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AI-based support in software engineering has recently emerged as a research field: Recom-
menders for software commits [Da16], predicting code changes [Zh19], semantic code
search [Hu19] or code captioning [ALY18] have been developed. These are usually based on
machine learning components, trained on vast amounts of source code and documentation
from open-source platforms such as GitHub. Another challenge – and the subject of this
paper – is smart autocompletion: As the developer types source code, an AI-based system
suggests names for methods/interfaces to use next. To do so, the system infers the plausibility
of method calls from the local code context. Take a look at the following example: The AI
system (more specifically, a neural method ranking network) analyzes a position in the current
code (red, left), and infers that – out of the class TextField’s methods – addActionListener
seems most plausible. The network has learned this suggestion from a vast training set of
Java projects on GitHub, which contain similar usages of GUI components as the target
code:

  

public class NameEntry {
  
  ...
  TextField name;
  ...
  
  public void setup() {
    
    name = new TextField(20);
    l = new Label(this.name);
    add(l, Layout.WEST);
    add(name, Layout.EAST);
    
    h = new NameHandler();
    name.  ??? 
    pack(); 
  }

  ...

method ranking  
     network

1.   92%
2.   addNotify 57%
3.   setText  7%

addActionListener

We refer to this challenge of ranking an object’s method names by their plausibility in
a given code context as method ranking. While previous work has used n-grams [Hi12],
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recurrent networks [Wh15] and left-to-right language modeling [In20], we evaluate the
transformer network BERT [De18] based on masked language modeling. While masked
language modeling has been very successful in natural language processing, it has not
been used for method ranking / smart autocompletion in source code yet. Our approach
first pre-trains a BERT model (more precisely, RoBERTa [Li19]) on a dataset of 10.414
open-source projects (250 million lines of code) from the GitHub Java Corpus [AS13].
Training is done by masking out tokens (more precisely, BPE tokens [SHB16]) in pieces of
source code and forcing the model to predict those missing tokens. We call the resulting
model JavaBERT.

To utilize JavaBERT for method ranking, we address the fact that method names may consist
of multiple tokens (e.g., add-Action-Listen-er). We suggest two alternatives:

1. JavaBERT-unsup: The pre-trained (unsupervised) JavaBERT is applied by masking
out variable numbers of tokens. JavaBERT’s predictions on token-level are then
combined in a probabilistic reasoning to predictions on method level.

2. JavaBERT-sup: JavaBERT is fine-tuned in an additional supervised training as a
binary classifier, estimating whether a certain method call is plausible or not in
context.

We evaluate both approaches in quantitative experiments on a set of random samples from
the test split of the GitHub Java Corpus. Our results indicate that masked language modeling
is surprisingly accurate, with a top-3 accuracy of up to 98%. We also study the impact of
different contexts, e.g. only the code up to the target method call, or shorter vs. larger pieces
of code.
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