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What's User-level scheduling

« Export scheduling policies form the kernel in the User-
level

* Based on the idea of microkernel based operating
systems



Microkernel based operating systems

* Minimize the kernel part of the operating system

“ For more modularity, flexibility and small ”Trusted
Computing Base”

« Just include scheduling mechanism, address calculation
and a messaging service (IPC)

« All resource-management policies have to be
implemented at user-level as server applications
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Why using user-level
scheduling ?



CPU Inheritance Scheduling

* Traditionally scheduling is on low
level: by kernel scheduler or by
user-level thread packages

“ New approach: higher-level
threads donate CPU+resources to
others

* "Inheritance": ability to donate and
request (virtual) CPU time between
threads

* Client threads can act as scheduler

threads for others

* Root scheduler owns real CPU time
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CPU Usage Accounting

* Statistical accounting
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Transitive
Inheritance
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Conclusion

# CPU inheritance scheduling has low overhead
* All threads in one address space
* A threads has access to memory of all applications

« Is it possible to use the concept of CPU inheritance
scheduling for more address spaces?



That’s all Folks

* Thanks for your Attention!



