
WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

WINGERT
A Thread Migrating OS

for Real-Time Applications

Alexander Züpke
alexander.zuepke@hs-rm.de

2

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

About Me

Alexander Züpke

1999 – 2003: Diploma in Computer Engineering
University of Applied Sciences Gelsenkirchen

2003 – now: Kernel Hacker on PikeOS
SYSGO AG, Klein-Winternheim

2012 – now: PhD Student
RheinMain University of Applied Sciences Wiesbaden

3

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Wingert

Win·gert m., Pl: Win·ger·te
German word in Rhine-Hessian dialect for a vineyard

derived from the Middle High German word

 wîngarte
(wine garden)

4

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Wingert OS

WIesbaden

Next

Generation

Experimental

Real-Time

Operating

System

… or: WINGERT Is a New Great Experimental Real-Time Operating System

5

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Outline

● Motivation
● System Architecture
● Various Use Cases of Thread Migration
● Resource Management
● Futexes and Locking
● Current Status of the Implementation
● Conclusion
● Outlook

6

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Motivation

Safety Critical Systems …

7

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

8

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

9

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Motivation

Safety requirements for shared resources
● IEC 61508

“An E/E/PE* safety-related system will usually implement
more than one safety function. If the safety integrity
requirements for these safety functions differ, unless there is
sufficient independence of implementation between them, the
requirements applicable to the highest relevant safety integrity
level shall apply to the entire E/E/PE safety-related system.”

● ISO 26262
“Freedom of interference”

* E/E/PE: electrical / electronic / programmable electronic

10

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Motivation

Mixed-criticality system

Separation by Partitioning

ARINC 653:
– Spatial Partitioning

– Time Partitioning

OS Kernel

P3

less
critical

user mode

supervisor mode

P1

most
critical

P2

critical

P4

least
critical

11

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Own Experience:

Micro kernels are nice, but building reliable
systems with them is still too painful!

Lots of engineering challenges:
– bounded WCET when Linux runs on top?

– independent analyses of partitions?

– more threads + more synchronization = more safety?

Motivation

12

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

System Architecture

● Design Choices
– Hierarchical system design

– Small TCB

– Minimalistic kernel
● Address spaces
● Threads
● Capabilities
● Resource partitioning
● Preemptive kernel
● State of the art scheduling

– Thread migration

shared driver 1

P3

less
critical

P1

most
critical

P2

critical

P4

least
critical

OS Kernel

shared driver 2

13

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

14

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

● Definition of “thread migration” in literature
– a client lends its thread to the server

– the server is a passive entity

● Examples
– Mach (Ford)

– Sun's Spring

– Pebble

– Composite

– …

P3P1 P2 P4

OS Kernel

15

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Decompose a thread into Body and Soul:

● Body: user part of a thread
– register context

– user stack

● Soul: kernel part of a thread
– scheduling attributes
– kernel stack

Ghost: soul without a body

initial state

idle threads

Body
● Entry point
● User Stack
● TLS

Soul
● Priority
● Deadline
● Kernel Stack

16

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Decompose a thread into Body and Soul:

● Body: user part of a thread
– register context

– user stack

● Soul: kernel part of a thread
– scheduling attributes
– kernel stack

● Ghost: soul without a body
– initial state

– idle threads

Body
● Entry point
● User Stack
● TLS

Soul
● Priority
● Deadline
● Kernel Stack

17

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Synchronous call and return operations:
– a soul migrates back and forth between bodies

– forms a call chain

active body free body

soul

18

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Synchronous call and return operations:
– a soul migrates back and forth between bodies

– forms a call chain

active body free bodyoccupied body

soul

call

19

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Synchronous call and return operations:
– a soul migrates back and forth between bodies

– forms a call chain

active bodyoccupied body

call

20

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Synchronous call and return operations:
– a soul migrates back and forth between bodies

– forms a call chain

occupied body

return

free bodyactive body

21

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Synchronous call and return operations:
– a soul migrates back and forth between bodies

– forms a call chain

return

free bodyactive body

22

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

The forward operation:
– to call another body

– without keeping the caller occupied

23

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

The forward operation:
– to call another body

– without keeping the caller occupied

call

24

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

The forward operation:
– to call another body

– without keeping the caller occupied

forward

25

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

The forward operation:
– to call another body

– without keeping the caller occupied

26

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

The forward operation:
– to call another body

– without keeping the caller occupied

return

27

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Asynchronous fork / join operations:
– fork: tell an idle soul to call a body

– join: asynchronous call returns

fork

go for
It!

28

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Asynchronous fork / join operations:
– fork: tell an idle soul to call a body

– join: asynchronous call returns

call

29

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Asynchronous fork / join operations:
– fork: tell an idle soul to call a body

– join: asynchronous call returns

30

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Asynchronous fork / join operations:
– fork: tell an idle soul to call a body

– join: asynchronous call returns

return

31

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Asynchronous fork / join operations:
– fork: tell an idle soul to call a body

– join: asynchronous call returns

join
I'm done!

32

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Signals and Exception Handling:

● Exceptions
– implicitly turn exceptions into calls to exception-handlers

– pass faulting register context to called body

Signals

signal delivery: force a soul
into a (non-voluntary) call

software raised exception

call

Exception
Handler

Faulter

33

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thread Migration

Signals and Exception Handling:

● Exceptions
– implicitly turn exceptions into calls to exception-handlers

– pass faulting register context to called body

● Signals
– signal delivery: force a soul

into a (non-voluntary) call

– software raised exception

call

Exception
Handler

Faulter

Other

forceexc.

34

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

call Q

35

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

Q

36

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

call

Q

37

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

Q

waiting

38

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

Q
return

waiting

39

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Concurrent Access

● Two souls want to enter the same body …
– First come, first serve! The other soul has to wait.

– Entry wait queue Q

– FIFO or priority ordering

– Priority inheritance

Q

40

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

41

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

park

42

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

call

43

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

unpark

44

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

unpark

45

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

return

46

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Q

47

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Parking Souls

● The Parking Lot:
– a place where souls can rest outside the body

– parking: put the currently active soul in P

– unparking: move a parked soul from P to Q

– the parking queue P is an unsorted queue

P

Qreturn

48

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Interrupt Handling

● Threaded interrupt handlers
– A dedicated soul is waiting on an interrupt

● interrupt happens, interrupt source is masked
● The waiting soul calls the associated body

– Upon return
● the interrupt is handled
● unmask the interrupt source again

49

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

50

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Strict Task Hierarchy
– Strict parent ↔ child relation

– Initial task started by the kernel

– Tasks can only grant their own
resources to their children

– Deleting a task deletes all children
and grand children

Root Task 1

Task 7Task 6Task 2

T 3 T 5T 4

51

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Resources managed by the kernel
– Kernel and User Threads

– Address Spaces

– Communication Channels

– Interrupts

– Kernel memory

– Free system memory

● Allocators
– Coarse granular (4K pages)

– Fine granular (Object Space → capabilities)

52

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Kernel memory
– Accounted per task
– FIFO list with free 4K pages

● Coarse memory allocations
– 4K sized pages (MMU granularity)

– Task descriptors

– Thread Control Blocks + kernel stack (souls)
– Page tables

– Object Space pages

53

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Object Space
– One OS per task

– Object = single capability

– Fine granular memory allocator
● 2-level lookup-table
● using 4K pages

– 16K+ entries of 64 byte

– OS can grow, but not shrink

→ lock free access!

● Tasks can only access their own Object Space
– Safety: no partition interference through locking

– Security: no covert channels

54

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Capabilities in Object Space
– Reference to own task (entry #0)

– Child Tasks

– Child Address Spaces

– Souls

– Bodies

– Ports (communication endpoints)

– Interrupts

● Other Capabilities
– Memory → implicit by virtual address

55

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Resource Management

● Communication Channels
– Handle cross task communication
– Port: channel endpoint

– Channel: two endpoints
● client and server side objects
● granted to child tasks

● Operations
– Server binds body to port
– Client calls port

– Channel remains open until closed

client
port

server
port

gr
an

tgrant
child
task

child
task

call

56

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Locking

57

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Futexes

● Derived from Linux
● 32-bit Integers in user space
● Fast path: use atomic ops
● Use syscalls only on contention
● The kernel maintains a wait queue

● Tricky with resource partitioning!

unlocked

locked

locked w/ contention
1 waiter

locked w/ contention
2+ waiters

58

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Futexes

Partition BPartition A

SHM

Futex
lock lock

Partitioned Environment

Problem

Q: Wait queue belongs to

Partition A or Partition B?

Pre-allocate wait queues?

Place head of wait queue
into user space, next to the futex

a thread

59

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Futexes

Partitioned Environment

Problem
– Q: Wait queue belongs to

Partition A or Partition B?

– Pre-allocate wait queues?

Place head of wait queue
into user space, next to the futex

Partition BPartition A

SHM

Futex
lock lock

Wait Queue

??

60

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Futexes

Partitioned Environment

Problem
– Q: Wait queue belongs to

Partition A or Partition B?

– Pre-allocate wait queues?

Place head of wait queue
into user space, next to the futex

Partition BPartition A

SHM

Futex
lock lock

Wait Queue

??

61

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Futexes

● Futex wait queue
– FIFO sorted O(1) time

– Priority sorted O(log n) time

– Implementation in linear space

● Primitives
– Mutexes

– Condition variables

– Barriers

– Counting semaphores

– Reader-writer locks

62

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Locking Architecture

Futexes
– use between threads in the same partition

– shareable between multiple address space
● but only if all parties trust each other
● must have the same level of criticality

Body & Soul RPC
– Parking concept → monitor

– use between threads in different partitions
● encapsulate critical operations in a dedicated body
● caller must trust callee, but not vice versa

63

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Locking Architecture

Locking Improvements:
– Apply to both Futexes and RPC

– Priority Ceiling Protocol
● Combine futexes with “lazy user space prio switching”
● Raise and lower thread priority in user space
● Kernel synchronizes scheduling priority on IRQ / syscall

– (Migratory) Priority Inheritance Protocol
● Blocked threads boost the priority of lock holders
● May inherit CPUs as well
● Problem: robust implementation …

… what if the lock holder blocks?

… limit recursions?

64

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Finally ...

65

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Implementation

● Implementation in C99 with GNU extensions
● GCC 4.3 to 4.8
● LLVM/Clang 3.3 to 3.4
● Supported Architectures:

– X86 32 bit and 64 bit

– ARM v6 and v7

– PowerPC e500+ cores or newer

● Open Source License

66

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Implementation

● Work in progress (January 2014):
– Shown features are 70% implemented
– 20,000 lines of C code (including tools + test code)
– 2,000 lines of assembler code

● TODO:
– Priority sorting in RPC calls and Futexes
– Cross-address space calls
– Soul parking and Interrupt Handling
– Internal SMP locking in the kernel
– Priority Inheritance!

67

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Conclusion

● Body & Soul: building-block for multi-threaded
execution environments like POSIX Pthreads
– Pthread_create/join → fork / join

– Signals → “forced call” + Exception Handling

– Synchronization → Futexes

● Overall concept should fit the requirements
of mixed criticality systems

68

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Outlook

● Focus on extending Futexes first
– Papers for my PhD!!!

● Userspace?
– Bionic Libc (Android) + OpenMP

– PikeOS paravirtualized Linux

– Benchmark-Suite

● Drivers?
– Rump kernel (NetBSD drivers and stacks)

– Genode OS Framework

69

WAMOS @ HSRM
Wiesbaden
2014-02-13
A. Zuepke

Thank you for your attention!

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69

