Feasibility to replace Interprocess
Communication by the

Message Passing Interface in
microkernel contexts

René Drolshagen
Lasse Loffler




Overview

Introduction

Message Passing Interface (MPI)
Interprocess Communication (IPC)
Comparison

Feasibility

Conclusions

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Introduction

IPC is the communication standard in the microkernel context
IPC was introduced 35 years ago
Since this day IPC was only improved and never replaced

This presentation will do a comparison of both

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

History, concept and functionality of the

MESSAGE PASSING INTERFACE

—
I
-




Message Passing Interface (MPI)

MPI is a specification which tries to solve the problem
between portability, efficiency and functionality

Was developed for distributed shared memory (DSM)
architectures

As trends changed towards NUMA and NoRMA this
specification was adapted

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Message Passing Interface (MPI)

Today MPI could handle all architectures seamlessly and
transparently

Reasons for using MPI:
Portability
Standardization
Performance
Functionality

<
—
o
N\
(o)
=
(90}
—
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
)
olo]
©
B
A
(©)
—_
(@]
‘o
(=
)
o




Message Passing Interface (MPI)

Communication Methods in MPI:
Blocking send / blocking receive
Non-blocking send / non-blocking receive
Combined send and receive

Messages are received in the order they were sent by
guarantee

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Message Passing Interface (MPI)

One defined Communicator per Group
Handles the whole communication

Can be compared with the Clans and Chiefs Model

MPI_COMM_WORLD@ 3 5 5

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

History, concept and functionality of

INTERPROCESS COMMUNICATION

—
(o}
—




Micro- vs. Monolithic-Kernel

Operating monolithic kernels are divided in user- and
kernelspace

Issue
all the basic services are running in privileged mode

Idea of the microkernel
Moving all the basic services from kernel- to userspace

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Idea and usecase of IPC

Problem
Communication between service inside the user space

Solution

Interprocess Communication (IPC) via the microkernels
kernelspace

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Functionality of IPC

Passing unbuffered messages between services

Two fundamental operations
send
receive

Both operations can be executed
Blocking
Non-blocking

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Interprocess Communication (IPC)

IPC needs a high performance
Passing thousands of messages

Also used inside the kernel to handle
Interrupts
Memory-Managing

IPC Permissions / Addresses managed via Capabilities

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

MPI vs. IPC

COMPARISON

[HEY
D




Comparison

MPI allows n-to-1 and 1-to-n operations
Asynchron MPI send operations could possibly sleep forever

IPC has a defined message structure

MPI messages are defined by the data which is passed inside
the message

MPI has the ability of process groups
IPC is much faster (!)

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

Replacing IPC by MPI

FEASIBILITY

=
(0))]




Feasibility

Problem: No Capability feature in MPI
Every process could communicate with each other

Solution:
Group processes together which are allowed to communicate
Only communication inside groups is allowed

Example:
Group 1: process A and process B

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o

Group 2: process A and process C




Feasibility

Problem: No Capability feature in MPI
Every process could communicate with each other

Solution:

The communicator of a group has the ability to check whether a
communication is allowed

Implement a kind of rights table

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




Feasibility

Problem: Denial-of-Service

A malicious user-level program could send a unlimited amout of
non-blocking messages

13.02.2014

Solution:

Forbid non-blocking messages

—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
)
olo]
©
B
A
(©)
—_
(@]
‘o
(=
)
o




Feasibility

Problem: Starving by blocking messages

A performed blocking send operation could starve a process, if
the receiver never appears

13.02.2014

Solution:
Implement a timer in messages

Give the communicator the ability to break down the send
operation

* Causes dramativ overhead and implementation work (!)

—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
)
olo]
©
B
A
(©)
—_
(@]
‘o
(=
)
o




Feasibility

Problem: Performance and amount of Code
MPI has got a huge amount of Code
The performance of MPIl compared to IPC

Solution:
Not available

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

THE

CONCLUSION

N
N




Conclusion

Replacing IPC by MPI is not advisable
Some problems could easily be solved
The Denial-of-Service attack is a critical issue

There is a microkernel with MPI, which is called PARAM9000

<
—
©)
=
(o]
Q
(90)]
—
-
Q
G-
G
:0
—
(]
)
%)
©
—
©
=
©
=
()
o14]
©
{5
X
o
—_
()
W
(=
(]
o




<
i
o
N\
(o)
=
(90}
i
—
]
G-
o
e}
—
)
]
(%]
©
—
©
=
©
=
()
olo]
©
4=
X
o
o
(@]
‘o
(=
)
o

Questions?

THANKS FOR YOUR ATTENTION

N
S




