects (250 million lines of code) from the GitHub Java Corpus [AS13].
Training is done by masking out tokens (more precisely, BPE tokens [SHB16]) in pieces of
source code and forcing the model to predict those missing tokens. We call the resulting
model JavaBERT.

To utilize JavaBERT for method ranking, we address the fact that method names may consist
of multiple tokens (e.g., add-Action-Listen-er). We suggest two alternatives:

1. JavaBERT-unsup: The pre-trained (unsupervised) JavaBERT is applied by masking
out variable numbers of tokens. JavaBERT’s predictions on token-level are then
combined in a probabilistic reasoning to predictions on method level.

2. JavaBERT-sup: JavaBERT is fine-tuned in an additional supervised training as a
binary classifier, estimating whether a certain method call is plausible or not in
context.

We evaluate both approaches in quantitative experiments on a set of random samples from
the test split of the GitHub Java Corpus. Our results indicate that masked language modeling
is surprisingly accurate, with a top-3 accuracy of up to 98%. We also study the impact of
different contexts, e.g. only the code up to the target method call, or shorter vs. larger pieces
of code.

References

[ALY18] Alon, U.; Levy, O.; Yahav, E.: code2seq: Generating Sequences from Structured
Representations of Code. CoRR abs/1808.01400/, 2018.

[AS13] Allamanis, M.; Sutton, C.: Mining Source Code Repositories at Massive Scale
using Language Modeling. In: The 10th Working Conference on Mining Software
Repositories. IEEE, S. 207–216, 2013.

[Da16] Dam, H. K.; Tran, T.; Grundy, J.; Ghose, A.: DeepSoft: A Vision for a Deep
Model of Software, 2016, arXiv: 1608.00092 [cs.SE].

[De18] Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K.: BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding, 2018, arXiv:
1810.04805 [cs.CL].

[Hi12] Hindle, A.; Barr, E. T.; Su, Z.; Gabel, M.; Devanbu, P.: On the Naturalness
of Software. In: 2012 34th International Conference on Software Engineering
(ICSE). IEEE, S. 837–847, 2012.

Bidirectional Transformer Language Models
for Smart Autocompletion of Source Code 3

[Hu19] Husain, H.; Wu, H.-H.; Gazit, T.; Allamanis, M.; Brockschmidt, M.: CodeSe-
archNet Challenge: Evaluating the State of Semantic Code Search, 2019, arXiv:
1909.09436 [cs.LG].

[In20] Inc., T.: The TabNine Autocompleter, https://tabnine.com, retrieved: Mar
2020.) 2020.

[Li19] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zett-
lemoyer, L.; Stoyanov, V.: RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692/, 2019.

[SHB16] Sennrich, R.; Haddow, B.; Birch, A.: Neural Machine Translation of Rare
Words with Subword Units. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Berlin, Germany, S. 1715–1725, Aug. 2016,
url: https://www.aclweb.org/anthology/P16-1162.

[Wh15] White, M.; Vendome, C.; Linares-Vásquez, M.; Poshyvanyk, D.: Toward Deep
Learning Software Repositories. In: Proceedings of the 12th Working Conference
on Mining Software Repositories. MSR ’15, IEEE Press, Florence, Italy, S. 334–
345, 2015, isbn: 978-0-7695-5594-2, url: http://dl.acm.org/citation.
cfm?id=2820518.2820559.

[Zh19] Zhao, R.; Bieber, D.; Swersky, K.; Tarlow, D.: Neural Networks for Modeling
Source Code Edits, 2019, arXiv: 1904.02818 [cs.LG].

https://tabnine.com
https://www.aclweb.org/anthology/P16-1162
http://dl.acm.org/citation.cfm?id=2820518.2820559
http://dl.acm.org/citation.cfm?id=2820518.2820559

