13.02.2014

User_level Andreas Zoor &
: Nikolai Nagibin
scheduling :

What's User-level scheduling

« Export scheduling policies form the kernel in the User-
level

* Based on the idea of microkernel based operating
systems

Microkernel based operating systems

* Minimize the kernel part of the operating system

“ For more modularity, flexibility and small ”Trusted
Computing Base”

« Just include scheduling mechanism, address calculation
and a messaging service (IPC)

« All resource-management policies have to be
implemented at user-level as server applications

Scheduling

OS services (Server apps)

Applications

User space

Dispatcher

Virtual Address Calculation

Messaging mechanism (IPC)

Idea of user-level

scheduling

Kernel space

o'\

-4

Why using user-level
scheduling ?

CPU Inheritance Scheduling

* Traditionally scheduling is on low
level: by kernel scheduler or by
user-level thread packages

“ New approach: higher-level
threads donate CPU+resources to
others

* "Inheritance": ability to donate and
request (virtual) CPU time between
threads

* Client threads can act as scheduler

threads for others

* Root scheduler owns real CPU time

Root Scheduler
(real-time fixed-priority
RR/FIFO scheduler)

Real-time threads

Timesharing class
(lottery scheduler)

Mike
\2SD scheduler)

.\

Web browser
. _F’/’ O

\Ja:a applets
O
O
Jay
(lottery scheduler) Jay’s threads
® ——————0
Background class O
(gang scheduler)

Background jobs

CPU Usage Accounting

* Statistical accounting

CPU S0
* Time stamp-based accounting -_—0 O To
* Directly implement by root \ s1
schedulers ¢ OT1
* Virtual time information for \

clients of other schedulers O 12

Transitive
Inheritance

Priority inversion

10 —— —
= . oo . - -confi 3 —
“ Is it efficient enough in O erokomelgec (3300 cowie) -
: = 8 FrooBSD configurs (202 cowls) - -
practice? z 'FreeBSD:gec (32 csw/s) - - -
§ /FreeBSD:gzip (11 cswis) - - -
S = 6 ' 3 }
* Two additional sources of §
overhead 5 4 _
5
* Caused by dispatcher S :
A
: i N W U ome ‘.
* and add. context switches 0 b— e B i i
1 10 100 1000

Overhead

Additional overhead per context switch (microsec)

Scheduling

OS services (Server apps)

Applications

User space

Dispatcher

Virtual memory

Messaging mechanism (IPC)

View: Exokernel

Kernel space

Conclusion

CPU inheritance scheduling has low overhead
* All threads in one address space
* A threads has access to memory of all applications

« Is it possible to use the concept of CPU inheritance
scheduling for more address spaces?

That’s all Folks

* Thanks for your Attention!

